The essential genome of the crenarchaeal model Sulfolobus islandicus

Changyi Zhang ${ }^{1,2 \#}$, Alex P. R. Phillips ${ }^{1,2 \#}$, Rebecca L. Wipfler ${ }^{1}$, Gary J. Olsen ${ }^{1,2}$ and Rachel J.
Whitaker ${ }^{1,2^{*}}$
${ }^{1 .}$ Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
${ }^{2}$. Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
${ }^{\text {\# }}$ C.Z. and A.P.R.P contributed equally to this work
*Correspondence: Rachel J. Whitaker. E-mail: rwhitaker@life.illinois.edu

Supplementary results and discussion

Here we provide additional descriptions and discussion of essential genes in several arCOG functional categories from the perspective of gene function, and highlight a few non-essential genes that possibly play critical roles in Sulfolobus species.

DNA replication, repair, and recombination

Tn -seq analysis allowed us to identify 23 essential genes involved in DNA replication, repair, and recombination (arCOG functional category [L]) in S. islandicus, among which 14 genes encode core components of archaeal DNA replication machinery. The MCM (minichromosome maintenance complex), one of the indispensable ancillary complexes during DNA replication in Archaea and Eukaryotes, is the replicative helicase for DNA unwinding, performing the function of DnaB in Bacteria. In contrast to the two hyperthermophilic euryarchaea Methanococcus maripaludis and Thermococcus kodakarensis, which possess multiple mcm genes with only one copy required ${ }^{1-3}$, Sulfolobus species contain only one MCM, forming a homohexameric architecture ${ }^{4}$. Given the indispensable roles of MCM for DNA unwinding during DNA replication, the existence of the sole $m c m$ gene in S. islandicus explains why the inactivation (via transposon insertion or gene knockout strategy) of mcm is lethal. Notably, the essentiality of the single $m \mathrm{mcm}$ gene was also demonstrated in a halophilic archaeon, Halobacterium sp. NRC-1 ${ }^{5}$. Another two genes involved in the initiation of DNA replication encode GINS homologs Gins23 and Gins15, both of which are essential in S. islandicus M.16.4. Additionally, the archaeal ortholog of Cdc45, which was shown to form a stable complex with GINS to stimulate MCM helicase activity in S. solfataricus ${ }^{6}$, was essential in our study. The essentiality of gins, mcm, and cdc45 further supports a view demonstrating the formation of CMG complex is required for DNA replication in Sulfolobus ${ }^{6}$. Intriguingly, recent genetic studies in the hyperthermophilic euryarchaeon T. kodakarensis revealed the Cdc45/RecJ-like protein encoding gene gan was not essential for cell viability ${ }^{7,8}$, indicating the function of CMG complex presumably diverged in archaea.

PCNA (Proliferating cell nuclear antigen) belonging to the family of DNA sliding clamps is structurally and functionally conserved ${ }^{9,10}$. Unlike Euryarchaeota, which generally contain one PCNA gene (with the exception of T. kodakarensis in which two PCNA homologs were found ${ }^{11,12}$), Crenarchaeota possess three distinct PCNA subunits. All three subunits were essential in S. islandicus M. 16.4 inferred by Tn -seq data, consistent with a previous genetic analysis in another S. islandicus strain Rey $15 \mathrm{~A}^{13}$. These results explain why three PCNA subunits formed a heterotrimer rather than distinct homotrimers to act as the sliding clamp during DNA replication in other Sulfolobus species ${ }^{14}$. The two subunits of replication factor C
(RFC_{s} and $\mathrm{RFC}_{\mathrm{L}}$), acting as the loader of the DNA sliding clamp, are found in all three domains and are essential in S. islandicus M.16.4 as well as the euryarchaeon M. maripaludis ${ }^{1}$.

One of the unique features of Archaea is that they exclusively encode both bacterial-type (DnaG) and eukaryotic-type primase, with the later type consisting of a small subunit (catalytic subunit, PriS) and a large subunit (noncatalytic subunit, PriL). The function of DnaG and heterodimer PriLS have been previously biochemically characterized in S. solfataricus ${ }^{15,16}$. Strikingly, a novel primase PriX was recently identified and shown to significantly promote the primer synthesis in vitro by forming a heterotrimer with PriSL in S. solfataricus ${ }^{17}$. Here we revealed dnaG in S. islandicus (M164_2048) was essential, in contrast to the non-essentiality of $d n a G$ in the euryarchaea M. Maripaludis and Haloferax volcanii ${ }^{1,16}$. Tn-seq data showed priS (M164_1162) was essential whereas priL (M164_1568) and priX (M164_1652) were classified as "unassigned". Moreover, we were unable to obtain knockouts for priL and priX even if we prolonged the incubation of transformation plates for 20 days, indicating they are required for cell survival in S. islandicus M.16.4. There are another two "unassigned" genes related to DNA maturation: lig, encoding an ATP-dependent DNA ligase ${ }^{18}$, and rnhII, encoding a ribonuclease HII that was shown in vitro to exhibit the cleavage activity of RNA in hybrid RNA/DNA substrates in S. tokodaii ${ }^{19}$. All attempts to delete lig or rnhII were unsuccessful, confirming that they are required for the primer removal during the maturation of Okazaki fragments in Sulfolobus DNA replication. Notably, this result argues against genetic studies performed in the hyperthermophilic euryarchaeon T. kodakarensis in which the function of RNase HII can be replaced by the Fen1 or GAN (GINS-associated nuclease) ${ }^{7}$.

Sulfolobus species encode three B-family DNA polymerases and one Y-family DNA polymerase ${ }^{20}$. However, only dpoB1 (M164_1573) is essential whereas dpoB2 (M164_0814), dpoB3 (M164_2047), and dpo4 (M164_0255) are classified as non-essential via Tn-seq analysis. To validate these results, direct gene disruptions were attempted by using the argD marker cassette to replace the $d p o B 1, d p o B 2, d p o B 3$, and $d p o 4$ in the chromosome. Consequently, individual disruption mutants of $d p o B 2, d p o B 3$, and $d p o 4$ could be successfully obtained (Supplementary Fig. 10b); however, disruption of $d p o B 1$ failed after repeated attempts. These studies suggest DpoB 1 is an authentic replicative DNA polymerase in vivo for Sulfolobus, although in vitro studies showed DpoB2 and DpoB3 possessed very low DNA polymerase and 3^{\prime} to 5^{\prime} exonuclease activities ${ }^{21}$, consistent with phylogenetic analyses suggesting the B-family DNA polymerases evolved by gene duplication events in Crenarchaeota ${ }^{22,23}$. S. islandicus M. 16.4 encodes PolB1-binding proteins PBP1 (M164_1996; arCOG functional category [S]) and PBP2 (M164_1545; arCOG functional category [K]), the
orthologues of which have been recently identified to form a heterotrimeric DNA polymerase holoenzyme together with DpoB1 in a related species S. solfataricus ${ }^{24}$. Both Tn -seq and gene knockout analyses showed that $p b p 2$ was essential whereas $p b p 1$ was not (Supplementary Fig. 10c), indicating the formation of heterotrimeric DNA polymerase holoenzyme was not necessary in vivo, at least for the maintenance of cell growth in S. islandicus. Remarkably, with the exception of the two newly isolated thermophilic ammonia-oxidizing thaumarchaea Candidatus Nitrosocaldus cavascurensis and Candidatus Nitrosocaldus islandicus ${ }^{25,26}$, which lack archaeal specific D-family DNA polymerase, both B- and D-family DNA polymerases are present in all other members of Thaumarchaeota lineage as well as Euryarchaeota, Korarchaeota, Aigarchaeota, and Nanoarchaeota lineages. Moreover, genetic studies in both T. kodakarensis and M. maripaludis revealed Pol D was possibly the major DNA replicative polymerase because $d p o B$ was non-essential in vivo ${ }^{1,27}$. While Crenarchaeota and Eukaryota both use B-family polymerases to replicate their genomes, which can be interpreted as evidence for their shared ancestry, a recent review of the archaeal tree of life suggested that loss of Pol D instead occurred twice independently in the two lineages ${ }^{28}$. Other essential genes in arCOG functional category [L] included rpa (M164_0180), top6A (M164_1238), top6B (M164_1239), and cren7 (M164_1232) encoding a highly conserved chromatin protein in Crenarchaeota ${ }^{29}$. The 5' flap endonuclease (M164_1965, FEN1) that strongly interacts with PCNA2 ${ }^{14}$ is essential, whereas in Euryarchaeota it was previously shown that fenl could be disrupted or deleted ${ }^{1,7}$.

DNA damage repair in Sulfolobus species remained largely elusive and most of the predicted candidates related to DNA repair are non-essential (Supplementary Table 3). In particular, the canonical DNA mismatch repair pathway has not been found in Sulfolobus species so far. Recently, Ishino et al. reported that a mismatch-specific endonuclease (EndoMS) in T. kodakarensis could specifically cleave dsDNA substrates with mismatched bases incorporated ${ }^{30}$. The EndoMS was found to be present in some bacteria particularly in Actinobacteria, and distributed in archaeal members belonging to the TACK superphylum, Euryarchaeota, and ASGARD phylum ${ }^{31,32}$. Here we showed that the S. islandicus EndoMS homolog (M164_0025; annotated as NucS), existing in all sequenced Sulfolobus species, was non-essential by both Tn -seq and gene knockout experiments (Supplementary Fig. 3b). Investigation of the spontaneous mutation rates and mutation spectra in wild-type and endoMS mutant strains with a forward mutation assay will be required to identify whether the Sulfolobus EndoMS homolog plays a functional role in the mutation avoidance, as recently reported in Mycobacterium tuberculosis ${ }^{32}$ and Corynebacterium glutamicum ${ }^{33}$. The udg4 (M164_0085), encoding uracil-DNA glycosylase, was classified as "unassigned" by Tn -seq assay. We speculate the udg4 mutant colonies generated by the insertion of transposon were not
successfully captured on plates within 10 days of incubation, which was supported by the observation of the udg4 knockout mutant exhibiting a greatly reduced cell viability in comparison to the wild type strain (Supplementary Fig. 2b). Four genes nurA (M164_0062), rad50 (M164_0063), mre11 (M164_0064), and herA (M164_0065), relevant to double-strand DNA break repair (DSB), were essential in S. islandicus M.16.4 as revealed by Tn-seq data, consistent with previous genetic analyses in S. islandicus Rey15A and T. kodakarensis ${ }^{34,35}$. The gene that encodes RadA (M164_1897), the archaeal ortholog of RecA/Rad51 family recombinase, was essential in our study. Genetic analysis of radA in S. islandicus Rey15A and T. kodakarensis showed that mutation of this gene was lethal ${ }^{34,35}$, whereas the H. volcanii strain lacking radA was viable but defective in homologous recombination ${ }^{36}$. More interestingly, it has been shown recently that radA was required for the cell survival of H. volcanii that lacked all four replication origins ${ }^{37}$. In contrast to hyperthermophilic archaea, radA, rad50, and mrell individual deletion mutants have been successfully generated in mesophilic archaea Halobacterium salinarum or H. volcaniii ${ }^{36,38-40}$. The apparent essentiality of HR-related genes in hyperthermophilic archaea suggested that they presumably harbor a unique mechanism, which is different from that of mesophilic archaea, in order to adapt to their harsh environments, particularly elevated temperatures ${ }^{41}$.

Transcription

Tn-seq analysis predicted that 11 among 13 RNAP subunits in S. islandicus M.16.4 were essential. The Archaea-specific Rpo13 (M164_1754), a RNAP-DNA stabilization factor ${ }^{42}$, was identified as non-essential by Tn -seq analysis and successful construction of a rpol3 disruption mutant (Supplementary Fig. 3b). The RNAP subunit Rpo8 (M164_1872) found in many eukaryotes and highly conserved in Crenarchaeota and Korarchaeota ${ }^{43}$, was categorized as "unassigned" $\left(\log _{2} \mathrm{FC}=-3.77\right.$ and $\left.\mathrm{EI}=2\right)$. Further genetic analysis revealed the disruption of $r p o 8$ was not lethal (Supplementary Fig. 3b); however, growth of the rpo8 disruption mutant was significantly impaired compared with that of the wild type strain (Supplementary Fig. 2c). The dispensability of Rpo8 or Rpo13 suggests a complete RNAP, consisting of 13 subunits ${ }^{42,44}$, is not required to maintain cell survival in vivo for Sulfolobus, at least in S. islandicus M.16.4.

Like that of eukaryotes, transcription initiation in Archaea required the TATA-box binding protein (TBP) and transcription factor B (TFB) bound to DNA for promoter-dependent transcription. Both Tn -seq and knockout analyses confirmed that the TBP-encoding gene (M164_1259) was essential whereas the TBP-interacting protein TIP49 ${ }^{45}$ encoded by M164_0257 was non-essential in S. islandicus (Supplementary Table 3 and Supplementary Fig. 3b). Three TFB paralogues, encoded by tfbl (M164_1706), tfb2 (M164_1265), and tfb3 (M164_1868) respectively, were found in the genome of S. islandicus M.16.4. The genes $t f b 1$
and $t f b 2$ were essential whereas $t f b 3$ was not, which were confirmed by both Tn -seq and knockout analyses (Supplementary Fig. 3b). In agreement with our discoveries, similar results regarding the essentiality/non-essentiality of these three TFB paralogs have also been observed in S. acidocaldarius via gene disruption analyses ${ }^{46}$. The TFB1 has been identified in vitro as one of three indispensable factors to direct accurate transcription in S. shibatae ${ }^{47}$, whereas the TFB2 was proposed to be involved in the regulation of cell cycle in S. acdocaldarius ${ }^{48}$. Additionally, $t f b 3$ was found to be highly transcribed after UV treatment in S. solfataricus and S. acdocaldarius ${ }^{49,50}$. Strikingly, it has been shown recently that $t f b 3$ could regulate the expression of genes involved in cellular aggregation and DNA transfer when the cells were subjected to NQO (4-nitroquinoline 1-oxide) or UV- induced DNA damage ${ }^{51,52}$.

An additional transcription factor IIE- α (renamed as TFE α, M164_1881) was annotated in the genome of S. islandicus M.16.4 and was revealed to be essential by Tn -seq and gene knockout analyses. Notably, the archaeal counterpart of TFIIE β (renamed as TFE β) has been functionally characterized in S. solfataricus recently ${ }^{53}$, and the TFE β homolog in S. islandicus (M164_1266) was shown to be essential in our study, consistent with the genetic analysis performed in S. acidocaldarius ${ }^{53}$. Four genes spt4 (M164_1736), nusG (M164_1807), nusA (M164_1922), and nusA-like (M164_1973), which are proposed to be involved in the transcription elongation, were essential. Strikingly, M164_1885, coding for an orthologue of the eukaryotic transcriptional elongation factor Elf1 found in all Crenarchaeota ${ }^{54}$, was nonessential. Functional characterization of the elfl deletion mutant in S. islandicus will help us to understand the roles of elfl in archaeal transcription. Four paralogues of putative transcript cleavage factor (TFS1, TFS2, TFS3, and TFS4) were found in the genome of S. solfataricus and S. islandicus ${ }^{55}$, among which $t f s l$ (M164_1859), tfs3 (M164_1858), and $t f s 4$ (M164_0715) were predicted to be non-essential by Tn -seq analysis. This prediction was confirmed via successful obtainment of individual knockout mutants in standard growth conditions (Supplementary Fig. 3b). The fourth $t f s 2$ (M164_1524), highly conserved in all Crenarchaeota, was classified as "unassigned" by Tn-seq analysis; however, it was later confirmed to be essential by means of knockout analysis, suggesting TFS2 plays more crucial functions in comparison to the other three TFS paralogs.

Unlike the euryarchaeon H. volcanii in which only a single SmAP is encoded ${ }^{56}$, crenarchaea contain three SmAP paralogues (hereafter named as SmAP1, SmAP2, and SmAP3) annotated as " $\underline{s m a l l}$ nuclear ribonucleoprotein (snRNP) homolog" ${ }^{57}$. Tn-seq analysis revealed smAP1 (M164_1376) and smAP2 (M164_1942) were essential whereas smAP3 (M164_1873) was non-
essential. The essentiality of both smAP1 and smAP2 genes could be possibly explained by a previous study, which demonstrated that SmAP1/SmAP2 strongly interacted with each other and co-purified with essential components involved in exosome, RNA modification, turnover, and translation ${ }^{58}$. In eukaryotes, the biogenesis of spliceosomal snRNP proteins required involvement of the SMN protein that interacted with an evolutionarily conserved zinc finger protein ZPR1 ${ }^{59}$. Targeted disruption studies of zprl indicated that it was essential for cell viability ${ }^{60}$, and played important roles in transcription and cell cycle ${ }^{61}$. M164_0237, encoding a homolog of ZPR1, was an essential gene candidate in our Tn-seq assay, but its assignment was inconclusive in M. maripaludis ${ }^{1}$. Although categorized as "general functional prediction only" in the arCOG functional database, it is tempting to speculate ZPR1 plays a similar role in Crenarchaeota. The remaining essential genes in this functional category were mostly annotated as transcription regulators with unknown specific functions.

Translation

Tn -seq analysis revealed that 113 were essential among 200 genes in arCOG functional category [J]), mostly composed of ribosomal proteins, aminoacyl-tRNA synthetases (aaRSs), and translation initiation/elongation factors. Ribosomal proteins in S. islandicus M.16.4 are composed of 37 large- and 28 small subunits, among which 27 large-subunit encoding genes and 20 small-subunit encoding genes were essential. Two small-subunit ribosomal proteins M164_1730 and M164_1557, homologs of the archaeon-eukaryote S25e and S26e, respectively, were non-essential in S. islandicus M.16.4. The third, M164_1159, encoding the small-subunit ribosomal protein S27e, was non-essential though it is widely distributed in the archaeal domain.

Genomic analysis revealed 21 aaRS-related genes were present in S. islandicus M.16.4, among which 18 genes were essential. Two genes, M164_0290 (hereafter named as thrS1) and M164_1768 (hereafter named as thrS2), encode ThrRS in S. islandicus M.16.4. The thrS1 was classified as "unassigned" whereas thrS2 was non-essential. Further genetic analysis showed that thrSl could not be knocked out; however, the thrS2 disruption mutant could be readily generated (Supplementary Fig. 3b), suggesting that thrSl plays a crucial function in protein synthesis. Two genes (M164_1539 and M164_1649; named as leuS1 and leuS2 respectively) encoding LeuRS were annotated in S. islandicus M.16.4; however, only leuSl was required for cell survival, leaving the function of leuS2 unknown. Notably, the two freestanding homologues of AlaRS editing domain, AlaX1 (M164_1702) and AlaX2 (M164_0462), shown to hydrolyze misacylated tRNA ${ }^{\text {Ala }}$ in S. solfataricus ${ }^{62}$, were non-essential in S. islandicus M.16.4. This finding was further confirmed by genetic analysis (Supplementary Fig. 3b), indicating that they
have overlapped functions or play less fundamental roles. S. islandicus M.16.4 possesses all aaRSs required for synthesizing each aminoacyl-tRNA except for GlnRS and AsnRS, which are used to directly attach Gln and Asn respectively to their cognate tRNAs. These observations indicate that aminoacyl-tRNA amidotransferase (Adt) is required for the synthesis of Gln-tRNA and Asn-tRNA. Comparative genomic analysis showed that S. islandicus M.16.4 contained two types of Adt, which are supposed to correct the misacylated Glu-tRNA ${ }^{\text {Gln }}$ and/or Asp-tRNA ${ }^{\text {Asn }}$ in the indirect pathway of Gln-tRNA ${ }^{\text {Gln }}$ and or/ Asn-tRNA ${ }^{\text {Asn }}$. The first Adt (Asp/Glu-Adt), existing in most bacteria and some archaea and capable of synthesizing both Asn-tRNA and Gln-tRNA ${ }^{63}$, is supposed to function as a heterotrimeric enzyme (GatCAB) similarly in S. islandicus M.16.4. Though three GatA paralogues (named as GatA-1, 2, and 3) are present, only gatA-1 (M164_1253) is essential, suggesting that gatA-2 (M164_0374) or gatA-3 (M164_1369) is functionally redundant. The other two subunits (GatB and GatC) of GatCAB encoded by M164_1911 and M164_1252 respectively were essential as revealed by Tn -seq analysis. Additionally, S. islandiucs M1.6.4 possesses a heterodimeric amidotransferase (GatDE) for Gln-tRNA ${ }^{\text {Gln }}$ formation, which has been biochemically characterized in Methanothermobacter thermautotrophicus and predicted to be exclusively Archaeaspecific ${ }^{64,65}$. The GatD and GatE subunits, encoded by two adjacent genes M164_1273 (annotated as ansB and assigned into arCOG functional category [E]) and M164_1274, respectively, were essential in S. islandicus M.16.4. The existence and essentiality of both GatCAB and GatDE in S. islandicus suggest these two complexes play distinct functions in protein synthesis.

All 13 genes involved in the cycle of translation were essential in S. islandicus M.16.4. These include 9 translation initiation factors: aIF-1A (M164_0191), aIF-2 (M164_1916), a/eIF2 α (M164_1158), a/eIF2 β (M164_0194), a/eIF2 γ (M164_1739), aSUI1 (M164_1707), aIF5A (M164_1237), aIF-6 (M164_1802), and RLI1 (M164_1861), 3 translation elongation factors: EF-1 α (M164_1926), EF-1 β (M164_1968), and EF-2/EF-G (M164_1407), and one translation termination factor aRF1 (M164_0157). Notably, Sulfolobales do not contain the selenocysteine-specific translation elongation factor (SelB) which extensively exists in Methanococcales ${ }^{66}$ and was shown to be essential previously in M. maripaludis ${ }^{1}$. Instead, a SelB-like protein (SelBL) is present in S. islandicus M. 16.4 (M164_1681) and found to be widely distributed in diverse archaea ${ }^{66}$. The function of SelBL remains elusive; however, both Tn -seq and genetic analyses (Supplementary Fig. 3b) showed that selBL was non-essential, suggesting it plays less fundamental roles in Sulfolobus translation.

Cell cycle, cell division, and chromosome segregations

In the arCOG functional category [D], six genes were essential inferred by Tn-seq data, including the $c d v A$ (M164_1293), $c d v B$ (M164_1294; also named as escrt-III), and $c d v C$ (M164_1295; also named as vps4), which have been proved to be the crucial components of ESCRT (Endosomal Sorting Complex Required for Transport)-III-based cell division apparatus in Sulfolobus ${ }^{67,68}$. Furthermore, repeated attempts to knock out individual $c d v A, c d v B$, and $c d v C$ genes in S. islandicus M. 16.4 failed to generate any transformants in standard growth conditions, further confirming the essentiality of the ESCRT-III system for Sulfolobus cell survival. Additionally, like S. acidocaldarius and S. solfataricus P2, S. islandicus M.16.4 contains three $c d v B$ paralogs: $c d v B 1$ (M164_1700), $c d v B 2$ (M164_1319), and $c d v B 3$ (M164_1510). Interestingly, the essentiality and function of these three CdvB paralogs seemed to be divergent in S. acidocaldarius and S. islandicus. Genetic analyses of $c d v B$ paralogous genes in S. acidocaldarius indicated that none was essential for cell viability though a significant growth defect and impaired cell division were observed in the $c d \nu B 3$ mutant ${ }^{69}$. By contrast, a recent genetic study in S. islandicus REY15A showed growth between the $c d v B 3$ deletion mutant and parental strain was indistinguishable, and CdvB3 actually played a role in virus budding rather than cell division ${ }^{70}$. It should be noted that the $c d v B 3$ in our Tn -seq analysis is possibly an example of false positive essential gene calling, because we can readily obtain the $c d v B 3$ disruption mutant in standard laboratory conditions (Supplementary Fig. 3b) with a recently developed microhomology-mediated gene inactivation system ${ }^{71}$. Our Tn-seq and genetic knockout analyses confirmed that $c d v B 2$ was essential in S. islandicus M.16.4, in agreement with a previous study demonstrating $c d v B 2$ was essential and played crucial roles in the late stages of cell division in S. islandicus REY15A ${ }^{70}$. In contrast, the $c d v B 1$ gene, which has been shown to be essential and involved in the early stage of cell division in S. islandicus REY $15 \mathrm{~A}^{70}$, was very unlikely essential in our strain as validated by both Tn -seq $\left(\log _{2} \mathrm{FC}=0.48\right.$; $\mathrm{EI}=18$) and genetic knockout analyses (Supplementary Fig. 3b).

Sulfolobus species utilize a hybrid DNA-partition machine, consisting of two interacting components SegA and SegB, to drive chromosome segregation during M phase of the cell cycle ${ }^{72}$. Unexpectedly, Tn-seq analysis revealed segA (M164_2088; arCOG functional category [D]) and segB (M164_2087; arCOG functional category [S]) were non-essential in S. islandicus M.16.4, in agreement with genetic knockout experiments (Supplementary Fig. 3b). Further phenotypic characterization of the mutant strains with in-frame deletion in $\operatorname{seg} A, \operatorname{seg} B$, and $\operatorname{seg} A B$ will help us to dissect the mechanism of chromosome segregation system in Sulfolobus species. The remaining essential gene in arCOG functional category [D] M164_1692 encodes an ATPase-like protein conserved in all three domains.

Gene essentiality in central carbon metabolism (CCM)

We also examined gene essentiality in pathways of CCM, including glycolysis, gluconeogenesis, and the oxidative TCA cycle, which have been well reconstructed in a related species S. solfataricus P^{73}.

Among the genes in glycolysis and gluconeogenesis predicted by the reconstructed central metabolic pathways in S. solfataricus ${ }^{73}$ and KEGG pathway database, five genes were possibly essential as revealed by Tn -seq data. Among those, three genes, encoding enzymes fructosebisphosphatase (M164_1862), glucose-6-phosphate isomerase (M164_0092), and phosphoglucomutase (M164_1935), respectively, were involved in the last three steps of gluconeogenesis. The fourth, M164_2166, encodes the 2-keto-3-deoxy-(6-phospho) gluconate aldolase (KDG aldolase). The remaining candidate essential gene involved in glycolysis/gluconeogenesis was M164_2749, encoding the alpha subunit of 2-oxoacid: ferredoxin oxidoreductase (OFOR) that was presumably responsible for the formation of acetyl-CoA from pyruvate.

Next, we surveyed the essentiality of genes that involved in the reversed ribulosemonophosphate pathway (RuMP), a pathway that substitutes the classic pentose phosphate pathway (PPP) in most of archaea including S. islandicus M.16.4. Like other Sulfolobus species ${ }^{74}$, S. islandicus M. 16.4 contains all enzymes involved in the RuMP pathway, including 6-phospho-3-hexuloisomerase (M164_1993), 3-hexulose-6-phosphate synthase (M164_1939), ribose-5-phosphate isomerase (M164_1228), ribose-phosphate pyrophosphokinase (M164_1165), and transketolase fused by two subunits (M164_1848/M164_1849). Our Tn-seq data showed that all six genes were essential, suggesting that the RuMp pathway was indispensable for cell survival in S. islandicus under standard laboratory conditions.

Comparative genomic analysis showed that S. islandicus M. 16.4 harbors a complete TCA cycle. The candidate enzymes for all steps of TCA cycle were present except for the 2-oxoglutarate dehydrogenase complex (OGDC). Considering the absence of OGDC and the broad substrate specificity of OFOR towards 2-oxoacids ${ }^{73,75}$, formation of succinyl-CoA from 2-oxoglutarate in the TCA cycle was proposed to be operated by the OFOR in S. islandicus M.16.4 as well. There are 13 genes encoding for core enzymes of the TCA cycle in S. islandicus M.16.4, 12 of which were shown to be essential, whereas the remaining one, M164_2478, encoding the beta subunit of SisOFOR, was classified as "unassigned". Notably, three other SisOFOR (M164_2479/M164_2478) paralogous gene pairs i.e. M164_0365/M164_0364, M164_0396/M164_0395, and M164_2553/M164_2552 are present in S. islandicus M.16.4, all of which were non-essential. These observations and our experimental data demonstrated that
physiological roles of SisOFOR (M164_2479/M164_2478) were irreplaceable in the TCA cycle. Lastly, our Tn-seq data revealed that M164_0683 and M164_0684, encoding isocitrate lyase and malate synthase, respectively, were non-essential, indicating the glyoxylate cycle was not required in our laboratory conditions.

Supplementary Table 1: Summary of number of reads and insertions in three independent transposon mutant libraries

| Library | No. of
 colonies | Colony
 collection
 way | No. of reads
 mapped
 the genome | No. of unique
 insertions
 in
 total | No. of unique
 insertions(>1 | No. of unique
 insertions(>2
 reads) | No. of unique
 insertions(>3
 reads) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| CYZ-TL1 | 25,318 | Pick | 2.9×10^{7} | 83,906 | 30,210 | 23,948 | 22,539 |
| CYZ-TL2 | 36,840 | Wash | 1.7×10^{7} | 47,967 | 34,664 | 33,881 | 33,582 |
| CYZ-TL2 | 43,810 | Wash | 2.5×10^{6} | 35,217 | 33,712 | 33,132 | 32,640 |
| Total | 105,968 | - | - | 167,090 | 98,586 | 90,961 | 88,761 |

Supplementary Table 2: Summary of self-nucleotide BLAST results that reveal matching

 sections elsewhere in the genome| Locus tag | Start | End | Match start | Match end | Match length (bp) | Match ID\% | Genes hit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| M164_0862 | 808672 | 809127 | 2010585 | 2010442 | 144 | 97.22 | None |
| M164_1012 | 952035 | 951631 | 559226 | 558828 | 406 | 83.5 | M164_0624 |
| M164_1867 | 1712920 | 1711262 | 1264800 | 1264914 | 115 | 86.09 | M164_1334 |

Supplementary Table 3: Evaluation of selected essential/non-essential gene candidates

inferred by Tn-seq, and then confirmed with genetic knockout analysis in S. islandicus

Cellular Process	Gene symbols/locus tags ${ }^{\text {\# }}$	Essentiality by Tn -seq	Essentiality by KO assay" ${ }^{\# \#}$	Source/Reference
Replication	orcl-1, orcl-2, orcl-3, whip	-	-	76
	mcm, gins23, gins15, priS, rpa, dpoB1, rfcL, rfcS, fen1, cdc45, nrdJ, dnaG, pbp2	+	+	This study and ${ }^{34}$
	pcnal, pcna2, pcna3	+	+	${ }^{13}$
	lig, priL, priX, rnhII	Unassigned	+	This study and ${ }^{17}$
	dpoB2, dpoB3, dpo4, pbp1, nrdB	-	-	This study
Recombination /Repair	nurA, rad50, mrel1, herA, radA	+	+	34
	radB, radC1, radC2	-	-	34,77
	hje, hjc	-	-	78
	hjm (hel308a), xer	-	-	This study
	xpb1, xpb2, xpd, xpf, baxl, phrB	-	-	34
	endoMS, ogt, ogg2, udg5	-	-	This study
	exoIII, endoIII, endoIV, endoV	-	-	This study and ${ }^{79}$
	udg4	Unassigned	-	This study
Chromatin	topR1	-	-	This study
	topR2	+	-	This study
	topIII (topIA)	-	-	80
	top6A, top6B	+	+	This study
	cren7, albal	+	+	This study
	sul7d1, sul7d2, alba2, sir2, pat	-	-	This study
Cell division /genome segregation	$c d v A, c d v B, c d v C, c d v B 2$	+	+	This study
	$c d \nu B 3$	+	-	This study
	cdvB1	-	-	This study

	$\operatorname{seg} A, \operatorname{seg} B$	-	-	This study
Transcription	tbp, tfbl, tfb2, tfe- α, tfe- β, nusA, nusA-like, nusG, spt4	+	+	This study
	$t f s 2$	Unassigned	+	This study
	rpo8	Unassigned	-	This study
	tfb3, tfsl, tfs3, tfs4, tip49, rpol3	-	-	This study
Translation	alaX1, alaX2, leuS2, thrS2, selBL	-	-	This study
	thrS1	Unassigned	+	This study
Other functional categories	lacS, pyrE, pyrF, amyA, upsE, upsF, cas1, cas3', cas3", cas6, csa5, cas7, cmr2a (cas10), cas4, cas2, csal, cbp1, csa3a*, csa3b,	-	-	81-89
	cas5	+	+	This study
	pinA	+	+	90
	aKMT	-	-	79
	$\begin{aligned} & \text { M164_0809, M164_2103, } \\ & \text { M164_2020 } \end{aligned}$	-	-	This study
	M164_1243	+	+	91
	M164_1756, M164_0737	-	-	91
	M164_1060	+	+	This study
	apt	+	- ${ }^{\text {s }}$	83

+: Essential; -: Non-essential.
\#: Locus tags and annotations of genes were shown in Supplementary Dataset 10.
\#\# KO assay: Gene knockout experiment was performed at least 4 times for every possibly essential/nonessential gene inferred by Tn-seq. The gene essentiality in the KO assay was determined based on the facts that no transformants or only false positive transformants were obtained in nutrition-rich plates with 10-20 days' incubation at $76-78{ }^{\circ} \mathrm{C}$.
*: The csa3a gene that encodes for a transcriptional regulator of cas genes ${ }^{87}$ in S. islandicus M.16.4 is split by an approximate 14 kb of integrated provirus.
\$: The strain with an inactivation of apt gene, encoding the adenine phosphoribosyltransferase, exhibited extremely slow/poor growth on solid plates lacking AMP or GMP ${ }^{83}$.

Supplementary Table 4: Comparison of observed phyletic distribution to 100 scaled

 randomizations in terms of number of genes| Category | \# genes
 observed | Mean \# genes
 simulated | stdev genes
 simulated | $p_{\text {above }}$ | $p_{\text {below }}$ | $p_{2 \text {-tail }}$ |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- |
| Universal | 141 | 163.83 | 3.52 | 0 | 0 | 0 |
| EA | 80 | 8.69 | 2.82 | 0 | 0 | 0 |
| Archaea | 55 | 9.81 | 2.66 | 0 | 0 | 0 |
| TACK | 18 | 10.39 | 3.21 | 0 | 0 | 0 |
| Sulfolobales | 73 | 147.09 | 3.89 | 0 | 0 | 0 |
| Other | 74 | 61.96 | 5.59 | 0 | 0.02 | 0.02 |

Notes: P-values are an estimate based on simulated distribution (See "Methods"). Counts in the "Simulated" columns are the arithmetic mean of 100 random counts. Categories are defined

Total conserved COGs in S. islandicus	Excluded conserved*	Essential conserved \dagger	\% Conserved essential \ddagger	References
99	6	67	72\%	${ }^{92}$ Puigbò, et al. 2009 NUTs (COGs)
78	3	64	85\%	${ }^{93}$ Harris, et al. 2003 LCA (COGs)
236	25	123	58\%	${ }^{94}$ Gil, et al. 2003 (COGs)
165	57	56	52\%	${ }^{95}$ Weiss, et al. 2016 LUCA (COGs)
931	153	314	40\%	${ }^{96}$ Wolf, et al. 2012 LACA (arCOGs)
26	0	25	96\%	${ }^{97}$ Guy and Ettema 2011 Universal Genes (COGs)
48	1	36	77\%	${ }^{98}$ Raymann, et al. 2015 Archaea/Bacteria (COGs)
73	2	57	80\%	${ }^{98}$ Raymann, et al. 2015 Archaea/Eukaryota (COGs) ${ }^{97}$
24	6	10	56\%	${ }^{99,100}$ ESPs and membrane remodeling proteins in Sulfolobus (arCOGs)
34	0	29	85\%	${ }^{101}$ Yutin, et al. 2012 universal ribosomal proteins (arCOGs)
386	70	157	50\%	${ }^{102}$ Mirkin, et al. 2003 LUCA (COGs)
111	10	73	72\%	${ }^{103}$ Makarova, et al. 2015 (arCOGs)

* Excluded because of multiple matching gene for COGs.

446 Supplementary Table 6: Poorly characterized essential genes shared within Archaea,
447 Eukaryotes, and Sulfolobales

Locus tags	Phyletic category	arCOG	Predicted characteristics
M164_1243	Archaea	arCOG00557	Lhr-like helicase with C-terminal Zn finger domain
M164_1908	Archaea	arCOG00933	Radical SAM superfamily enzyme
M164_1554	Archaea	arCOG04116	ATPase (PilT family)
M164_1444	Archaea	arCOG04055	SHS2 domain protein implicated in nucleic acid metabolism
M164_1735	Archaea	arCOG04076	Uncharacterized protein, DUF359 family

M164_1930	Archaea	arCOG01831	Predicted nucleotidyltransferase
M164_1582	Archaea	arCOG01285	OB-fold domain and Zn -ribbon containing protein, possible acyl-CoA-binding protein
M164_1410	Archaea	arCOG04458	Uncharacterized protein of DIM6/NTAB family
M164_1948	Archaea	arCOG04290	PIN-domain and Zn ribbon
M164_1373	Archaea	arCOG00543	Predicted metal-dependent RNase, consists of a metallo-beta-lactamase domain and an RNA-binding KH domain
M164_2044	Archaea	arCOG00932	Uncharacterized protein related to pyruvate formate-lyase activating enzyme
M164_1168	Archaea	arCOG01043	Predicted RNA binding protein with dsRBD fold
M164_1936	Archaea	arCOG04124	Uncharacterized protein, Trm112 family
M164_1350	Archaea	arCOG04308	Uncharacterized protein
M164_0237	Eukaryotes/Archaea	arCOG04265	C4-type Zn -finger protein
M164_0664	Sulfolobales	arCOG01314	Uncharacterized membrane anchored protein with extracellular flavodoxin-like domain, a component of a putative secretion system
M164_2107	Sulfolobales	arCOG05396	Uncharacterized membrane protein
M164_1303	Sulfolobales	arCOG08333	Uncharacterized protein
M164_1025	Sulfolobales	arCOG08451	Uncharacterized protein
M164_1520	Sulfolobales	arCOG05995	Uncharacterized protein
M164_0149	Sulfolobales	arCOG07185	Uncharacterized protein
M164_1645	Sulfolobales	arCOG05923	Uncharacterized protein
M164_1726	Sulfolobales	arCOG05939	Uncharacterized protein
M164_1958	Sulfolobales	arCOG08308	Uncharacterized protein
M164_0627	Sulfolobales	arCOG03239	ATPase, predicted component of phage defense system
M164_0066	Sulfolobales	arCOG01098	Uncharacterized protein
M164_1338	Sulfolobales	arCOG05983	Uncharacterized protein
M164_0682	Sulfolobales	arCOG08424	Uncharacterized protein
M164_1275	Sulfolobales	arCOG05980	Uncharacterized protein

M164_0178	Sulfolobales	arCOG00442	von Willebrand factor type A (vWA) domain containing protein
M164_2177	Sulfolobales	arCOG05926	Uncharacterized protein
M164_0169	Sulfolobales	arCOG05958	Uncharacterized protein
M164_2151	Sulfolobales	arCOG03699	Uncharacterized membrane protein
M164_1620	Sulfolobales	arCOG09897	Uncharacterized protein
M164_0677	Sulfolobales	arCOG13101	Uncharacterized protein
M164_1289	Sulfolobales	arCOG04323	Zn -finger protein
M164_1789	Sulfolobales	arCOG06088	Zn finger protein
M164_1865	Sulfolobales	arCOG07188	Uncharacterized protein
M164_1724	Sulfolobales	arCOG05941	Uncharacterized protein
M164_1345	Sulfolobales	arCOG07185	Uncharacterized protein
M164_0089	Sulfolobales	arCOG05899	Cell surface protein
M164_1302	Sulfolobales	arCOG04103	Zn finger protein
M164_2100	Sulfolobales	arCOG01830	Predicted nucleotidyltransferase
M164_2636	Sulfolobales	arCOG06032	Uncharacterized membrane protein, DUF1404 family
M164_0727	Sulfolobales	arCOG10132	Uncharacterized protein
M164_1483	Sulfolobales	arCOG05997	Uncharacterized protein
M164_0224	Sulfolobales	arCOG05950	Uncharacterized protein
M164_0254	Sulfolobales	arCOG05929	Uncharacterized protein
M164_1337	Sulfolobales	arCOG06043	Uncharacterized protein
M164_0165	Sulfolobales	arCOG07197	Uncharacterized membrane protein
M164_0246	Sulfolobales	arCOG08319	Uncharacterized protein
M164_2845	Sulfolobales	arCOG07934	Uncharacterized protein
M164_1032	Sulfolobales	arCOG07229	Uncharacterized protein
M164_0037	Sulfolobales	arCOG05885	Uncharacterized protein
M164_2723	Sulfolobales	arCOG05922	Uncharacterized protein
M164_1572	Sulfolobales	arCOG04251	Uncharacterized protein
M164_2767	Sulfolobales	arCOG03031	Chlorite dismutase
M164_1332	Sulfolobales	arCOG04160	Uncharacterized protein
M164_0185	Sulfolobales	arCOG05956	Metal-binding protein with CxxC..HxxxxH signature
M164_0756	Sulfolobales	arCOG07185	Uncharacterized protein
M164_1251	Sulfolobales	arCOG07217	Uncharacterized protein

Supplementary Table 7: Strains and plasmids used in this study

Strains and plasmids	Genotypes/Descriptions	Reference /Source
Strains		
S. islandicus M.16.4	Wild type	104
S. solfataricus P2	Wild type	DSMZ
S. islandicus RJW004	$\triangle p y r E F \triangle \operatorname{lac} S \triangle \arg D ;$ Derived from S. islandicus M.16.4	${ }^{81}$
S. islandicus RJW008	$\triangle \operatorname{argD}$; derived from S. islandicus M.16.4	105
S. islandicus RJW011	RJW004 \triangle slaA (\triangle slaA); slaA was deleted from RJW004 via in-frame deletion	This study
S. islandicus RJW012	RJW004 $\triangle s l a B(\triangle s l a B) ; s l a B$ was deleted from RJW004 via in-frame deletion	This study
S. islandicus RJW013	RJW004 \triangle slaAB (\triangle slaAB); slaA and slaB were deleted from RJW004 via in-frame deletion	This study
S. islandicus \triangle slaAB \triangle M 164_1049	$\triangle p y r E F \triangle l a c S \triangle \arg D \triangle s l a A B \triangle M$ 164_1049:: StoargD; derived from RJW013	This study
S. islandicus \triangle dpoB2	$\triangle \arg D \triangle d p o B 2::$ Stoarg D; derived from RJW008	This study
S. islandicus \triangle dpoB3	$\triangle \arg D \triangle d p o B 3::$ Stoarg D; derived from RJW008	This study
S. islandicus \triangle dpo 4	\triangle argD \triangle dpo4::StoargD; derived from RJW008	This study
S. islandicus $\triangle p b p 1$	\triangle argD \triangle pbpl: $:$ StoargD; derived from RJW008	This study
S. islandicus \triangle topR1	\triangle argD \triangle topR1::StoargD; derived from RJW008	This study
S. islandicus \triangle topR2	$\triangle \arg D \triangle$ topR2::StoargD; derived from RJW008	This study
S. islandicus $\triangle u d g 4$	$\triangle \operatorname{argD\triangle udg4::StoargD;~derived~from~RJW008~}$	This study
S. islandicus $\triangle u d g 5$	$\triangle \operatorname{argD\triangle udg5::StoargD;~derived~from~RJW008~}$	This study
S. islandicus \triangle endoIII	\triangle argD \triangle endolili: StoargD; derived from RJW008	This study
S. islandicus \triangle endoV	$\triangle \arg D \triangle$ endoV::StoargD; derived from RJW008	This study
S. islandicus \triangle ogt	\triangle argD \triangle ogt: Stoarg D; derived from RJW008	This study
S. islandicus \triangle ogg2	$\triangle \arg D \triangle$ ogg2::StoargD; derived from RJW008	This study
S. islandicus $\triangle n r d B$	$\triangle \arg D \triangle n r d B:: S t o a r g D ;$ derived from RJW008	This study
S. islandicus \triangle sir 2	$\triangle \arg D \triangle$ sir2: $:$ StoargD; derived from RJW008	This study
S. islandicus \triangle pat	\triangle argD \triangle pat: $:$ StoargD; derived from RJW008	This study
S. islandicus \triangle alba2	\triangle argD \triangle alba2::StoargD; derived from RJW008	This study
S. islandicus \triangle sul7d1	$\triangle \operatorname{argD} \triangle$ sul7d1::StoargD; derived from RJW008	This study
S. islandicus \triangle sul7d2	$\triangle \arg D \triangle$ sul7d2::StoargD; derived from RJW008	This study
S. islandicus \triangle segA	$\triangle \arg D \triangle$ segA $::$ StoargD; derived from RJW008	This study
S. islandicus \triangle seg B	$\triangle \arg D \triangle \operatorname{seg} B::$ StoargD ; derived from RJW008	This study
S. islandicus \triangle xer	$\triangle \arg D \triangle$ xer: :StoargD; derived from RJW008	This study
S. islandicus \triangle hjm		This study
S. islandicus \triangle endoMS	$\triangle \arg D \triangle$ endoMS $:$:StoargD; derived from RJW008	This study

S. islandicus \triangle cdvB1	$\triangle \arg D \triangle c d v B 1::$ Stoarg D; derived from RJW008	This study
S. islandicus $\triangle c d v B 3$	$\triangle \arg D \triangle c d v B 3:: S t o a r g D ;$ derived from RJW008	This study
S. islandicus $\triangle t f b 3$		This study
S. islandicus \triangle M 164_0809	$\triangle \operatorname{argD\triangle M164}$ _0809::StoargD; derived from RJW008	This study
S. islandicus \triangle M164_2020	$\triangle \operatorname{argD\triangle M164} 2020::$ StoargD; derived from RJW008	This study
S. islandicus \triangle M164_2103	$\triangle \arg D \triangle$ M 164_2103::StoargD; derived from RJW008	This study
S. islandicus \triangle tip49	$\triangle \arg D \triangle$ tip49::StoargD; derived from RJW008	This study
S. islandicus \triangle tfs 1	$\triangle \arg D \triangle t f s 1::$ StoargD; derived from RJW008	This study
S. islandicus $\triangle t f s 3$	$\triangle \arg D \triangle t f s 3::$ StoargD; derived from RJW008	This study
S. islandicus $\triangle t f s 4$	$\triangle \arg D \triangle t f s 4::$ StoargD; derived from RJW008	This study
S. islandicus \triangle rpo8	\triangle argD \triangle rpos::StoargD; derived from RJW008	This study
S. islandicus \triangle rpol3	\triangle argD \triangle rpol3::StoargD; derived from RJW008	This study
S. islandicus \triangle alaX1	\triangle argD \triangle alaX1::StoargD; derived from RJW008	This study
S. islandicus \triangle alaX2	\triangle argD \triangle alaX2::StoargD; derived from RJW008	This study
S. islandicus \triangle selBL	$\triangle \arg D \triangle$ selBL::StoargD; derived from RJW008	This study
S. islandicus \triangle leuS2	\triangle argD \triangle leuS2: $:$ StoargD; derived from RJW008	This study
S. islandicus \triangle thrS2	$\triangle \arg D \triangle$ thrS2::StoargD; derived from RJW008	This study
Plasmids		
$\mathrm{pMOD}^{\text {TM }}-2$ <MCS>	Transposon construction vector	Epicentre, USA
pT-SsoargD	$\mathrm{pMOD}^{\mathrm{TM}}-2$ <MCS> carrying an $\arg D$ expression cassette derived from S. solfataricus P2	This study
pSeSd	Sulfolobus-E. coli shuttle vector	106
pSeSd-SsoargD	pSeSd carrying an $\arg D$ expression cassette derived from S. solfataricus P2	This study
pSeSd-StoargD	pSeSd carrying an $\arg D$ expression cassette derived from S. tokodaii	105
pRJW8	pUC19 carrying a triple marker gene cassette pyrEF-lacS$\arg D$ derived from S. solfataricus P 2 ; cloning vector	81
pMID-slaA	pRJW8 carrying Up-arm and Dn-arm of slaA and a partial region of slaA (Tg-arm); slaA knockout plasmid	This study
pMID-slaB	pRJW8 carrying Up-arm and Dn-arm of slaA and a partial region of slaB (Tg-arm); slaB knockout plasmid	This study
pMID-slaAB	pRJW8 carrying Up-arm of slaA, Dn-arm of slaB, and a partial region of slaB (Tg-arm); slaAB knockout plasmid	This study

(Wt) and mutant strains using two different primer sets

Gene name	Gene length (bp)	Deletion region (bp)	Replace region (bp)	Flanking primers Amplicon size (bp)		Internal primers Amplicon size (bp)	
				Wt	Mutant	Wt	Mutant
dpoB2	1668	1276	740	1836	1300	990	0
dpob3	2292	1858	740	2395	1277	868	0
dpo4	1059	897	740	1168	1011	547	0
pbpl	294	189	740	554	1105	155	0
topR1	3720	3520	740	3996	1216	777	0
topR2	3501	3250	740	3788	1278	638	0
slaA ${ }^{\text {\# }}$	3690	3636	6	5870	2240	740	0
slab ${ }^{\text {\# }}$	1194	1173	6	3193	2026	540	0
slaAB\#	N.A ${ }^{\text {s }}$	4865	6	6973	2114	2014	0
M164_1049	1803	1761	740	2109	1046	1159	0
udg4	651	466	740	897	1171	312	0
udg5	669	613	740	847	974	327	0
endoIII	702	532	740	778	986	375	0
endoV	597	481	740	743	1002	336	0
ogt	456	413	740	643	970	397	0
ogg2	624	467	740	697	970	277	0
$n r d B$	927	873	740	1116	983	560	0
sir2	744	587	740	830	983	352	0
pat	483	422	740	647	965	251	0
alba2	270	228	740	477	989	181	0
sul7d1	195	195	740	370	915	N.D*	N.D*
sul7d2	195	194	740	457	1003	N.D*	N.D*
M164_0809	2001	1810	740	2319	1249	1012	0
M164_2020	2628	2449	740	2827	1118	965	0
M164_2103	2226	1887	740	2262	1115	769	0
$\operatorname{seg} A$	663	594	740	865	1011	383	0
seg B	330	253	740	554	1041	201	0
cdvB1	762	490	740	755	1005	380	0
$t f b 3$	513	431	740	895	1204	250	0
hjm	2148	2009	740	2354	1085	780	0
xer	876	842	740	1017	915	598	0
endoMS	732	635	740	934	1039	502	0
cdvB3	507	436	740	843	1147	301	0
tfsI	336	276	740	694	1158	254	0
$t f s 3$	273	215	740	546	1071	185	0
$t f s 4$	228	180	740	610	1170	108	0
tip49	1359	1227	740	1771	1284	569	0
rpol3	315	180	740	615	1175	164	0
rpo8	399	310	740	727	1157	266	0
selBL	906	846	740	1026	920	553	0
leuS2	2805	2507	740	2902	1135	1166	0
thrS2	1161	1018	740	1554	1276	680	0
alaX1	711	621	740	846	965	350	0
alaX2	453	370	740	811	1181	327	0

\# Deletions of slaA, slaB, and slaAB were achieved via a markerless in-frame deletion approach.
N.A ${ }^{\$ \text { : Not applied. }}$
N.D*: Not determined.

Supplementary references

1 Sarmiento, F., Mrazek, J. \& Whitman, W. B. Genome-scale analysis of gene function in the hydrogenotrophic methanogenic archaeon Methanococcus maripaludis. Proc Natl Acad Sci U S A 110, 4726-4731, doi:10.1073/pnas. 1220225110 (2013).
2 Pan, M., Santangelo, T. J., Li, Z., Reeve, J. N. \& Kelman, Z. Thermococcus kodakarensis encodes three MCM homologs but only one is essential. Nucleic Acids Res 39, 9671-9680, doi:10.1093/nar/gkr624 (2011).
3 Ishino, S. et al. Biochemical and genetical analyses of the three mcm genes from the hyperthermophilic archaeon, Thermococcus kodakarensis. Genes Cells 16, 11761189, doi:10.1111/j.1365-2443.2011.01562.x (2011).
4 Liu, W., Pucci, B., Rossi, M., Pisani, F. M. \& Ladenstein, R. Structural analysis of the Sulfolobus solfataricus MCM protein N-terminal domain. Nucleic Acids Res 36, 3235-3243, doi:10.1093/nar/gkn183 (2008).
5 Berquist, B. R., DasSarma, P. \& DasSarma, S. Essential and non-essential DNA replication genes in the model halophilic Archaeon, Halobacterium sp. NRC-1. BMC Genet 8, 31, doi:10.1186/1471-2156-8-31 (2007).
6 Xu, Y. et al. Archaeal orthologs of Cdc45 and GINS form a stable complex that stimulates the helicase activity of MCM. Proc Natl Acad Sci U S A 113, 1339013395, doi:10.1073/pnas. 1613825113 (2016).
7 Burkhart, B. W. et al. The GAN Exonuclease or the Flap Endonuclease Fen 1 and RNase HII Are Necessary for Viability of Thermococcus kodakarensis. J Bacteriol 199, doi:10.1128/JB.00141-17 (2017).
8 Nagata, M. et al. The Cdc45/RecJ-like protein forms a complex with GINS and MCM, and is important for DNA replication in Thermococcus kodakarensis. Nucleic Acids Res 45, 10693-10705, doi:10.1093/nar/gkx740 (2017).
9 Dieckman, L. M., Freudenthal, B. D. \& Washington, M. T. PCNA structure and function: insights from structures of PCNA complexes and post-translationally modified PCNA. Subcell Biochem 62, 281-299, doi:10.1007/978-94-007-4572-8_15 (2012).

10 Moldovan, G. L., Pfander, B. \& Jentsch, S. PCNA, the maestro of the replication fork. Cell 129, 665-679, doi:10.1016/j.cell.2007.05.003 (2007).
11 Chia, N., Cann, I. \& Olsen, G. J. Evolution of DNA replication protein complexes in eukaryotes and Archaea. PLoS One 5, e10866, doi:10.1371/journal.pone. 0010866 (2010).

12 Kuba, Y. et al. Comparative analyses of the two proliferating cell nuclear antigens from the hyperthermophilic archaeon, Thermococcus kodakarensis. Genes Cells 17, 923-937, doi:10.1111/gtc. 12007 (2012).
13 Zhang, C. et al. Revealing the essentiality of multiple archaeal pcna genes using a mutant propagation assay based on an improved knockout method. Microbiology 156, 3386-3397, doi:10.1099/mic.0.042523-0 (2010).
14 Dionne, I., Nookala, R. K., Jackson, S. P., Doherty, A. J. \& Bell, S. D. A heterotrimeric PCNA in the hyperthermophilic archaeon Sulfolobus solfataricus. Mol Cell 11, 275-282 (2003).
15 Zuo, Z., Rodgers, C. J., Mikheikin, A. L. \& Trakselis, M. A. Characterization of a functional DnaG-type primase in archaea: implications for a dual-primase system. J Mol Biol 397, 664-676, doi:10.1016/j.jmb.2010.01.057 (2010).
16 Le Breton, M. et al. The heterodimeric primase from the euryarchaeon Pyrococcus abyssi: a multifunctional enzyme for initiation and repair? J Mol Biol 374, 11721185, doi:10.1016/j.jmb.2007.10.015 (2007).
17 Liu, B. et al. A primase subunit essential for efficient primer synthesis by an archaeal eukaryotic-type primase. Nat Commun 6, 7300, doi:10.1038/ncomms8300 (2015).

18 Lai, X., Shao, H., Hao, F. \& Huang, L. Biochemical characterization of an ATPdependent DNA ligase from the hyperthermophilic crenarchaeon Sulfolobus shibatae. Extremophiles 6, 469-477, doi:10.1007/s00792-002-0284-5 (2002).
19 Zhan, K. \& He, Z. G. Characterization of a new RNase HII and its essential amino acid residues in the archaeon Sulfolobus tokodaii reveals a regulatory C-terminus. Biochemistry (Mosc) 75, 930-937 (2010).
20 Choi, J. Y. et al. Roles of the four DNA polymerases of the crenarchaeon Sulfolobus solfataricus and accessory proteins in DNA replication. J Biol Chem 286, 3118031193, doi:10.1074/jbc.M111.258038 (2011).
21 Taylor, K. A., Deatherage, J. F. \& Amos, L. A. Structure of the S-Layer of Sulfolobus-Acidocaldarius. Nature 299, 840-842, doi:DOI 10.1038/299840a0 (1982).
22 Edgell, D. R., Klenk, H. P. \& Doolittle, W. F. Gene duplications in evolution of archaeal family B DNA polymerases. J Bacteriol 179, 2632-2640 (1997).
23 Edgell, D. R., Malik, S. B. \& Doolittle, W. F. Evidence of independent gene duplications during the evolution of archaeal and eukaryotic family B DNA polymerases. Mol Biol Evol 15, 1207-1217, doi:10.1093/oxfordjournals.molbev.a026028 (1998).
24 Yan, J. et al. Identification and characterization of a heterotrimeric archaeal DNA polymerase holoenzyme. Nat Commun 8, 15075, doi:10.1038/ncomms 15075 (2017). Abby, S. S. et al. Candidatus Nitrosocaldus cavascurensis, an Ammonia Oxidizing, Extremely Thermophilic Archaeon with a Highly Mobile Genome. Front Microbiol 9, 28, doi:10.3389/fmicb. 2018.00028 (2018).
26 Daebeler, A. et al. Cultivation and Genomic Analysis of "Candidatus Nitrosocaldus islandicus," an Obligately Thermophilic, Ammonia-Oxidizing Thaumarchaeon from a Hot Spring Biofilm in Graendalur Valley, Iceland. Front Microbiol 9, 193, doi:10.3389/fmicb. 2018.00193 (2018).
27 Cubonova, L. et al. Archaeal DNA polymerase D but not DNA polymerase B is required for genome replication in Thermococcus kodakarensis. J Bacteriol 195, 2322-2328, doi:10.1128/JB.02037-12 (2013).
28 Adam, P. S., Borrel, G., Brochier-Armanet, C. \& Gribaldo, S. The growing tree of Archaea: new perspectives on their diversity, evolution and ecology. ISME J 11, 2407-2425, doi:10.1038/ismej.2017.122 (2017).
29 Guo, L. et al. Biochemical and structural characterization of Cren7, a novel chromatin protein conserved among Crenarchaea. Nucleic Acids Res 36, 1129-1137, doi:10.1093/nar/gkm1128 (2008).
30 Ishino, S. et al. Identification of a mismatch-specific endonuclease in hyperthermophilic Archaea. Nucleic Acids Res 44, 2977-2986, doi:10.1093/nar/gkw153 (2016).
31 White, M. F. \& Allers, T. DNA Repair in the Archaea - an emerging picture. FEMS Microbiol Rev, doi:10.1093/femsre/fuy020 (2018).
32 Castaneda-Garcia, A. et al. A non-canonical mismatch repair pathway in prokaryotes. Nat Commun 8, 14246, doi:10.1038/ncomms 14246 (2017).
33 Ishino, S. et al. Activation of the mismatch-specific endonuclease EndoMS/NucS by the replication clamp is required for high fidelity DNA replication. Nucleic Acids Res, doi:10.1093/nar/gky460 (2018).
34 Zhang, C. et al. Genetic manipulation in Sulfolobus islandicus and functional analysis of DNA repair genes. Biochem Soc Trans 41, 405-410, doi:10.1042/BST20120285 (2013).

35 Fujikane, R., Ishino, S., Ishino, Y. \& Forterre, P. Genetic analysis of DNA repair in the hyperthermophilic archaeon, Thermococcus kodakaraensis. Genes Genet Syst 85, 243-257 (2010).
36 Woods, W. G. \& Dyall-Smith, M. L. Construction and analysis of a recombinationdeficient (radA) mutant of Haloferax volcanii. Mol Microbiol 23, 791-797 (1997).

37 Hawkins, M., Malla, S., Blythe, M. J., Nieduszynski, C. A. \& Allers, T. Accelerated growth in the absence of DNA replication origins. Nature 503, 544-547, doi:10.1038/nature 12650 (2013).
38 Delmas, S., Duggin, I. G. \& Allers, T. DNA damage induces nucleoid compaction via the Mre11-Rad50 complex in the archaeon Haloferax volcanii. Mol Microbiol 87, 168-179, doi:10.1111/mmi. 12091 (2013).
39 Kish, A. \& DiRuggiero, J. Rad50 is not essential for the Mre11-dependent repair of DNA double-strand breaks in Halobacterium sp. strain NRC-1. J Bacteriol 190, 5210-5216, doi:10.1128/JB.00292-08 (2008).
40 Delmas, S., Shunburne, L., Ngo, H. P. \& Allers, T. Mre11-Rad50 promotes rapid repair of DNA damage in the polyploid archaeon Haloferax volcanii by restraining homologous recombination. PLoS Genet 5, e1000552, doi:10.1371/journal.pgen. 1000552 (2009).
41 Grogan, D. W. Understanding DNA Repair in Hyperthermophilic Archaea: Persistent Gaps and Other Reasons to Focus on the Fork. Archaea 2015, 942605, doi:10.1155/2015/942605 (2015).
42 Korkhin, Y. et al. Evolution of complex RNA polymerases: the complete archaeal RNA polymerase structure. PLoS Biol 7, e1000102, doi:10.1371/journal.pbio. 1000102 (2009).
43 Koonin, E. V., Makarova, K. S. \& Elkins, J. G. Orthologs of the small RPB8 subunit of the eukaryotic RNA polymerases are conserved in hyperthermophilic Crenarchaeota and "Korarchaeota". Biol Direct 2, 38, doi:10.1186/1745-6150-2-38 (2007).

44 Wojtas, M. N., Mogni, M., Millet, O., Bell, S. D. \& Abrescia, N. G. Structural and functional analyses of the interaction of archaeal RNA polymerase with DNA. Nucleic Acids Res 40, 9941-9952, doi:10.1093/nar/gks692 (2012).
45 Iqbal, J. \& Qureshi, S. A. Selective depletion of Sulfolobus solfataricus transcription factor E under heat shock conditions. J Bacteriol 192, 2887-2891, doi:10.1128/JB.01534-09 (2010).
46 Rauch, B. Functional analysis of multiple general transcription factors in Sulfolobus acidocaldarius. PhD Thesis (2013).
47 Qureshi, S. A., Bell, S. D. \& Jackson, S. P. Factor requirements for transcription in the Archaeon Sulfolobus shibatae. EMBO J 16, 2927-2936, doi:10.1093/emboj/16.10.2927 (1997).
48 Lundgren, M. \& Bernander, R. Genome-wide transcription map of an archaeal cell cycle. Proc Natl Acad Sci U S A 104, 2939-2944, doi:10.1073/pnas. 0611333104 (2007).

49 Gotz, D. et al. Responses of hyperthermophilic crenarchaea to UV irradiation. Genome Biol 8, R220, doi:10.1186/gb-2007-8-10-r220 (2007).
50 Frols, S. et al. Response of the hyperthermophilic archaeon Sulfolobus solfataricus to UV damage. J Bacteriol 189, 8708-8718, doi:10.1128/JB.01016-07 (2007).
51 Feng, X., Sun, M., Han, W., Liang, Y. X. \& She, Q. A transcriptional factor B paralog functions as an activator to DNA damage-responsive expression in archaea. Nucleic Acids Res, doi:10.1093/nar/gky236 (2018).
52 Schult, F. et al. Effect of UV irradiation on Sulfolobus acidocaldarius and involvement of the general transcription factor TFB3 in the early UV response. Nucleic Acids Res, doi:10.1093/nar/gky527 (2018).
53 Blombach, F. et al. Archaeal TFEalpha/beta is a hybrid of TFIIE and the RNA polymerase III subcomplex hRPC62/39. Elife 4, e08378, doi:10.7554/eLife. 08378 (2015).

54 Daniels, J. P., Kelly, S., Wickstead, B. \& Gull, K. Identification of a crenarchaeal orthologue of Elf1: implications for chromatin and transcription in Archaea. Biol Direct 4, 24, doi:10.1186/1745-6150-4-24 (2009).

55 Fouqueau, T. et al. The transcript cleavage factor paralogue TFS4 is a potent RNA polymerase inhibitor. Nat Commun 8, 1914, doi:10.1038/s41467-017-02081-3 (2017).

56 Fischer, S. et al. The archaeal Lsm protein binds to small RNAs. J Biol Chem 285, 34429-34438, doi:10.1074/jbc.M110.118950 (2010).
57 Martens, B. et al. The Heptameric SmAP1 and SmAP2 Proteins of the Crenarchaeon Sulfolobus Solfataricus Bind to Common and Distinct RNA Targets. Life (Basel) 5, 1264-1281, doi:10.3390/life5021264 (2015).
58 Martens, B. et al. The SmAP $1 / 2$ proteins of the crenarchaeon Sulfolobus solfataricus interact with the exosome and stimulate A-rich tailing of transcripts. Nucleic Acids Res 45, 7938-7949, doi:10.1093/nar/gkx437 (2017).
59 Gangwani, L., Mikrut, M., Theroux, S., Sharma, M. \& Davis, R. J. Spinal muscular atrophy disrupts the interaction of ZPR1 with the SMN protein. Nat Cell Biol 3, 376383, doi:10.1038/35070059 (2001).
60 Gangwani, L., Flavell, R. A. \& Davis, R. J. ZPR1 is essential for survival and is required for localization of the survival motor neurons (SMN) protein to Cajal bodies. Mol Cell Biol 25, 2744-2756, doi:10.1128/MCB.25.7.2744-2756.2005 (2005).
61 Gangwani, L. Deficiency of the zinc finger protein ZPR1 causes defects in transcription and cell cycle progression. J Biol Chem 281, 40330-40340, doi:10.1074/jbc.M608165200 (2006).
62 Ahel, I., Korencic, D., Ibba, M. \& Soll, D. Trans-editing of mischarged tRNAs. Proc Natl Acad Sci U S A 100, 15422-15427, doi:10.1073/pnas. 2136934100 (2003).
63 Tumbula, D. et al. Archaeal aminoacyl-tRNA synthesis: diversity replaces dogma. Genetics 152, 1269-1276 (1999).
64 Tumbula, D. L., Becker, H. D., Chang, W. Z. \& Soll, D. Domain-specific recruitment of amide amino acids for protein synthesis. Nature 407, 106-110, doi:10.1038/35024120 (2000).
65 Sheppard, K. \& Soll, D. On the evolution of the tRNA-dependent amidotransferases, GatCAB and GatDE. J Mol Biol 377, 831-844, doi:10.1016/j.jmb.2008.01.016 (2008).

66 Atkinson, G. C., Hauryliuk, V. \& Tenson, T. An ancient family of SelB elongation factor-like proteins with a broad but disjunct distribution across archaea. BMC Evol Biol 11, 22, doi:10.1186/1471-2148-11-22 (2011).
67 Lindas, A. C., Karlsson, E. A., Lindgren, M. T., Ettema, T. J. \& Bernander, R. A unique cell division machinery in the Archaea. Proc Natl Acad Sci U S A 105, 1894218946, doi:10.1073/pnas. 0809467105 (2008).
68 Samson, R. Y., Obita, T., Freund, S. M., Williams, R. L. \& Bell, S. D. A role for the ESCRT system in cell division in archaea. Science 322, 1710-1713, doi:10.1126/science. 1165322 (2008).
69 Yang, N. \& Driessen, A. J. Deletion of cdvB paralogous genes of Sulfolobus acidocaldarius impairs cell division. Extremophiles 18, 331-339, doi:10.1007/s00792-013-0618-5 (2014).
70 Liu, J. et al. Functional assignment of multiple ESCRT-III homologs in cell division and budding in Sulfolobus islandicus. Mol Microbiol 105, 540-553, doi:10.1111/mmi. 13716 (2017).
71 Zhang, C. \& Whitaker, R. J. Microhomology-Mediated High-Throughput Gene Inactivation Strategy for the Hyperthermophilic Crenarchaeon Sulfolobus islandicus. Appl Environ Microbiol 84, doi:10.1128/AEM.02167-17 (2018).
72 Kalliomaa-Sanford, A. K. et al. Chromosome segregation in Archaea mediated by a hybrid DNA partition machine. Proc Natl Acad Sci U S A 109, 3754-3759, doi:10.1073/pnas. 1113384109 (2012).
73 Snijders, A. P. et al. Reconstruction of central carbon metabolism in Sulfolobus solfataricus using a two-dimensional gel electrophoresis map, stable isotope labelling and DNA microarray analysis. Proteomics 6, 1518-1529,
doi:10.1002/pmic. 200402070 (2006).

74 Ulas, T., Riemer, S. A., Zaparty, M., Siebers, B. \& Schomburg, D. Genome-scale reconstruction and analysis of the metabolic network in the hyperthermophilic archaeon Sulfolobus solfataricus. PLoS One 7, e43401, doi:10.1371/journal.pone. 0043401 (2012).
75 Yan, Z., Maruyama, A., Arakawa, T., Fushinobu, S. \& Wakagi, T. Crystal structures of archaeal 2-oxoacid:ferredoxin oxidoreductases from Sulfolobus tokodaii. Sci Rep 6, 33061, doi:10.1038/srep33061 (2016).
76 Samson, R. Y. et al. Specificity and function of archaeal DNA replication initiator proteins. Cell Rep 3, 485-496, doi:10.1016/j.celrep.2013.01.002 (2013).
77 Liang, P. J. et al. Knockouts of RecA-like proteins RadC1 and RadC2 have distinct responses to DNA damage agents in Sulfolobus islandicus. J Genet Genomics 40, 533-542, doi:10.1016/j.jgg.2013.05.004 (2013).
78 Huang, Q. et al. Genetic analysis of the Holliday junction resolvases Hje and Hjc in Sulfolobus islandicus. Extremophiles 19, 505-514, doi:10.1007/s00792-015-0734-5 (2015).

79 Chu, Y. et al. aKMT Catalyzes Extensive Protein Lysine Methylation in the Hyperthermophilic Archaeon Sulfolobus islandicus but is Dispensable for the Growth of the Organism. Mol Cell Proteomics 15, 2908-2923, doi:10.1074/mcp.M115.057778 (2016).
$80 \mathrm{Li}, \mathrm{X}$. et al. Deletion of the topoisomerase III gene in the hyperthermophilic archaeon Sulfolobus islandicus results in slow growth and defects in cell cycle control. J Genet Genomics 38, 253-259, doi:10.1016/j.jgg.2011.05.001 (2011).
81 Zhang, C., Cooper, T. E., Krause, D. J. \& Whitaker, R. J. Augmenting the genetic toolbox for Sulfolobus islandicus with a stringent positive selectable marker for agmatine prototrophy. Appl Environ Microbiol 79, 5539-5549, doi:10.1128/AEM.01608-13 (2013).
82 Zhang, C. \& Whitaker, R. J. A broadly applicable gene knockout system for the thermoacidophilic archaeon Sulfolobus islandicus based on simvastatin selection. Microbiology 158, 1513-1522, doi:10.1099/mic.0.058289-0 (2012).
83 Zhang, C., She, Q., Bi, H. \& Whitaker, R. J. The apt/6-Methylpurine Counterselection System and Its Applications in Genetic Studies of the
Hyperthermophilic Archaeon Sulfolobus islandicus. Appl Environ Microbiol 82, 3070-3081, doi:10.1128/AEM.00455-16 (2016).
84 Bautista, M. A., Zhang, C. \& Whitaker, R. J. Virus-induced dormancy in the archaeon Sulfolobus islandicus. MBio 6, doi:10.1128/mBio.02565-14 (2015).
85 Peng, W. et al. Genetic determinants of PAM-dependent DNA targeting and precrRNA processing in Sulfolobus islandicus. RNA Biol 10, 738-748, doi:10.4161/rna. 23798 (2013).
86 Li, Y. et al. Harnessing Type I and Type III CRISPR-Cas systems for genome editing. Nucleic Acids Res 44, e34, doi:10.1093/nar/gkv1044 (2016).
87 Liu, T. et al. Transcriptional regulator-mediated activation of adaptation genes triggers CRISPR de novo spacer acquisition. Nucleic Acids Res 43, 1044-1055, doi:10.1093/nar/gku1383 (2015).
88 He, F., Vestergaard, G., Peng, W., She, Q. \& Peng, X. CRISPR-Cas type I-A Cascade complex couples viral infection surveillance to host transcriptional regulation in the dependence of Csa3b. Nucleic Acids Res 45, 1902-1913, doi:10.1093/nar/gkw1265 (2017).

89 Deng, L., Kenchappa, C. S., Peng, X., She, Q. \& Garrett, R. A. Modulation of CRISPR locus transcription by the repeat-binding protein Cbp1 in Sulfolobus. Nucleic Acids Res 40, 2470-2480, doi:10.1093/nar/gkr1111 (2012).
90 Zhai, B. et al. Structure and Function of a Novel ATPase that Interacts with Holliday Junction Resolvase Hjc and Promotes Branch Migration. J Mol Biol 429, 1009-1029, doi:10.1016/j.jmb.2017.02.016 (2017).

91 Song, X., Huang, Q., Ni, J., Yu, Y. \& Shen, Y. Knockout and functional analysis of two DExD/H-box family helicase genes in Sulfolobus islandicus REY15A. Extremophiles 20, 537-546, doi:10.1007/s00792-016-0847-5 (2016).
92 Puigbo, P., Wolf, Y. I. \& Koonin, E. V. Search for a 'Tree of Life' in the thicket of the phylogenetic forest. J Biol 8, 59, doi:10.1186/jbiol159 (2009).
93 Harris, J. K., Kelley, S. T., Spiegelman, G. B. \& Pace, N. R. The genetic core of the universal ancestor. Genome Res 13, 407-412, doi:10.1101/gr. 652803 (2003).
94 Gil, R. et al. The genome sequence of Blochmannia floridanus: comparative analysis of reduced genomes. Proc Natl Acad Sci U S A 100, 9388-9393, doi:10.1073/pnas. 1533499100 (2003).
95 Weiss, M. C. et al. The physiology and habitat of the last universal common ancestor. Nat Microbiol 1, 16116, doi:10.1038/nmicrobiol.2016.116 (2016).
96 Wolf, Y. I., Makarova, K. S., Yutin, N. \& Koonin, E. V. Updated clusters of orthologous genes for Archaea: a complex ancestor of the Archaea and the byways of horizontal gene transfer. Biol Direct 7, 46, doi:10.1186/1745-6150-7-46 (2012).
97 Guy, L. \& Ettema, T. J. The archaeal 'TACK' superphylum and the origin of eukaryotes. Trends Microbiol 19, 580-587, doi:10.1016/j.tim.2011.09.002 (2011).
98 Raymann, K., Brochier-Armanet, C. \& Gribaldo, S. The two-domain tree of life is linked to a new root for the Archaea. Proc Natl Acad Sci U S A 112, 6670-6675, doi:10.1073/pnas. 1420858112 (2015).
99 Eme, L., Spang, A., Lombard, J., Stairs, C. W. \& Ettema, T. J. G. Archaea and the origin of eukaryotes. Nat Rev Microbiol 15, 711-723, doi:10.1038/nrmicro.2017.133 (2017).

100 Makarova, K. S., Yutin, N., Bell, S. D. \& Koonin, E. V. Evolution of diverse cell division and vesicle formation systems in Archaea. Nat Rev Microbiol 8, 731-741, doi:10.1038/nrmicro2406 (2010).
101 Yutin, N., Puigbo, P., Koonin, E. V. \& Wolf, Y. I. Phylogenomics of prokaryotic ribosomal proteins. PLoS One 7, e36972, doi:10.1371/journal.pone. 0036972 (2012).
102 Mirkin, B. G., Fenner, T. I., Galperin, M. Y. \& Koonin, E. V. Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes. BMC Evol Biol 3, 2 (2003).
103 Makarova, K. S., Wolf, Y. I. \& Koonin, E. V. Archaeal Clusters of Orthologous Genes (arCOGs): An Update and Application for Analysis of Shared Features between Thermococcales, Methanococcales, and Methanobacteriales. Life (Basel) 5, 818-840, doi:10.3390/life5010818 (2015).
104 Reno, M. L., Held, N. L., Fields, C. J., Burke, P. V. \& Whitaker, R. J. Biogeography of the Sulfolobus islandicus pan-genome. Proc Natl Acad Sci U S A 106, 8605-8610, doi:10.1073/pnas. 0808945106 (2009).
105 Zhang, C. \& Whitaker, R. J. Microhomology Mediated High-throughput Gene Inactivation Strategy for Hyperthermophilic Crenarchaeon Sulfolobus islandicus. Appl Environ Microbiol, doi:10.1128/AEM.02167-17 (2017).
106 Peng, N. et al. A synthetic arabinose-inducible promoter confers high levels of recombinant protein expression in hyperthermophilic archaeon Sulfolobus islandicus. Appl Environ Microbiol 78, 5630-5637, doi:10.1128/AEM.00855-12 (2012).
107 Peyfoon, E. et al. The S-layer glycoprotein of the crenarchaeote Sulfolobus
acidocaldarius is glycosylated at multiple sites with chitobiose-linked N glycans. Archaea 2010, doi:10.1155/2010/754101 (2010).
108 Crooks, G. E., Hon, G., Chandonia, J. M. \& Brenner, S. E. WebLogo: a sequence logo generator. Genome Res 14, 1188-1190, doi:10.1101/gr. 849004 (2004).

Supplementary Figures and Legends

a
(i)
$\triangle \arg D(\mathrm{Wt})$

$\triangle t o p R 1$
(\triangle arg $D \triangle$ top $R 1:: S t o a r g D)$

(ii)
$\triangle \arg D(\mathrm{Wt})$
\triangle topR2
$(\triangle \arg D \triangle$ topR2::Stoarg $D)$

C

Supplementary Figure 1: Confirmation of genotypes of reverse gyrase disruption mutants. a, Genomic context of topR1 and $t o p R 2$ in the genetic host (Wt) and mutant strains. b, PCR verification of $\triangle t o p R 1$ mutant strain. \mathbf{c}, PCR verification of \triangle top 2 mutant strain. L indicates 2-Log DNA Ladder (NEB, USA) and sizes of DNA bands are labelled.

Supplementary Figure 2: Disruption of topR2, udg4, and rpo8 reduced cell viability. The S. islandicus M. 16.4 (agmatine prototrophy), $\triangle t o p R 2(\triangle \arg D \triangle t o p R 2:: S t o a r g D), \Delta u d g 4$ ($\triangle \arg D \triangle u d g 4:: S t o a r g D)$, and $\triangle r p o 8$ ($\triangle \arg D \triangle r p o 8::$ StoargD) strains were grown in DY liquid medium at $76^{\circ} \mathrm{C}$. Cell cultures at the mid-log phase were normalized to $\mathrm{OD}_{600}=0.5$, and then serially diluted ten fold with $1 \times$ DY. Ten microliter of diluted cells were spotted on DY plates and then incubated at $76^{\circ} \mathrm{C}$ for 12 days. The resulting spots are imaged using an EPSON scanner.

$\square 35-40$ bp microhomology (upstream) $35-40$ bp microhomology (downstream) goi: gene of interest
StoargD: arginine decarboxylase expression cassette derived from S. tokodaii
b

$L \frac{\operatorname{seg} B}{\triangle \mathrm{wt} \triangle \mathrm{wt}}$

$L \frac{p a t}{\triangle \mathrm{wt} \triangle \mathrm{wt}}$

$$
\mathrm{L} \frac{\operatorname{sir} 2}{\triangle \mathrm{wt} \triangle \mathrm{wt}}
$$

$\mathrm{L} \frac{c d v B 1}{\triangle \quad \mathrm{wt} \triangle \mathrm{wt}}$

$$
\mathrm{L} \quad
$$

b (Continued)

Supplementary Figure 3: Verification of selected non-essential genes via a microhomology-mediated gene inactivation approach (MMGI) in S. islandicus ${ }^{\mathbf{1 0 5}}$. a, Schematic illustration of the MMGI. The gene disruption cassette, consisting of the StoargD marker flanked by $35-40$ bp of microhomology that corresponded to flanking sequences of the targeted region, was transformed into an ArgD strain, yielding ArgD ${ }^{+}$colonies via a double-crossover HR event. b, Confirmation of S. islandicus gene disruptions (Related to Supplementary Table 3 and Dataset 10) by PCR analyses of target gene locus. A flanking primer set (-FP-F/R) annealing to upstream and downstream sequences of the HR regions of goi, and an internal primer set (-IP-F/R) specifically binding to the coding region of goi, were used to confirm the gene disruptions. L indicates the GeneRuler Express DNA Ladder (Thermo Fisher, USA) and the marker sizes are labelled. The wt and \triangle denotes the parental strain and mutant strain respectively. The expected sizes of amplicons are shown in Supplementary Table 8.

buffer A, and transfer into a microcentrifuge tube. Incubate at $45{ }^{\circ} \mathrm{C}$ for 20 mins,
5. Pellet cells at $13,000 \mathrm{rpm} \times 10$ mins (refer to pre-S-layer extraction),
6. Transfer the top layer of pellets into a microcentrifuge tube (refer to post-S-layer extraction),
7. Repeat 4-7 until pure S-layer was obtained (used for TEM).

C

Supplementary Figure 4: Extraction and TEM analysis of S-layer from the wild type (RWJ004) and S-layer gene knockout strains. a, A flowchart illustrating the S-layer extraction procedure, as described previously with minor changes ${ }^{107}$. b, Extraction of S-layer from the wild type and S-layer gene knockout strains. A clear whitish layer can be observed and separated from the pellet in the wild type and $\Delta s l a B$ mutant cells, whereas no whitish layer was observed in $\Delta s l a A$ and $\Delta s l a A B$ mutant cells. The whitish layer (S-layer) extracted from the wild type was more abundant than that from the $\Delta s l a B$ mutant cells. These experiments were biologically repeated 3 times and the same phenomenon was observed. c, TEM analysis of the negatively stained extracted S-layer (10 μ l of MilliQ water-dissolved S-layer) from the wild type and $\Delta s l a B$ mutant cells. Scale bars, $1 \mu \mathrm{~m}$.
a
$\Delta s l a A B$ (parental strain)

$\Delta s l a A B \Delta M 164 _1049$

b

Supplementary Figure 5: Confirmation of the $\mathbf{\Delta s l a A B A M 1 6 4} 1049$ mutant genotype. a, Genomic context of M164_1049 in the parental and mutant strains. M164_1049 was replaced with the selectable marker StoargD in the genetic background of the $\Delta s l a A B$ mutant via homologous recombination. \mathbf{b}, PCR verification of the $\Delta s / a A B \Delta M 164 _1049$ mutant strain. The M164_1049 and slaAB loci in the $\Delta s / a A B \Delta M 164 _1049$ mutant strain were examined using three primer sets, the relative positions of which are shown with small arrows in a. The S. islandicus strain RJW004, a genetic host to generate the $\Delta s l a A B$ deletion mutant, is used as a control (lane 8) in PCR analysis when checking the slaAB mutant allele in the $\Delta s l a A B \Delta M 164 _1049$ mutant strain. L indicates the 2-Log DNA Ladder (NEB, USA), and the marker size corresponding to each band is labelled. Expected sizes of amplicons can be found in Supplementary Table 8.

M164_0131

M164_0217

M164_0268

M164_1060

M164_1728

M164_2076

Locus_tag	Function	$\boldsymbol{l o g}_{2}$ FC	El	Essential?
M164_0130	Uncharacterized membrane protein	-1.50	8	No
M164_0134	ATPase involved in chromosome partitioning, ParA family	-2.84	9	No
M164_0216	Transcriptional regulator, contains N-terminal RHH domain	1.42	7	No
M164_0218	Zn-dependent hydrolase of the beta-lactamase fold	-2.08	10	No
M164_0267	Phosphate/sulphate permease	0.13	26	No
M164_0269	Replicative superfamily II helicase	-0.89	8	No
M164_1059	HEPN domain containing protein	-1.17	5	No
M164_1061	HAD superfamily hydrolase	1.86	19	No
M164_1727	tRNA(1-methyladenosine) methyltransferase	1.33	20	No
M164_1729	Sugar-specific transcriptional regulator TrmB	-9.84	0	Yes
M164_2075	Transcriptional regulator, contains HTH domain	-8.95	0	Yes
M164_2077	Mg-dependent DNase	-0.13	10	No

Supplementary Figure 6: Predicted essential antitoxin genes. a, Genomic context of the essential antitoxin genes in S. islandicus M.16.4. b, Essentiality/non-essentiality of genes adjacent to the essential antitoxin genes.

Supplementary Figure 7: Maximum parsimony tree for eggNOG presence/absence patterns. Bootstrap values are shown at nodes where they are greater than 50. Distance is shown in number of changes to the set of genes compared to S. islandicus M.16.4.

Supplementary Figure 8: Maximum parsimony tree for eggNOG presence/absence patterns, including early Asgardarchaeota genomes. Bootstrap values are shown at nodes where they are greater than 50. Distance is shown in number of changes to the set of genes compared to S. islandicus M.16.4.

Supplementary Figure 9: Nucleotide frequency near insertion sites shows weak sequence preference compared to random. Left, Nucleotide frequency of sequence 10 base-pairs upstream and 20 base-pairs downstream of all insertion sites included in essential gene calculations in logo (top) and line-graph (bottom) forms. Right, bits of sequence information in logo form according to WebLogo ${ }^{108}$ (top) and frequency relative to counts at an equal number of randomized locations in the genome (bottom).

Supplementary Figure 10: Confirmation of $d p o B 2, d p o B 3$, dpo4, and pbp1 disruption mutant genotypes. a, Genomic context of $d p o B 2, d p o B 3, d p o 4$, and $p b p 1$ in the genetic host (Wt) and mutant strains. \mathbf{b}, PCR verification of $\triangle d p o B 2, \triangle d p o B 3$, and $\triangle d p o 4$ mutant strains. c, PCR verification of the $\triangle p b p 1$ mutant strain. L indicates the GeneRuler Express DNA Ladder (Thermo Fisher, USA) and the marker sizes are labelled. Expected sizes of amplicons can be found in Supplementary Table 8.

