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Figure S1 | Analysis steps 
The schematic flow diagram illustrates the steps of the analysis in R. Individual types of 
normalization steps, analyses or statistical tests are indicated with the blue boxes. Larger grey 
boxes segment the analysis and indicate the major R-packages that were used in alpha- and beta 
diversity analyses, differential abundance testing and network analysis. Analysis outputs (Figures 
and Tables) are indicated in red at their respective analysis steps. 
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Figure S2 | Comparison of ITS PCR approaches for plant root samples 
To profile the root-associated fungal communities of Petunia, we first evaluated three ITS PCR 
approaches to test whether they avoid co-amplification of plant ITS sequences and whether they 
permit a reliable quantification of Glomeromycotina fungi. Four root DNA extracts from Petunia 
growing under low P conditions (=heavily colonized by AMF) were amplified with ITS1F and ITS2 
by McGuire et al. (2013), fITS7 and ITS4 by Ihrmark et al. (2012) and the ITS1F with the reverse 
complement of fITS7. (a) The illustration depicts the positions of the PCR primers amplifying the 
internal transcribed spacer (ITS) regions between the small- and large ribosomal sub-units 
(SSU/LSU) of the ribosomal operon. Separate community profiles were produced and inspected 
for the proportions of plant and AMF sequences as well as for fungal diversity. Taxonomic 
composition of the 4 replicate extracts is reported at the level of Domain (b) and within the fungi 
at the level of detected Phyla (c). (d) The diversity captured by the PCR approaches was 
determined by rarefying the fungi data and recording OTU richness. Bars represent means (n = 
100; ± s.e.m.) and letters indicate groups differing significantly at P < 0.05 (Tukey’s HSD).  
 
  



 

Figure S3 | Rarefaction curves for bacterial and fungal OTU richness 
We conducted a sampling intensity analysis for bacteria (a) and fungi (b) with all samples 
(Arabidopsis and Petunia with reddish and blueish colors, respectively, and the increasing P-levels 
(low, medium to high) are marked with increasing hue. Random sub-samplings were conducted 
for sequencing depths in steps of 100 sequences with 1000 iterations per sequencing depth. The 
average number of detected OTUs is reported for each sampling depth. The black vertical line 
indicates the selected rarefaction depth (15,000 sequences) used statistical analysis of alpha 
diversity (Fig. S4). 
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Figure S4 | Effects of plant species and P-levels on microbial richness, diversity and evenness 
Alpha diversity was assessed based on OTU richness, Shannon diversity and Sheldon evenness on 
data with a common sequencing depth of 15’000 sequences per sample. ANOVA was used to test 
for species- (S), treatment- (T) or their interaction (SxT) effects and their level of significance is 
indicated above plots (P < 0.001 ***; P < 0.01 **; P < 0.05 *; Table S1 contains the details of this 
ANOVA). Different letters indicate significant pairwise differences between different levels of P 
availability (P < 0.05, Tukey HSD). 
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Figure S5 | Beta-diversity analysis including the soil samples  
Principal coordinate analysis using Bray-Curtis dissimilarities were performed to investigate 
effects of plant species and P-levels on community composition. (a) Bacterial and (b) fungal 
communities associated with Arabidopsis roots (reddish colors), with Petunia roots (blueish 
colors) and found in unplanted soil (brownish colors), all sampled from varying levels of P 
availability (low, medium to high, marked with increasing hue). 
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Figure S6 | Phylogenetic placement of the 22 candidate endobacteria OTUs as identified by the 
clustering approach  
Twelve OTUs out of 22 turn out to be phylogenetically close to Burkholderia-related endobacteria 
(BRE) or Mycoplasma-related endobacteria (MRE). In detail, eight and four candidate 
endobacteria OTUs cluster within the BRE (in red) and MRE (in blue) clade, respectively. The 
remaining ten candidate endobacteria OTUs cluster with non-endobacteria Betaproteobacteria 
taxa. Further details are in Figure 7. The tree shows the topology obtained with the Bayesian 
method. Branches with Bayesian posterior probabilities (BPP) ≥0.95 and ML bootstrap support 
values ≥70 are thickened; asterisks (*) indicate branches with BPP ≥0.95 but ML bootstrap 
support values <70; ML bootstrap support values ≥70 are shown for branches having BPP <0.95. 
Sequences generated in this study are in bold. 
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Figure S7 | Phylogenetic placement of the 129 candidate endobacteria OTUs as identified by 
the network analysis approach  
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Fig. S7 ff: Two OTUs out of 129 turn out to be phylogenetically close to Burkholderia-related 
endobacteria (BRE) or Mycoplasma-related endobacteria (MRE). In detail, bOTU 134 clusters 
within the BRE clade (in red), as sister to a clade encompassing Candidatus Glomeribacter 
gigasporarum (CaGg) sequences retrieved from Scutellospora pellucida (Glomeromycotina), 
whereas bOTU 778 clusters within the MRE clade (in blue), together with Candidatus 
Moeniiplasma glomeromycotorum (CaMg) sequences retrieved from different strains of 
Claroideoglomus spp. (Glomeromycotina). Seven candidate endobacteria OTUs out of 129 cluster 
with non-BRE Betaproteobacteria taxa. The remaining bOTUs (120) are not related to 
Betaproteobacteria or Mollicutes: clades encompassing those bOTUs are drawn as collapsed 
(triangles) and the number of bOTUs clustering within these clades is given. The tree shows the 
topology obtained with the Bayesian method. Branches with Bayesian posterior probabilities 
(BPP) ≥0.95 and ML bootstrap support values ≥70 are thickened; asterisks (*) indicate branches 
with BPP ≥0.95 but ML bootstrap support values <70; ML bootstrap support values ≥70 are shown 
for branches having BPP <0.95. Sequences generated in this study are in bold. 
 
  



Table S1 | Effects of plant species and P treatment on alpha diversity (ANOVA) 
Statistic testing for differences in α-diversity between Arabidopsis and Petunia root bacterial and 
fungal root microbiota in varying levels of P availability was performed using analysis of variance 
(ANOVA). ANOVA was used to test for species- (S), treatment- (T) or their interaction (SxT) effects 
on OTU richness, Shannon diversity and Sheldon evenness. Alpha diversity metrics were 
determined on data with a common sequencing depth of 15’000 sequences per sample. 
Significant F-tests are indicated in bold.  
 
 species treatment interaction 
 Metric F P F P F P 

Ba
ct

er
ia

 richness 14.826 0.000396 9.565 0.000378 0.822 0.446615 
diversity 18.255 0.000108 7.432 0.001724 0.749 0.479160 

evenness 18.233 0.000109 5.203 0.009581 0.540 0.586555 

Fu
ng

i richness 245.820 <2e16 3.704 0.03446 8.496 0.00095 
diversity 1078.151 <2e16 0.004 0.996 1.000 0.378 

evenness 407.092 <2e16 3.107 0.0569 4.540 0.0175 

 
 
 
Table S2 | Effects of plant species and P treatment on community composition (PERMANOVA) 
Statistic testing for differences in beta-diversity between Arabidopsis and Petunia root bacterial 
and fungal root microbiota in varying levels of P availability was performed using permutational 
analysis of variance (PERMANOVA). PERMANOVA was used to test for species- (S), treatment- (T) 
or their interaction (SxT) effects on community composition based on Bray-Curtis dissimilarities. 
Significance is indicated in bold.  
 

 species treatment interaction 
 R2 P R2 P R2 P 

Bacteria 0.1412 0.001 0.07188 0.004 0.05336 0.023 

Fungi 0.5306 0.001 0.03846 0.066 0.03748 0.069 
 
  



Table S3 | Effects P treatment on species-specific community compositions (PERMANOVA) 
Statistic testing for differences in beta-diversity as a function of varying levels of P availability was 
performed separately for Arabidopsis and Petunia root microbiota using permutational analysis 
of variance (PERMANOVA). PERMANOVA was used to test for treatment effects on community 
composition based on Bray-Curtis dissimilarities. Significance is indicated in bold.  
 

 Arabidopsis Petunia 
 R2 P R2 P 

Bacteria 0.15022 0.001 0.14124 0.003 

Fungi 0.21702 0.002 0.132266 0.057 
 
 
 
 
 
Table S4 | Statistics from identifying phosphate sensitive microbes 
This additional file (separate XLSX table) reports statistic results from the edgeR analyses of P 
sensitive bOTUs and fOTUs in Arabidopsis and Petunia. All OTUs with FDR < 0.05 are listed with 
their taxonomy assignments, log fold-change (FC), log counts per million (CPM), the likelihood 
ratio (LR) test and probability (P) values and false-discovery rate (FDR) corrected P values. In 
addition, the logCPM abundances of each OTU in Arabidopsis, Petunia and soil in low, medium 
and high P conditions are given. 
 
 
 
 
 
Table S5 | Network characteristics 
This additional file (separate XLSX table) reports characteristics from the co-occurrence network 
analyses presented in Figure 7. All OTUs of the networks are listed with their taxonomy 
assignments, module assignments and whether the present keystone OTUs in Arabidopsis and 
Petunia.   
 
 
 
 
  



Methods S1 | Microbiota profiling and analysis 
 
DNA extraction and PCR  

DNA was extracted from the root and soil samples using the NucleoSpin Soil kit 

(Macherey-Nagel, Düren, Germany). Roots were lyophilized, placed in 2 ml centrifuge tubes, to 

which one metal bead was added. Samples were ground to a fine powder for 2 min at 25 Hz using 

a Retsch TissueLyser (Retsch, Haan, Germany). Buffer SL1 and enhancer solution SX was used. 

DNA was quantified with Picogreen and diluted to 1 ng/µl for soil samples and 10 ng/µl for root 

samples. 

We first evaluated several PCR approaches to compare the levels of co-amplified plant 

sequences, abundance of AMF and general fungal diversity in Petunia roots: 1) ITS1F (Gardes & 

Bruns, 1993) and ITS2 (White et al., 1990), 2) fITS7 (Ihrmark et al., 2012) and ITS4 (White et al., 

1990) and 3) ITS1F with the reverse complement of fITS7. The Notes S1 contain the bioinformatic 

script, barcode-to-sample assignments, input data, analysis script and markdown report for the 

comparison of the PCR approaches. 

Based on this analysis, the PCR primers ITS1F and ITS2 were chosen to study the fungal 

community. PCR primers 799F (Chelius & Triplett, 2001) and 1193R (Bodenhausen et al., 2013) 

were used to amplify hypervariable regions V5, V6 and V7 of the 16S rRNA gene for the bacterial 

community. To confirm the fungal community results from Illumina sequencing, we prepared an 

additional library for SMRT sequencing where the entire ITS region was amplified with the PCR 

primers ITS1F and ITS4. The barcode-to-sample assignment can be taken from the sample table 

included in Notes S3. 

PCR reactions for each library were prepared in similar way. The reaction volume was 20 

µl, and contained 1x 5Prime Hot Master mix 200 nM of each primer and 0.3% BSA. Cycling 

programs consisted of an initial denaturation at 94°C for 2 minutes (16S) or 3 minutes (ITS, SMRT), 

followed by 30 cycles of denaturation at 94°C for 30 seconds (16S), 45 seconds (ITS, SMRT), 

annealing at 55°C (16S, SMRT) or 50°C (ITS) for 30 seconds (16S) or 1 minute (ITS, SMRT), and 

elongation at 65°C (16S) or 72°C (ITS, SMRT) for 30 seconds (16S) or 1 minute (SMRT) or 90 second 

(ITS). PCR were run in triplicate with a negative control for each primer mix and verified on a 1% 

agarose gel.  



Triplicate PCR products were pooled, cleaned with PCR clean-up kit (Macherey-Nagel, 

Düren, Germany), quantified using a Quant-iT Picogreen dsDNA Assay Kit (Invitrogen, Eugene, OR 

USA) on a Varian Cary Eclipse fluorescence spectrometer (Agilent Technologies, Santa Clara, CA 

USA). Equimolar amount of each PCR product were combined. For 16S library preparation, the 

smaller band which corresponds to 16S rRNA gene was selected with the gel extraction kit 

(Macherey-Nagel, Düren, Germany). Pooled PCR products were concentrated with Agencourt 

AMPure XP kit (Beckman Coulter, Brea, CA, USA) and quantified with Qubit dsDNA HS assay on a 

Qubit 2.0 fluorometer (Invitrogen, Eugene, OR USA) and combined with other libraries before 

sequencing. 

 

Sequencing and Bioinformatics 

The MiSeq libraries were prepared at the Functional Genomics Center Zurich 

(www.fgcz.ch) with the NEBNext DNA library Ultra kit (New England Biolabs, Ipswich, MA, USA). 

After end-repairing and polyadenylating the amplicons, NEBNext Adaptor were ligated. The 

ligated samples were run on a 2% agarose gel and the desired fragment length were excised 

(50bp +/- the target fragment length). DNA from the gel was purified with MinElute Gel Extraction 

Kit (Qiagen, Hilden, Germany). Fragments containing Nebnext adapters on both ends were 

selectively enriched with PCR using 4 cycles. Quality and quantity of the enriched libraries were 

validated using Qubit® (1.0) Fluorometer and Tapestation (Agilent Technologies, Santa Clara, CA 

USA). The libraries were normalized to 4nM in Tris-Cl 10 mM, pH 8.5 with 0.1% Tween 20. The 

libraries were sequenced at FGCZ on the Illumina MiSeq Personal Sequencer (Illumina, San Diego, 

CA, USA) using a 600 cycle v3 Sequencing kit (Cat n° MS-102-3003), in paired-end 2x 300 bp mode. 

The PacBio SMRT bell library was prepared at the FGCZ using the DNA Template Prep Kit 

1.0 (Pacific Biosciences p/n 100-259-100), following the manufacturer’s instructions. After DNA 

quantification with a Qubit Fluorometer dsDNA Broad Range assay (Life Technologies p/n 32850), 

the fragment size distribution was assessed with a Bioanalyzer 2100 12K DNA Chip assay (Agilent 

p/n 5067-1508). 500-750ng of amplicon DNA was DNA-damage repaired and end-repaired using 

polishing enzymes. A blunt end ligation reaction followed by exonuclease treatment was 

performed to create the SMRT bell template. The library was quality inspected and quantified on 



the Bioanalyzer 12Kb DNA Chip and on a Qubit Fluorometer (Life technologies) respectively. A 

ready to sequence SMRT bell-Polymerase Complex was created using the Sequel binding kit 2.0 

(Pacific Biosciences p/n 100-862-200) according to the manufacturer instructions. The Pacific 

Biosciences Sequel instrument was programmed to sequence the sample on 1 Sequel™ SMRT® 

Cell 1M v2 (Pacific Biosciences p/n 101-008-000), taking 1 movie of 10 hours using the Sequel 

Sequencing Kit 2.0 (Pacific Biosciences p/n 101-310-400). After the run, the quality of the 

sequencing data was checked using the “run QC module” of the PacBio SMRT Link software. 

DNA sequence analysis were performed at the Scientific Compute Cluster Euler, at ETH, 

Zurich. The MiSeq data was processed similar to the workflow described in Hartman et al. 

(Hartman et al., 2017). Briefly, to improve merging, read ends were trimmed by run if needed 

(seqtk v.1.2-r94, https://github.com/lh3/seqtk.git) and subsequently merged (FLASH v.1.2.11; 

(Magoč & Salzberg, 2011) into amplicons. In a next step, CUTADAPT v1.4.2 (Martin, 2011) was 

used to trim off barcode and primer sequence and demultiplex amplicons based on barcode 

information. Demultiplexed reads were subsequently quality filtered using prinseq-lite v0.20.4 

(Schmieder & Edwards, 2011). The quality filtered sequences were clustered into operational 

taxonomic units (OTUs, ≥97% sequence similarity) using usearch v10.0.240 (Edgar, 2013). SINTAX 

(http://dx.doi.org/10.1101/074161) was used for taxonomic assignments using either SILVA 16S 

v128 (Quast et al., 2013) for the bacterial community or UNITE v7.2 (Abarenkov et al., 2010) 

database for the fungal community. 

The SMRT sequencing data was processed following Schlaeppi et al. (2016). In brief, ≥5-

pass ‘reads of insert’ (ROI; also, circular consensus sequences CCS) were extracted from the raw 

data 8) using default parameters. The software mothur v.1.34.4 (Schloss et al., 2009) and flexbar 

(Dodt et al., 2012) were employed for quality filtering and demultiplexing, respectively. Some 

raw reads were affected by multi-primer artefacts (Tedersoo et al., 2018)and we employed 

Usearch (v10.0.240, (Edgar, 2013) to detect and discarded these reads containing primer 

sequences within the read. OTU clustering and taxonomic annotation were conducted using the 

same tools as for the MiSeq data.  



Bioinformatics scripts and report files are available as Notes S2. The raw sequencing data 

of the two MiSeq runs and the SMRT sequencing are available from the European Nucleotide 

Archive under the study accession PRJEB27162. 

 

Identification of endobacteria OTUs by phylogenetic placement 

To identify endobacteria OTUs, we pre-selected candidates in the microbiome dataset 

using two approaches and then validated their representative sequences by fine mapping to a 

reference tree of known endobacteria sequences. For the latter we created a custom database 

with curated endobacteria 16S rDNA references containing published sequences 

of Burkholderia-related endobacteria (BRE), such as Candidatus Glomeribacter gigasporarum 

and Mycoavidus cysteinexigens, and Mycoplasma-related endobacteria (MRE) retrieved from 

Glomeromycotina, such as Candidatus Moeniiplasma glomeromycotorum, Endogonaceae 

(Mucoromycotina) and Mortierellomycotina. We pursued two alternative strategies to identify 

candidate endobacteria OTUs. The first approach was based on sequence clustering and 

secondly, we employed co-occurrence characteristics from network analysis (e.g., high degree of 

co-occurrence between fungal and bacterial OTUs) and we explored if this type of information 

would be useful to identify candidate endobacteria OTUs. 

For the first strategy, we employed usearch (v8) to map the curated endobacteria 

sequences to the representative bacteria OTUs (bOTU) sequences of the microbiome dataset. 

We allowed up to 10% sequence divergence to account for the high variability among 16S rDNA 

endobacteria sequences, in particular from MRE, known to display high level of sequence 

diversity (Desirò et al., 2018). This approach yielded 22 candidate endobacteria OTUs, which we 

then placed into the reference tree. For the second strategy, we searched the co-occurrence 

characteristics from network analysis as follows: we first identified all fungal OTUs (fOTUs) 

assigned to Glomeromycotina and Mortierellomycotina (we did not identify fOTUs assigned to 

Endogonaceae; may be linked to the use of universal ITS primers, which tend not to capture this 

family, (Tedersoo et al., 2016), the fungal lineages known to harbor BRE and/or MRE, and then 

selected all bOTUs that significantly co-occur with them (Spearman’s rho > 0.7 and P < 0.001). 



This approach yielded 129 candidate endobacteria OTUs, which we then placed into the 

reference tree. 

Placement to a common phylogenetic tree was achieved by aligning candidate 

endobacteria OTUs (from clustering or network approaches) to an endobacteria reference 

dataset. Sequences were aligned with MAFFT (Katoh & Standley, 2013) Phylogenetic analyses 

were carried out with MrBayes v.3.2.6 (Ronquist et al., 2012) and RAxML v.8.2.4 (Stamatakis, 

2014). Prior to Bayesian phylogenetic reconstructions, best-fit nucleotide substitution models 

were estimated with jModelTest v.2.1.9 (Darriba et al., 2012). Bayesian analyses were performed 

running the Markov chain Monte Carlo for 10 million generations under the TrN+I+G nucleotide 

substitution model. Maximum likelihood analyses were conducted with the automatic 

‘bootstrapping’ option under the GTRCAT nucleotide substitution model. For tree inference, 

Betaproteobacteria and Mollicutes reference sequences were included together with outgroup 

sequences belonging to Cyanobacteria. Candidate endobacteria OTUs were considered as BRE or 

MRE OTUs if they clustered within an endobacteria clade in the reference phylogenetic tree. 

Command line and analysis code in R (including markdown report) as well as the database 

with curated endobacteria 16S rDNA reference sequences are available as Notes S4. 

 
 
  



Notes S1 | Comparison of PCR approaches  
This additional zip archive comprises the bioinformatic command line code, input data and R 
script for the comparison of the PCR approaches. It also contains the R markdown output as a 
detailed PDF-report of ITS PCR approaches. 
 
 
 
Notes S2 | Bioinformatic scripts  
This additional zip archive comprises all bioinformatic command line scripts including all 
individual parameters and support files that were utilized to process the raw sequencing data 
from the MiSeq- and SMRT-sequencing data. 
 
 
 
Notes S3 | Data analysis in R  
This additional zip archive comprises the R scripts, functions and support files that document and 
permit to reproduce the main data analysis in R. The main data analysis covers the steps 
illustrated in Fig. S1. 
 
 
 
Notes S4 | Mapping endobacteria  
This additional zip archive comprises the command line and analysis code in R as well as the 
database with curated endobacteria 16S rDNA reference sequences. In addition, it contains the 
R markdown output as a detailed PDF-report of mapping the OTUs to the endobacteria database. 
 
 
 
Notes S5 | Comparison of ITS profiling approaches  
This additional zip archive comprises the R code (and its markdown report), which was used to 
compare the MiSeq- versus the SMRT-sequencing based profiling of fungal communities. It 
contains the R markdown output as a detailed PDF-report for the comparison of ITS profiling 
approaches.  
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