
1 Supplementary Note S1: Derivation of Bayes
factors for a set of risk factors

Building on the 2-sample MR approach [1] our work is based on summarised
data, where genetic variants are used as instrumental variables. For each genetic
variant i = 1, ..., n we observe the association of variant i with the risk factor
X measured by the beta-coefficient βXi from a univariable regression where
the genetic variant i is regressed on the risk factor X, and the association
of variant i with the outcome Y measured by the beta-coefficient βYi where
the genetic variant i is regressed on the outcome Y , respectively. In fact, the
beta-coefficients are estimates of the genetic association, but we omit the ”hat”
notation and treat the beta-coefficient as observations.

Multivariable MR [2] can be cast as a weighted linear regression model

βY = θ1βX1 + ...+ θdβXd + ε, weights = se(βY )−2

= βXθ + ε, weights = se(βY )−2, (1)

where the dependent variable is the association with the outcome βY measured
on i = 1, ...., n instrumental variables and the predictors are the j = 1, ..., d ge-
netic associations with the d risk factors βX = {βX1 , ..., βXd}, which is a matrix
of dimension n × d where d is the number of risk factors and n is the number
of genetic variants. Again each individual element βXi,j of the predictor matrix
is derived from a univariable regression where the genetic variant i is regressed
on the risk factor Xj . In other words, the risk factors represent the variable
space and the instrumental genetic variants are our observations. In practise,
we standardise each observation of both, βYi and βXi by dividing by se(βYi)
before the analysis and we assume in the following derivations that βY and βX
are standardised.

We use Bayes factors [3] in order to quantify the evidence for a particular
model. With model we refer to either one or a set of risk factors to have a causal
effect on the outcome of interest. In order to formalise which risk factors are
part of a specific model Mγ we introduce a binary indicator γ of length d that
indicates which risk factors are selected and which ones are not

γj =

{
1, if the jth risk factor is selected,

0 otherwise.
(2)

The indicator γ encodes a specific regression model Mγ that includes the risk
factors as indicated in γ. Accordingly, we define βXγ as the design matrix of
the risk factors included and θγ as the respective causal effects.

The computation of the Bayes factor for model Mγ against the Null model
M0 as presented in the Methods section of the main article requires two in-
gredients: First the the marginal probability of βY given βXγ of model Mγ

and second, the marginal probability of βY given the Null model M0, which we
derive as follows:
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1. pγ(βY | βXγ ): the marginal probability of βY given βXγ

In order to model the correlation between risk factors we base our likeli-
hood on a multivariante Gaussian distribution

βY | βXγ , θγ , τ ∼ N(βXγθγ ,
1

τ
). (3)

Following Servin and Stephens’ D2 prior [4] we use the following conjugate
prior assumptions for the causal effects θ, the residual ε and the precison
τ

θγ | τ ∼ N(0, ν/τ),

ε ∼ N(0,
1

τ
),

τ ∼ Γ(κ/2, λ/2). (4)

Further we can derive analytically the joint posterior distribution for θγ
and τ as

τ | βY , βXγ ∼ Γ((n+ κ)/2, 1/2(βtY βY −ΘtΩ−1Θ + λ)),

θγ | βY , βXγ , τ ∼ N(Θ,
1

τ
Ω),

where
Θ︸︷︷︸
d×1

= Ω︸︷︷︸
d×d

βtXγ︸︷︷︸
d×n

βY︸︷︷︸
n×1

, (5)

Ω = (ν−1 + βtXγβXγ )−1︸ ︷︷ ︸
d×d

. (6)

Next we integrate out the causal effects θγ . To begin with we sort the
equation so that the integral contains only terms dependent on θγ

pγ(βY | βXγ , τ) =

∫ inf

− inf

pγ(βY | βXγ , θγ , τ)pγ(θγ | τ)

pγ(θγ | βY , βXγ , τ)
δθγ

=

∫ inf

− inf

(2π)−
n
2 τ

n
2 exp

(
− τ2 (βY − βXγθγ)t(βY − βXγθγ)

)
(2π)−

1
2
|Ω|−1/2

|τ |−1/2 exp
(
− τ2 (θγ −Θ)tΩ−1(θγ −Θ)

)
×(2π)−

1
2
|ν|−1/2

|τ |−1/2
exp

(
− τ

2ν
θtγθγ

)
δθγ

= (2π)−
n
2 τ

n
2
|Ω|1/2

|ν|1/2
exp

(
−1

2
(βtY βY −ΘtΩ−1Θ)τ

)
∫ inf

− inf

exp

(
−1

2
(2θtγβ

t
XγβY + θtγβ

t
XγβXγθγ −

1

ν
θtγθγ − θtγΩ−1θγ + 2θtγΩ−1Θ)τ

)
δθγ .
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By completing the square and integrating out θγ this simplifies to

pγ(βY | βXγ , τ) = (2π)−
n
2 τ

n
2
|Ω|1/2

|ν|1/2
exp

(
−1

2
(βtY βY −ΘtΩ−1Θ)τ

)
.(7)

Next we integrate out the precision τ

pγ(βY | βXγ ) =

∫ inf

0

pγ(βY | βXγ , τ)p(τ)δτ (8)

= (2π)−
n
2
|Ω|1/2

|ν|1/2
×∫ inf

0

τ
(n+κ)

2 −1 exp

(
−1

2
(βtY βY −ΘtΩ−1Θ + λ)τ

)
δτ.

The above integral is the normalisation constant of a Gamma distribution

with shape α = (n+κ)
2 and rate β = 1

2 (βtY βY − ΘtΩ−1Θ + λ). Thus the
above simplifies to

pγ(βY | βXγ ) = (2π)−
n
2
|Ω|1/2

|ν|1/2
(
λ

2
)
κ
2

Γ(n+κ
2 )

Γ(κ2 )

(
1

2
(βtY βY −ΘtΩ−1Θ + λ)

)−(n+κ)
2

.

(9)

2. p0(βY ): the marginal probability of βY given the Null model M0

Next, we derive the marginal probability of the Null model, i.e. where no
risk factor and no intercept is included. Under the Null we assume

βY |
1

τ
∼ N(0,

1

τ
) (10)

with an expectation fixed at zero, which is a consequence of the missing
intercept.

First, we integrate out the precision τ

p0(βY ) =

∫ inf

0

p0(βY | τ)p(τ)δτ

= (2π)−
n
2

∫ inf

0

τ
(n+κ)

2 −1 exp

(
−1

2
(βtY βY + λ)τ

)
δτ. (11)

Again the above integral is the normalisation constant of a Gamma dis-

tribution with shape α = (n+κ)
2 and rate β0 = 1

2 (βtY βY + λ). Thus the
above simplifies to

p0(βY ) = (2π)−
n
2 (
λ

2
)
κ
2

Γ(n+κ
2 )

Γ(κ2 )

(
1

2
(βtY βY + λ)

)− (n+κ)
2

. (12)
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The Bayes factor for model Mγ against M0 is defined as the ratio of the
marginal probability of βY given model Mγ (9) over the marginal probability of
βY given the Null model (12)

BF (Mγ) =
pγ(βY | βXγ )

p0(βY )

=

|Ω|1/2
|ν|1/2

(
1
2 (βtY βY −ΘtΩ−1Θ + λ)

)−(n+κ)/2(
1
2 (βtY βY + λ)

)−(n+κ)/2

=
|Ω|1/2

|ν|1/2

(
βtY βY −ΘtΩ−1Θ + λ

βtY βY + λ

)−(n+κ)/2

. (13)

In limit κ and λ → 0 the Bayes Factor simplifies to the following closed form
expression

BF (Mγ) =
|Ω|1/2

|ν|1/2

(
βtY βY −ΘtΩ−1Θ

βtY βY

)−n/2
. (14)
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