1 Supplementary Note S1: Derivation of Bayes factors for a set of risk factors

Building on the 2-sample MR approach [1] our work is based on summarised data, where genetic variants are used as instrumental variables. For each genetic variant $i=1, \ldots, n$ we observe the association of variant i with the risk factor X measured by the beta-coefficient $\beta_{X_{i}}$ from a univariable regression where the genetic variant i is regressed on the risk factor X, and the association of variant i with the outcome Y measured by the beta-coefficient $\beta_{Y_{i}}$ where the genetic variant i is regressed on the outcome Y, respectively. In fact, the beta-coefficients are estimates of the genetic association, but we omit the "hat" notation and treat the beta-coefficient as observations.

Multivariable MR [2] can be cast as a weighted linear regression model

$$
\begin{align*}
\beta_{Y} & =\theta_{1} \beta_{X_{1}}+\ldots+\theta_{d} \beta_{X_{d}}+\epsilon, \text { weights }=\operatorname{se}\left(\beta_{Y}\right)^{-2} \\
& =\beta_{X} \theta+\epsilon, \text { weights }=\operatorname{se}\left(\beta_{Y}\right)^{-2}, \tag{1}
\end{align*}
$$

where the dependent variable is the association with the outcome β_{Y} measured on $i=1, \ldots, n$ instrumental variables and the predictors are the $j=1, \ldots, d$ genetic associations with the d risk factors $\beta_{X}=\left\{\beta_{X_{1}}, \ldots, \beta_{X_{d}}\right\}$, which is a matrix of dimension $n \times d$ where d is the number of risk factors and n is the number of genetic variants. Again each individual element $\beta_{X_{i, j}}$ of the predictor matrix is derived from a univariable regression where the genetic variant i is regressed on the risk factor X_{j}. In other words, the risk factors represent the variable space and the instrumental genetic variants are our observations. In practise, we standardise each observation of both, $\beta_{Y_{i}}$ and $\beta_{X_{i}}$ by dividing by $\operatorname{se}\left(\beta_{Y_{i}}\right)$ before the analysis and we assume in the following derivations that β_{Y} and β_{X} are standardised.

We use Bayes factors [3] in order to quantify the evidence for a particular model. With model we refer to either one or a set of risk factors to have a causal effect on the outcome of interest. In order to formalise which risk factors are part of a specific model M_{γ} we introduce a binary indicator γ of length d that indicates which risk factors are selected and which ones are not

$$
\gamma_{j}=\left\{\begin{array}{l}
1, \text { if the } j \text { th risk factor is selected } \tag{2}\\
0 \text { otherwise }
\end{array}\right.
$$

The indicator γ encodes a specific regression model M_{γ} that includes the risk factors as indicated in γ. Accordingly, we define $\beta_{X_{\gamma}}$ as the design matrix of the risk factors included and θ_{γ} as the respective causal effects.

The computation of the Bayes factor for model M_{γ} against the Null model M_{0} as presented in the Methods section of the main article requires two ingredients: First the the marginal probability of β_{Y} given $\beta_{X_{\gamma}}$ of model M_{γ} and second, the marginal probability of β_{Y} given the Null model M_{0}, which we derive as follows:

1. $p_{\gamma}\left(\beta_{Y} \mid \beta_{X_{\gamma}}\right)$: the marginal probability of β_{Y} given $\beta_{X_{\gamma}}$

In order to model the correlation between risk factors we base our likelihood on a multivariante Gaussian distribution

$$
\begin{equation*}
\beta_{Y} \mid \beta_{X_{\gamma}}, \theta_{\gamma}, \tau \sim N\left(\beta_{X_{\gamma}} \theta_{\gamma}, \frac{1}{\tau}\right) \tag{3}
\end{equation*}
$$

Following Servin and Stephens' D_{2} prior [4] we use the following conjugate prior assumptions for the causal effects θ, the residual ϵ and the precison τ

$$
\begin{align*}
\theta_{\gamma} \mid \tau & \sim N(0, \nu / \tau) \\
\epsilon & \sim N\left(0, \frac{1}{\tau}\right) \\
\tau & \sim \Gamma(\kappa / 2, \lambda / 2) \tag{4}
\end{align*}
$$

Further we can derive analytically the joint posterior distribution for θ_{γ} and τ as

$$
\begin{aligned}
\tau \mid \beta_{Y}, \beta_{X_{\gamma}} & \sim \Gamma\left((n+\kappa) / 2,1 / 2\left(\beta_{Y}^{t} \beta_{Y}-\Theta^{t} \Omega^{-1} \Theta+\lambda\right)\right) \\
\theta_{\gamma} \mid \beta_{Y}, \beta_{X_{\gamma}}, \tau & \sim N\left(\Theta, \frac{1}{\tau} \Omega\right)
\end{aligned}
$$

where

$$
\begin{align*}
& \underbrace{\Theta}_{d \times 1}=\underbrace{\Omega}_{d \times d} \underbrace{\beta_{X_{\gamma}}^{t}}_{d \times n} \underbrace{\beta_{Y}}_{n \times 1} \tag{5}\\
& \Omega=\underbrace{\left(\nu^{-1}+\beta_{X_{\gamma}}^{t} \beta_{X_{\gamma}}\right)^{-1}}_{d \times d} \tag{6}
\end{align*}
$$

Next we integrate out the causal effects θ_{γ}. To begin with we sort the equation so that the integral contains only terms dependent on θ_{γ}

$$
\begin{aligned}
p_{\gamma}\left(\beta_{Y} \mid \beta_{X_{\gamma}}, \tau\right)= & \int_{-\inf }^{\inf } \frac{p_{\gamma}\left(\beta_{Y} \mid \beta_{X_{\gamma}}, \theta_{\gamma}, \tau\right) p_{\gamma}\left(\theta_{\gamma} \mid \tau\right)}{p_{\gamma}\left(\theta_{\gamma} \mid \beta_{Y}, \beta_{X_{\gamma}}, \tau\right)} \delta \theta_{\gamma} \\
= & \int_{-\inf }^{\inf } \frac{(2 \pi)^{-\frac{n}{2}} \tau^{\frac{n}{2}} \exp \left(-\frac{\tau}{2}\left(\beta_{Y}-\beta_{X_{\gamma}} \theta_{\gamma}\right)^{t}\left(\beta_{Y}-\beta_{X_{\gamma}} \theta_{\gamma}\right)\right)}{(2 \pi)^{-\frac{1}{2}} \frac{|\Omega|^{-1 / 2}}{|\tau|^{-1 / 2}} \exp \left(-\frac{\tau}{2}\left(\theta_{\gamma}-\Theta\right)^{t} \Omega^{-1}\left(\theta_{\gamma}-\Theta\right)\right)} \\
& \times(2 \pi)^{-\frac{1}{2}} \frac{|\nu|^{-1 / 2}}{|\tau|^{-1 / 2}} \exp \left(-\frac{\tau}{2 \nu} \theta_{\gamma}^{t} \theta_{\gamma}\right) \delta \theta_{\gamma} \\
= & (2 \pi)^{-\frac{n}{2}} \tau^{\frac{n}{2}} \frac{|\Omega|^{1 / 2}}{|\nu|^{1 / 2}} \exp \left(-\frac{1}{2}\left(\beta_{Y}^{t} \beta_{Y}-\Theta^{t} \Omega^{-1} \Theta\right) \tau\right) \\
& \int_{-\inf }^{\inf } \exp \left(-\frac{1}{2}\left(2 \theta_{\gamma}^{t} \beta_{X_{\gamma}}^{t} \beta_{Y}+\theta_{\gamma}^{t} \beta_{X_{\gamma}}^{t} \beta_{X_{\gamma}} \theta_{\gamma}-\frac{1}{\nu} \theta_{\gamma}^{t} \theta_{\gamma}-\theta_{\gamma}^{t} \Omega^{-1} \theta_{\gamma}+2 \theta_{\gamma}^{t} \Omega^{-1} \Theta\right) \tau\right) \delta \theta_{\gamma} .
\end{aligned}
$$

By completing the square and integrating out θ_{γ} this simplifies to

$$
p_{\gamma}\left(\beta_{Y} \mid \beta_{X_{\gamma}}, \tau\right)=(2 \pi)^{-\frac{n}{2}} \tau^{\frac{n}{2}} \frac{|\Omega|^{1 / 2}}{|\nu|^{1 / 2}} \exp \left(-\frac{1}{2}\left(\beta_{Y}^{t} \beta_{Y}-\Theta^{t} \Omega^{-1} \Theta\right) \tau\right)(7)
$$

Next we integrate out the precision τ

$$
\begin{align*}
p_{\gamma}\left(\beta_{Y} \mid \beta_{X_{\gamma}}\right)= & \int_{0}^{\inf } p_{\gamma}\left(\beta_{Y} \mid \beta_{X_{\gamma}}, \tau\right) p(\tau) \delta \tau \tag{8}\\
= & (2 \pi)^{-\frac{n}{2}} \frac{|\Omega|^{1 / 2}}{|\nu|^{1 / 2}} \times \\
& \int_{0}^{\inf } \tau^{\frac{(n+\kappa)}{2}-1} \exp \left(-\frac{1}{2}\left(\beta_{Y}^{t} \beta_{Y}-\Theta^{t} \Omega^{-1} \Theta+\lambda\right) \tau\right) \delta \tau
\end{align*}
$$

The above integral is the normalisation constant of a Gamma distribution with shape $\alpha=\frac{(n+\kappa)}{2}$ and rate $\beta=\frac{1}{2}\left(\beta_{Y}^{t} \beta_{Y}-\Theta^{t} \Omega^{-1} \Theta+\lambda\right)$. Thus the above simplifies to
$p_{\gamma}\left(\beta_{Y} \mid \beta_{X_{\gamma}}\right)=(2 \pi)^{-\frac{n}{2}} \frac{|\Omega|^{1 / 2}}{|\nu|^{1 / 2}}\left(\frac{\lambda}{2}\right)^{\frac{\kappa}{2}} \frac{\Gamma\left(\frac{n+\kappa}{2}\right)}{\Gamma\left(\frac{\kappa}{2}\right)}\left(\frac{1}{2}\left(\beta_{Y}^{t} \beta_{Y}-\Theta^{t} \Omega^{-1} \Theta+\lambda\right)\right)^{\frac{-(n+\kappa)}{2}}$.
2. $p_{0}\left(\beta_{Y}\right)$: the marginal probability of β_{Y} given the Null model M_{0}

Next, we derive the marginal probability of the Null model, i.e. where no risk factor and no intercept is included. Under the Null we assume

$$
\begin{equation*}
\beta_{Y} \left\lvert\, \frac{1}{\tau} \sim N\left(0, \frac{1}{\tau}\right)\right. \tag{10}
\end{equation*}
$$

with an expectation fixed at zero, which is a consequence of the missing intercept.
First, we integrate out the precision τ

$$
\begin{align*}
p_{0}\left(\beta_{Y}\right) & =\int_{0}^{\inf } p_{0}\left(\beta_{Y} \mid \tau\right) p(\tau) \delta \tau \\
& =(2 \pi)^{-\frac{n}{2}} \int_{0}^{\mathrm{inf}} \tau^{\frac{(n+\kappa)}{2}-1} \exp \left(-\frac{1}{2}\left(\beta_{Y}^{t} \beta_{Y}+\lambda\right) \tau\right) \delta \tau \tag{11}
\end{align*}
$$

Again the above integral is the normalisation constant of a Gamma distribution with shape $\alpha=\frac{(n+\kappa)}{2}$ and rate $\beta_{0}=\frac{1}{2}\left(\beta_{Y}^{t} \beta_{Y}+\lambda\right)$. Thus the above simplifies to

$$
\begin{equation*}
p_{0}\left(\beta_{Y}\right)=(2 \pi)^{-\frac{n}{2}}\left(\frac{\lambda}{2}\right)^{\frac{\kappa}{2}} \frac{\Gamma\left(\frac{n+\kappa}{2}\right)}{\Gamma\left(\frac{\kappa}{2}\right)}\left(\frac{1}{2}\left(\beta_{Y}^{t} \beta_{Y}+\lambda\right)\right)^{-\frac{(n+\kappa)}{2}} . \tag{12}
\end{equation*}
$$

The Bayes factor for model M_{γ} against M_{0} is defined as the ratio of the marginal probability of β_{Y} given model $M_{\gamma}(9)$ over the marginal probability of β_{Y} given the Null model 12)

$$
\begin{align*}
B F\left(M_{\gamma}\right) & =\frac{p_{\gamma}\left(\beta_{Y} \mid \beta_{X_{\gamma}}\right)}{p_{0}\left(\beta_{Y}\right)} \\
& =\frac{\frac{|\Omega|^{1 / 2}}{|\nu|^{1 / 2}}\left(\frac{1}{2}\left(\beta_{Y}^{t} \beta_{Y}-\Theta^{t} \Omega^{-1} \Theta+\lambda\right)\right)^{-(n+\kappa) / 2}}{\left(\frac{1}{2}\left(\beta_{Y}^{t} \beta_{Y}+\lambda\right)\right)^{-(n+\kappa) / 2}} \\
& =\frac{|\Omega|^{1 / 2}}{|\nu|^{1 / 2}}\left(\frac{\beta_{Y}^{t} \beta_{Y}-\Theta^{t} \Omega^{-1} \Theta+\lambda}{\beta_{Y}^{t} \beta_{Y}+\lambda}\right)^{-(n+\kappa) / 2} \tag{13}
\end{align*}
$$

In limit κ and $\lambda \rightarrow 0$ the Bayes Factor simplifies to the following closed form expression

$$
\begin{equation*}
B F\left(M_{\gamma}\right)=\frac{|\Omega|^{1 / 2}}{|\nu|^{1 / 2}}\left(\frac{\beta_{Y}^{t} \beta_{Y}-\Theta^{t} \Omega^{-1} \Theta}{\beta_{Y}^{t} \beta_{Y}}\right)^{-n / 2} \tag{14}
\end{equation*}
$$

References

[1] Pierce, B. L. and Burgess, S. (2013). Efficient design for mendelian randomization studies: Subsample and 2-sample instrumental variable estimators. American Journal of Epidemiology 178, 1177-1184.
[2] Burgess, S. and Thompson, S. G. (2015). Multivariable mendelian randomization: the use of pleiotropic genetic variants to estimate causal effects. Am J Epidemiol 181, 251-60.
[3] Kass, R. E. and Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association 90, 773-795.
[4] Servin, B. and Stephens, M. (2007). Imputation-based analysis of association studies: candidate regions and quantitative traits. PLoS Genet 3, e114.

