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1 Atomic prior

CoGAPS decomposes a matrix D of G genes (rows) and S samples (columns) into two matrices
A ∈ RG×k and P ∈ Rk×S using the model:

p (A,P|D,Σ) ∝ p (D|A,P,Σ) p (A) p (P) , (1)

where the elements of Σ represent the corresponding standard deviation of each element in the
matrix D. Determining the optimal value of k remains an open problem for latent space detection.
The CoGAPS model assumes each element of D is i.i.d. with p (Di,j |Ai,·, P·,j ,Σi,j) a normal
distribution with mean µi,j = Ai,· × P·,j and variance σ2

i,j .
In the case of sequencing data, Di,j is log transformed counts. In cases with replicates, Di,j can

be replaced with the mean log transformed read counts and standard deviation can be computed
across these replicates. In cases without replicates, the standard deviation is assumed to be 10%
of the signal in D with a minimum value of 0.1.

CoGAPS uses an atomic prior [3] for the A and P matrices based upon previous work in
Bayesian non-negative NMF for microarrays [2]. The atomic prior [3] is similar to spike and slab
model [1], in which only a subset of model parameters are non-zero and those that are have a value
distributed according to some continuous distribution with non-negative support. As a result, this
model results in a `0 sparsity constraint on these matrices with other constraints depending on the
distribution used to model non-zero values in these matrices. The atomic prior models each non-
zero matrix element of A or P with a gamma distribution. The rate λA and λP of this distribution
is a parameter that is fixed for every matrix element in A and P, respectively. The shape of the
gamma prior for each matrix element is a separate hyperparameter (αAi,k for each element of A

and αPk,j for each element of P), modeled as a Poisson distribution with a fixed parameter α for

each matrix element. Zero values for αAi,k or αPk,j correspond to Ai,j = 0 and Pk,j = 0, modeling
the subset of model parameters that are zero.

The expectation of the Gamma distribution is proportional to the sampled values of αAi,k or

αPk,j , introducing a further sparsity constraint on the magnitude of the matrix elements when these
values are small. In contrast to standard spike and slab models, the atomic prior also models
smoothness by encoding a correlation structure between matrix elements in A and P during the
sampling steps.

Recall that Ai,j ∼ Γ
(
αAi,k, λ

A
)

is equivalent to the sum of αAi,k independent, exponentially

distributed random variables with rate parameter λA and similarly for Pk,j . Instead of directly
sampling from the Gamma or Poisson distributions, the proposal distribution in the atomic prior
updates a single, exponentially distributed random variable xAi,k,l for A and xPk,j,m for P at each
step described in Section 2. The advantage of sampling a single atom at a time is that the
conditional distribution posterior for an exponential prior on each atom and the normal likelihood
is a truncated normal, enabling Gibbs sampling described in Section 4. This single random variable
is called an “atom” and the set of all such atoms is referred to as the “atomic domain”. The value
of each matrix element of A is then given by

Ai,k =

αA
i,k∑
l=1

xAi,k,l (2)

and similarly for P. The atoms in the atomic domain are stored in ordered coordinates on a number
line (lAi,k,l for A and lPk,j,m for P), which is divided into bins that correspond to each matrix element
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(Main Figure 1). The set of all atoms for one matrix is referred to as the “atomic domain”. If
the number of atoms is smaller than the number of matrix elements, this data structure reduces
the memory required to keep track of each atom and provides an efficient structure to find all the
atoms mapping to a single matrix elements. The prior distribution of atom coordinates is uniform,
corresponding to an uniform prior for atom membership in each matrix element.

2 Update steps for the atomic prior

CoGAPS alternates between updating nA atoms in the A and nP atoms in the P matrices. The
values of nA and nP are sampled from a Poisson distribution with parameter for the total number
of atoms in the atomic domain for A (NA) and in the atomic domain for P (NP ), respectively.
Thus, on expectation all atoms in the domain are updated at each matrix-level iteration. The total
number of such update steps is input as a parameter nEquil during the burn in stage (Section 5)
and nSamp during the sampling stage.

In each of these nA and nP , we perform one of the four update steps to the respective atomic
domains (Main Figure 1). We briefly describe these steps for A below, and note that they are
defined similarly for P.

1. Birth. Create a single new atom in the atomic domain, so that NA ← NA + 1.

2. Death or resize. Change the value of a single atom xAi,k,l ← xAi,k,l −∆xAi,k,l, and removing

it from the atomic domain so that NA ← NA − 1 if xAi,k,l −∆xAi,k,l = 0.

3. Move. Changing the location of a single atom (xAi,k,l) to a new location between adjacent

atoms (xAm,n,p and xAq,r,s) such that lAi,k,l ∈
(
lAm,n,p, l

A
q,r,s

)
on the atomic domain.

4. Exchange. Moving a portion of the value of a single atom (xAi,k,l) to another, adja-

cent atom (xAm,n,p) so that xAi,k,l ← xAi,k,l + ∆x and xAm,n,p ← xAi,k,l − ∆x where ∆x ∈(
−(xAi,k,l + xAm,n,p), x

A
i,k,l + xAm,n,p

)
. Atoms may become small from exchange, but not ex-

actly zero or removed from the atomic in order to maintain detailed balance.

At each of the nA or nP iterations, each of these four steps is chosen at random with 1/3
probability of either birth or death, 1/3 probability of move, and 1/3 probability of exchange. The
relative probability of selecting birth or death is selected based on the Poisson prior. Recall for
A that birth implies NA ← NA + 1, the sum of Poisson distributed random variables, and that
under the Poisson distribution P (N + 1|N) = N

(N+λ) where λ is the Poisson parameter. Together,

these three conditions suggest that P
(
birth|NA

)
= NA

(NA+αGk)
for the A atomic domain and that

P
(
birth|NP

)
= NP

(NP+αkS)
for the P atomic domain. The probability of death or resize is then one

minus the probability of birth. Metropolis Hastings sampling is used for the move step, whereas
Gibbs sampling is used for the other three steps using the conditional distributions derived in
Section 4.

3 Initialization

The atomic domains for both A and P are initialized without any atoms, so that Ai,j = 0 and
Pk,l = 0. This limits the initial atomic update step to birth step, birth or death when there is at
least one atom in the domain, and all four update steps when there are at least two atoms in the
domain.

At these initial steps, the estimated fit to the data µi,j = Ai,·P·,j will be zero for most values
of i and j. Thus, these initial steps do not change the likelihood and are all accepted. This
initialization effectively results in initial conditions which are a random sampling from the prior
before Gibbs sampling.

4 Conditional distributions for Gibbs sampling

We would like to sample from Skilling’s atomic domain using Gibbs sampling. We will assume
that we are seeking the mass of an atom xAk,l at Ak,l,j for the A matrix and xPl,m,j at Pl,m for
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the P matrix. We use the variable x in the derivations below to reduced the number of indices in
the equations, as the associated matrix element can be clearly inferred from the context of each
equation. The initial mass of this atom is x0, which is 0 if we have decided to birth the atom and
> 0 if we have decided to kill it. We retain this term so that we can derive the conditionals for
birth and death in a single expression.

Determining the mass of x requires first computing the full conditional distribution p (x|x0,D,A,P).
To do this, we will first consider P (A,P|D) and examine the resulting distribution. We will begin
by recalling that

p (A,P|D) ∝ p (D|A,P) p (A,P) . (3)

Putting this in terms of an individual atom, we obtain

p (x|x0,D,A,P) ∝ p (D|x, x0,A,P) p (x) . (4)

We assume that
p (D|x, x0,A,P) ∼ N(M,Σ), (5)

where M is the mock data matrix given by the product of A and P that incorporates the change
in mass of the atom x− x0 in the updated term. Σ is the covariance matrix for D. The prior for
the mass of each atom x is given by an exponential with parameters λA and λP , respectively.

In each case, the full conditional distribution simplifies to a normal distribution, which is
truncated so that the value of the atom x ≥ 0. Below follows the detailed derivation of this
distribution for birth and resizing and exchange.

4.1 Conditional distribution for birth or resizing of atoms

4.1.1 Atomic domain for A

We will first explore the likelihood in more detail, assuming that the mass of the atom maps to
Ak,l

p (D|x, x0,A,P) ∝ exp

−∑
i

∑
j

1

2σ2
i,j

(
Di,j −

∑
p

Ai,pPp,j − (x− x0)Pl,j

)2
 . (6)

Since we are only concerned with computing the conditional for changes to Ak,l we note that the
other terms in A and P can be considered as parameters. As a result,

p (D|x, x0,A,P) ∝ exp

−∑
j

1

2σ2
k,j

(
Dk,j −

∑
p

Ak,pPp,j − (x− x0)Pl,j

)2
 . (7)

= exp

−∑
j

Pl,j
2σ2

k,j

(
x−

(
Dk,j −

∑
pAk,pPp,j + x0Pl,j

Pl,j

))2
 . (8)

Let µAk,l,j =
Dk,j−

∑
p Ak,pPp,j+x0Pl,j

Pl,j
and sAk,l,j =

P 2
l,j

2σ2
k,j

. Then, Equation (8) becomes

p (D|x, x0,A,P) ∝ exp

−∑
j

sAk,l,j
(
x− µAk,l,j

)2 (9)

= exp

−∑
j

sAk,l,j
(
x2 − 2µAk,l,jx+ µA2

k,l,j

) (10)

= exp

−
x2∑

j

sAk,l,j − 2x
∑
j

sAk,l,jµ
A
k,l,j +

∑
j

sAk,l,jµ
A2
k,l,j

 (11)

∝ exp

−∑
j

sAk,l,j

(
x2 − 2x

∑
j s
A
k,l,jµ

A
k,l,j∑

j s
A
k,l,j

) . (12)
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If we now incorporate the product with the exponential prior distribution for α,

p (x|x0,D,A,P) ∝ exp

−∑
j

sAk,l,j

(
x2 − 2x

∑
j s
A
k,l,jµ

A
k,l,j∑

j s
A
k,l,j

) exp {−λAx} (13)

= exp

−∑
j

sAk,l,j

(
x2 − x

(
2

∑
j s
A
k,l,jµ

A
k,l,j∑

j s
A
k,l,j

− λA∑
j s
A
k,l,j

)) (14)

∝ N

2
∑
j s
A
k,l,jµ

A
k,l,j − λA

2
∑
j s
A
k,l,j

,
1√

2
∑
j s
A
k,l,j

 . (15)

Within the code, we store values of s and s × µ used in Eq. 15 to avoid dividing by zero in cases
where Pl,j = 0.

4.1.2 Atomic domain for P

Here, we consider atoms whose mass maps to elements Pl,m. From the likelihood in Equation (6),
we get

p (D|x, x0,A,P) ∝ exp

−∑
i

1

2σ2
i,m

(
Di,m −

∑
p

Ai,pPp,m − (x− x0)Ai,l

)2
 (16)

= exp

{
−
∑
i

Ai,l
2σ2

i,m

(
x−

(
Di,m −

∑
pAi,pPp,m + x0Ai,l

Ai,l

))2
}
. (17)

If µPi,l,m =
Di,m−

∑
p Ai,pPp,m+x0Ai,l

Ai,l
and sPi,l,m =

A2
i,l

2σ2
i,m

,

p (D|x, x0,A,P) ∝ exp

{
−
∑
i

sPi,l,m
(
x− µPi,l,m

)2}
(18)

= exp

{
−
∑
i

sPi,l,m
(
x2 − 2µPi,l,mx+ µP2

i,l,m

)}
(19)

∝ exp

{
−

(∑
i

sPi,l,m

)(
x2 −

2
∑
i µ

P
i,l,ms

P
i,l,mx∑

i s
P
i,l,m

)}
(20)

If we now incorporate the prior distribution for x

p (x|x0,D,A,P) ∝ exp

{
−

(∑
i

sPi,l,m

)(
x2 −

(
2
∑
i µ

P
i,l,ms

P
i,l,m∑

i s
P
i,l,m

)
x

)}
exp

{
−λPx

}
(21)

= exp

{
−

(∑
i

sPi,l,m

)(
x2 −

(
2
∑
i µ

P
i,l,ms

P
i,l,m − λP∑

i s
P
i,l,m

)
x

)}
(22)

∝ N

2
∑
i µ

P
i,l,ms

P
i,l,m − λP

2
∑
i s
P
i,l,m

,
1√

2
∑
i s
P
i,l,m

 (23)

4.2 Conditional distribution for exchange between neighboring atoms
in the atomic domain

4.2.1 Exchange for A between Ak,l and Am,n where k 6= m

We will refer to the atom corresponding to matrix element Ak,l as x, the atom corresponding to
the matrix element Am,n = xm,n, and x0 and x0,m,n there initial values, respectively. The value
of x after sampling is constrained such that x ∈ (0, X) and xm,n = X − x where X = x0 + x0,m,n.

If we consider the exponential prior, the exchange step will incorporate both matrix elements.
That is,

exp (−λAx) exp (−λA(X − x)). (24)
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The x terms in this equation cancel, indicating that the conditional depends only on the likelihood.
This occurs for all exchange steps, and thus is not described in the remaining subsections on this
step.

From the likelihood in Equation (6), we get

p (D|x, x0, X,A,P) ∝ exp

−∑
j

1

2σ2
k,j

(
Dk,j −

∑
p

Ak,pPp,j − xPl,j

)2
 (25)

× exp

−∑
j

1

2σ2
m,j

(
Dm,j −

∑
p

Am,pPp,j − (X − x)Pn,j

)2
 . (26)

For simplicity of the equations, we consider only the terms inside of the exponential and formulate
them as an equation for x to find the parameters of the truncated normal for value j in the
summation.[

xPl,j −
(
Dk,j −

∑
pAk,pPp,j

)]2
2σ2

k,j

+

[
xPn,j −

(
XPn,j +

∑
pAm,pPp,j −Dm,j

)]2
2σ2

m,j

. (27)

Letting µk,j = Dk,j −
∑
pAk,pPp,j and Mm,n,j = XPn,j +

∑
pAm,pPp,j −Dm,j , eq 27 simplifies to

(xPl,j − µk,j)2

2σ2
k,j

+
(xPn,j −Mm,n,j)

2

2σ2
m,j

. (28)

Combining terms, we can write this equation as[
σ2
m,jP

2
l,j + σ2

k,jP
2
n,j

]
x2 − 2

[
σ2
m,jPl,jµk,j + σ2

k,jPn,jMm,n,j

]
x

2σ2
k,jσ

2
m,j

(29)

which can complete the square by[
σ2
m,jP

2
l,j + σ2

k,jP
2
n,j

]
2σ2

m,jσ
2
n,j

(
x−

σ2
m,jPl,jµk,j + σ2

k,jPn,jMm,n,j

σ2
m,jP

2
l,j + σ2

k,jPn,j

)2

(30)

The parameters for the truncated normal can now follow the derivation used for the birth step
described above.

4.2.2 Exchange for A between Ak,l and Ak,n

Considering just the terms inside of the exponent for equation 26, in this case we will have instead

∑
j

(
Dk,j −

∑
pAk,pPp,j − xPl,j − (X − x)Pn,j

)2
2σ2

k,j

(31)

Collecting the x terms and completing the square we get

∑
j

(Pl,j − Pn,j)2

2σ2
k,j

[
x−

Dk,j −
∑
pAk,pPp,j −XPn,j
Pl,j − Pn,j

]2
(32)

we let sj =
(Pl,j−Pn,j)

2

2σ2
k,j

and µj =
Dk,j−

∑
p Ak,pPp,j−XPn,j

Pl,j−Pn,j
. The derivation for the terms of the

truncated normal follow.

4.2.3 Exchange for P between Pk,l and Pm,n where l 6= n

The derivation for exchange steps in P follows that of the derivation for A in Section 4.2.1. In this
case,
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si =
σ2
i,nA

2
i,j + σ2

i,lA
2
i,m

2σ2
i,lσ

2
i,n

, (33)

µi =
σ2
i,nAi,kµi,l + σ2

i,lAi,mMi,m,n

σ2
i,nA

2
i,k + σ2

i,lA
2
i,m

, (34)

where µi,l = Di,l −
∑
pAi,pPp,l and Mi,m,n =

∑
pAi,pPp,n +XAi,m −Di,n.

4.2.4 Exchange for P between Pk,l and Pm,l

The derivation for the exchange steps for P follows that of the derivation for A in Section 4.2.2.
Thus, in this case

si =
(Ai,k −Ai,m)

2

2σ2
i,l

, (35)

µi =
Di,l −

∑
pAi,pPp,l −XAi,m
Ai,k −Ai,m

. (36)

5 Annealing parameter

During the equilibration phase, we in fact wish to sample from the conditional distribution

p (x|x0,D,A,P) ∝ p (D|x, x0,A,P)
1/T

p (x) , (37)

where T is the annealing temperature. This has the effect of multiplying the term σ in each of the
equations by a factor of T . As a result, the standard deviation s of the birth and resize terms are
the only things to change by as follows.

sAk,l,j =
Pl,j

2Tσ2
k,j

, and (38)

sPi,l,m =
Ai,l

2Tσ2
k,j

. (39)

A similar modification of the terms with σ ← Tσ will also occur in the exchange step, which
will modify both the mean and standard deviation terms for this step.
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