1	The essential genome of the crenarchaeal model Sulfolobus islandicus
2	
3	Changyi Zhang ^{1, 2#} , Alex P. R. Phillips ^{1, 2#} , Rebecca L. Wipfler ¹ , Gary J. Olsen ^{1, 2} and Rachel J.
4	Whitaker ^{1, 2*}
5	^{1.} Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign,
6	Urbana, Illinois, USA
7	^{2.} Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois,
8	USA
9	[#] C.Z. and A.P.R.P contributed equally to this work
10	*Correspondence: Rachel J. Whitaker. E-mail: <u>rwhitaker@life.illinois.edu</u>
$\begin{array}{c} 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 22\\ 23\\ 24\\ 25\\ 27\\ 28\\ 29\\ 30\\ 31\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 940\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\end{array}$	

47 48

Supplementary results and discussion

Here we provide additional descriptions and discussion of essential genes in several arCOG
functional categories from the perspective of gene function, and highlight a few non-essential
genes that possibly play critical roles in *Sulfolobus* species.

52

53 DNA replication, repair, and recombination

54 Tn-seq analysis allowed us to identify 23 essential genes involved in DNA replication, repair, 55 and recombination (arCOG functional category [L]) in S. islandicus, among which 14 genes 56 encode core components of archaeal DNA replication machinery. The MCM (mini-57 chromosome maintenance complex), one of the indispensable ancillary complexes during DNA 58 replication in Archaea and Eukaryotes, is the replicative helicase for DNA unwinding, 59 performing the function of DnaB in Bacteria. In contrast to the two hyperthermophilic 60 euryarchaea Methanococcus maripaludis and Thermococcus kodakarensis, which possess 61 multiple mcm genes with only one copy required¹⁻³, Sulfolobus species contain only one MCM, 62 forming a homohexameric architecture⁴. Given the indispensable roles of MCM for DNA 63 unwinding during DNA replication, the existence of the sole mcm gene in S. islandicus explains 64 why the inactivation (via transposon insertion or gene knockout strategy) of mcm is lethal. 65 Notably, the essentiality of the single mcm gene was also demonstrated in a halophilic archaeon, 66 Halobacterium sp. NRC-1⁵. Another two genes involved in the initiation of DNA replication 67 encode GINS homologs Gins23 and Gins15, both of which are essential in S. islandicus M.16.4. 68 Additionally, the archaeal ortholog of Cdc45, which was shown to form a stable complex with 69 GINS to stimulate MCM helicase activity in S. solfataricus⁶, was essential in our study. The 70 essentiality of gins, mcm, and cdc45 further supports a view demonstrating the formation of 71 CMG complex is required for DNA replication in *Sulfolobus*⁶. Intriguingly, recent genetic 72 studies in the hyperthermophilic eurvarchaeon T. kodakarensis revealed the Cdc45/RecJ-like 73 protein encoding gene gan was not essential for cell viability^{7,8}, indicating the function of CMG 74 complex presumably diverged in archaea.

75

76 PCNA (Proliferating cell nuclear antigen) belonging to the family of DNA sliding clamps is 77 structurally and functionally conserved^{9,10}. Unlike Euryarchaeota, which generally contain one 78 PCNA gene (with the exception of T. kodakarensis in which two PCNA homologs were found^{11,12}), Crenarchaeota possess three distinct PCNA subunits. All three subunits were 79 80 essential in S. islandicus M.16.4 inferred by Tn-seq data, consistent with a previous genetic 81 analysis in another S. islandicus strain Rey15A¹³. These results explain why three PCNA 82 subunits formed a heterotrimer rather than distinct homotrimers to act as the sliding clamp during DNA replication in other Sulfolobus species14. The two subunits of replication factor C 83

84 (RFC_s and RFC_L), acting as the loader of the DNA sliding clamp, are found in all three domains

- 85 and are essential in *S. islandicus* M.16.4 as well as the euryarchaeon *M. maripaludis*¹.
- 86

87 One of the unique features of Archaea is that they exclusively encode both bacterial-type 88 (DnaG) and eukaryotic-type primase, with the later type consisting of a small subunit (catalytic 89 subunit, PriS) and a large subunit (noncatalytic subunit, PriL). The function of DnaG and 90 heterodimer PriLS have been previously biochemically characterized in S. solfataricus^{15,16}. 91 Strikingly, a novel primase PriX was recently identified and shown to significantly promote the 92 primer synthesis in vitro by forming a heterotrimer with PriSL in S. solfataricus¹⁷. Here we 93 revealed dnaG in S. islandicus (M164 2048) was essential, in contrast to the non-essentiality 94 of *dnaG* in the euryarchaea *M. Maripaludis* and *Haloferax volcanii*^{1,16}. Tn-seq data showed 95 priS ($M164_{-}1162$) was essential whereas priL ($M164_{-}1568$) and priX ($M164_{-}1652$) were 96 classified as "unassigned". Moreover, we were unable to obtain knockouts for priL and priX 97 even if we prolonged the incubation of transformation plates for 20 days, indicating they are 98 required for cell survival in S. islandicus M.16.4. There are another two "unassigned" genes 99 related to DNA maturation: *lig*, encoding an ATP-dependent DNA ligase¹⁸, and *rnhII*, encoding 100 a ribonuclease HII that was shown in vitro to exhibit the cleavage activity of RNA in hybrid RNA/DNA substrates in S. tokodaii¹⁹. All attempts to delete lig or rnhII were unsuccessful, 101 102 confirming that they are required for the primer removal during the maturation of Okazaki 103 fragments in Sulfolobus DNA replication. Notably, this result argues against genetic studies 104 performed in the hyperthermophilic euryarchaeon T. kodakarensis in which the function of 105 RNase HII can be replaced by the Fen1 or GAN (GINS-associated nuclease)⁷.

106

107 Sulfolobus species encode three B-family DNA polymerases and one Y-family DNA 108 polymerase²⁰. However, only *dpoB1* (*M164_1573*) is essential whereas *dpoB2* (*M164_0814*), 109 dpoB3 (M164_2047), and dpo4 (M164_0255) are classified as non-essential via Tn-seq 110 analysis. To validate these results, direct gene disruptions were attempted by using the argD 111 marker cassette to replace the dpoB1, dpoB2, dpoB3, and dpo4 in the chromosome. 112 Consequently, individual disruption mutants of *dpoB2*, *dpoB3*, and *dpo4* could be successfully 113 obtained (Supplementary Fig. 10b); however, disruption of dpoB1 failed after repeated 114 attempts. These studies suggest DpoB1 is an authentic replicative DNA polymerase in vivo for 115 Sulfolobus, although in vitro studies showed DpoB2 and DpoB3 possessed very low DNA 116 polymerase and 3' to 5' exonuclease activities²¹, consistent with phylogenetic analyses 117 suggesting the B-family DNA polymerases evolved by gene duplication events in Crenarchaeota^{22,23}. S. islandicus M.16.4 encodes PolB1-binding proteins PBP1 (M164_1996; 118 119 arCOG functional category [S]) and PBP2 (M164_1545; arCOG functional category [K]), the

120 orthologues of which have been recently identified to form a heterotrimeric DNA polymerase 121 holoenzyme together with DpoB1 in a related species S. solfataricus²⁴. Both Tn-seq and gene 122 knockout analyses showed that *pbp2* was essential whereas *pbp1* was not (Supplementary Fig. 123 10c), indicating the formation of heterotrimeric DNA polymerase holoenzyme was not 124 necessary in vivo, at least for the maintenance of cell growth in S. islandicus. Remarkably, with 125 the exception of the two newly isolated thermophilic ammonia-oxidizing thaumarchaea 126 Candidatus Nitrosocaldus cavascurensis and Candidatus Nitrosocaldus islandicus^{25,26}, which 127 lack archaeal specific D-family DNA polymerase, both B- and D-family DNA polymerases are 128 present in all other members of Thaumarchaeota lineage as well as Euryarchaeota, 129 Korarchaeota, Aigarchaeota, and Nanoarchaeota lineages. Moreover, genetic studies in both T. 130 kodakarensis and M. maripaludis revealed Pol D was possibly the major DNA replicative 131 polymerase because dpoB was non-essential in $vivo^{1,27}$. While Crenarchaeota and Eukaryota 132 both use B-family polymerases to replicate their genomes, which can be interpreted as evidence 133 for their shared ancestry, a recent review of the archaeal tree of life suggested that loss of Pol 134 D instead occurred twice independently in the two lineages²⁸. Other essential genes in arCOG 135 functional category [L] included rpa (M164_0180), top6A (M164_1238), top6B (M164_1239), 136 and cren7 (M164 1232) encoding a highly conserved chromatin protein in Crenarchaeota²⁹. 137 The 5' flap endonuclease (M164 1965, FEN1) that strongly interacts with PCNA2¹⁴ is 138 essential, whereas in Euryarchaeota it was previously shown that *fen1* could be disrupted or 139 deleted 1,7 .

140

141 DNA damage repair in *Sulfolobus* species remained largely elusive and most of the predicted 142 candidates related to DNA repair are non-essential (Supplementary Table 3). In particular, the 143 canonical DNA mismatch repair pathway has not been found in Sulfolobus species so far. 144 Recently, Ishino et al. reported that a mismatch-specific endonuclease (EndoMS) in T. 145 kodakarensis could specifically cleave dsDNA substrates with mismatched bases 146 incorporated³⁰. The EndoMS was found to be present in some bacteria particularly in 147 Actinobacteria, and distributed in archaeal members belonging to the TACK superphylum, Euryarchaeota, and ASGARD phylum^{31,32}. Here we showed that the S. islandicus EndoMS 148 149 homolog (M164 0025; annotated as NucS), existing in all sequenced Sulfolobus species, was 150 non-essential by both Tn-seq and gene knockout experiments (Supplementary Fig. 3b). 151 Investigation of the spontaneous mutation rates and mutation spectra in wild-type and *endoMS* 152 mutant strains with a forward mutation assay will be required to identify whether the *Sulfolobus* 153 EndoMS homolog plays a functional role in the mutation avoidance, as recently reported in *Mycobacterium tuberculosis*³² and *Corynebacterium glutamicum*³³. The *udg4* (*M164_0085*), 154 155 encoding uracil-DNA glycosylase, was classified as "unassigned" by Tn-seq assay. We 156 speculate the *udg4* mutant colonies generated by the insertion of transposon were not 157 successfully captured on plates within 10 days of incubation, which was supported by the 158 observation of the *udg4* knockout mutant exhibiting a greatly reduced cell viability in 159 comparison to the wild type strain (Supplementary Fig. 2b). Four genes nurA (M164 0062), 160 rad50 (M164_0063), mre11 (M164_0064), and herA (M164_0065), relevant to double-strand 161 DNA break repair (DSB), were essential in S. islandicus M.16.4 as revealed by Tn-seq data, 162 consistent with previous genetic analyses in S. islandicus Rey15A and T. kodakarensis^{34,35}. The 163 gene that encodes RadA (M164 1897), the archaeal ortholog of RecA/Rad51 family 164 recombinase, was essential in our study. Genetic analysis of radA in S. islandicus Rey15A and 165 T. kodakarensis showed that mutation of this gene was lethal^{34,35}, whereas the H. volcanii strain 166 lacking radA was viable but defective in homologous recombination³⁶. More interestingly, it 167 has been shown recently that radA was required for the cell survival of H. volcanii that lacked 168 all four replication origins³⁷. In contrast to hyperthermophilic archaea, *radA*, *rad50*, and *mre11* 169 individual deletion mutants have been successfully generated in mesophilic archaea 170 Halobacterium salinarum or H. volcanii^{36,38-40}. The apparent essentiality of HR-related genes 171 in hyperthermophilic archaea suggested that they presumably harbor a unique mechanism, 172 which is different from that of mesophilic archaea, in order to adapt to their harsh environments, 173 particularly elevated temperatures⁴¹.

174

175 Transcription

176 Tn-seq analysis predicted that 11 among 13 RNAP subunits in S. islandicus M.16.4 were 177 essential. The Archaea-specific Rpo13 (M164 1754), a RNAP–DNA stabilization factor⁴², was 178 identified as non-essential by Tn-seq analysis and successful construction of a *rpo13* disruption 179 mutant (Supplementary Fig. 3b). The RNAP subunit Rpo8 (M164_1872) found in many 180 eukaryotes and highly conserved in Crenarchaeota and Korarchaeota⁴³, was categorized as 181 "unassigned" (log₂FC=-3.77 and EI=2). Further genetic analysis revealed the disruption of *rpo8* 182 was not lethal (Supplementary Fig. 3b); however, growth of the *rpo8* disruption mutant was 183 significantly impaired compared with that of the wild type strain (Supplementary Fig. 2c). The dispensability of Rpo8 or Rpo13 suggests a complete RNAP, consisting of 13 subunits^{42,44}, is 184 185 not required to maintain cell survival in vivo for Sulfolobus, at least in S. islandicus M.16.4.

186

187 Like that of eukaryotes, transcription initiation in Archaea required the TATA-box binding 188 protein (TBP) and transcription factor B (TFB) bound to DNA for promoter-dependent 189 transcription. Both Tn-seq and knockout analyses confirmed that the TBP-encoding gene 190 ($M164_{1259}$) was essential whereas the TBP-interacting protein TIP49⁴⁵ encoded by 191 $M164_{0257}$ was non-essential in *S. islandicus* (Supplementary Table 3 and Supplementary Fig. 192 3b). Three TFB paralogues, encoded by *tfb1* ($M164_{1706}$), *tfb2* ($M164_{1265}$), and *tfb3* 193 ($M164_{1868}$) respectively, were found in the genome of *S. islandicus* M.16.4. The genes *tfb1* 194 and tfb2 were essential whereas tfb3 was not, which were confirmed by both Tn-seq and 195 knockout analyses (Supplementary Fig. 3b). In agreement with our discoveries, similar results 196 regarding the essentiality/non-essentiality of these three TFB paralogs have also been observed 197 in S. acidocaldarius via gene disruption analyses⁴⁶. The TFB1 has been identified in vitro as 198 one of three indispensable factors to direct accurate transcription in S. shibatae⁴⁷, whereas the 199 TFB2 was proposed to be involved in the regulation of cell cycle in S. acdocaldarius⁴⁸. 200 Additionally, *tfb3* was found to be highly transcribed after UV treatment in *S. solfataricus* and 201 S. acdocaldarius^{49,50}. Strikingly, it has been shown recently that tfb3 could regulate the 202 expression of genes involved in cellular aggregation and DNA transfer when the cells were 203 subjected to NQO (4-nitroquinoline 1-oxide) or UV- induced DNA damage^{51,52}.

204

205 An additional transcription factor IIE-a (renamed as TFEa, M164 1881) was annotated in the 206 genome of S. islandicus M.16.4 and was revealed to be essential by Tn-seq and gene knockout 207 analyses. Notably, the archaeal counterpart of TFIIE β (renamed as TFE β) has been functionally 208 characterized in S. solfataricus recently⁵³, and the TFEβ homolog in S. islandicus (M164_1266) 209 was shown to be essential in our study, consistent with the genetic analysis performed in S. 210 acidocaldarius⁵³. Four genes spt4 (M164_1736), nusG (M164_1807), nusA (M164_1922), and 211 nusA-like (M164 1973), which are proposed to be involved in the transcription elongation, 212 essential. Strikingly, *M164_1885*, coding for an orthologue were of the eukaryotic transcriptional elongation factor Elf1 found in all Crenarchaeota⁵⁴, was non-213 214 essential. Functional characterization of the *elf1* deletion mutant in *S. islandicus* will help us to 215 understand the roles of *elf1* in archaeal transcription. Four paralogues of putative transcript 216 cleavage factor (TFS1, TFS2, TFS3, and TFS4) were found in the genome of S. solfataricus 217 and S. islandicus⁵⁵, among which tfs1 (M164_1859), tfs3 (M164_1858), and tfs4 (M164_0715) 218 were predicted to be non-essential by Tn-seq analysis. This prediction was confirmed via 219 successful obtainment of individual knockout mutants in standard growth conditions 220 (Supplementary Fig. 3b). The fourth *tfs2* (*M164_1524*), highly conserved in all Crenarchaeota, 221 was classified as "unassigned" by Tn-seq analysis; however, it was later confirmed to be 222 essential by means of knockout analysis, suggesting TFS2 plays more crucial functions in 223 comparison to the other three TFS paralogs.

224

Unlike the euryarchaeon *H. volcanii* in which only a single SmAP is encoded⁵⁶, crenarchaea
contain three SmAP paralogues (hereafter named as SmAP1, SmAP2, and SmAP3) annotated
as "small nuclear ribonucleoprotein (snRNP) homolog"⁵⁷. Tn-seq analysis revealed *smAP1*

228 (M164_1376) and smAP2 (M164_1942) were essential whereas smAP3 (M164_1873) was non-

229 essential. The essentiality of both *smAP1* and *smAP2* genes could be possibly explained by a 230 previous study, which demonstrated that SmAP1/SmAP2 strongly interacted with each other 231 and co-purified with essential components involved in exosome, RNA modification, turnover, 232 and translation⁵⁸. In eukaryotes, the biogenesis of spliceosomal snRNP proteins required 233 involvement of the SMN protein that interacted with an evolutionarily conserved zinc finger 234 protein ZPR1⁵⁹. Targeted disruption studies of *zpr1* indicated that it was essential for cell 235 viability⁶⁰, and played important roles in transcription and cell cycle⁶¹. *M164* 0237, encoding 236 a homolog of ZPR1, was an essential gene candidate in our Tn-seq assay, but its assignment 237 was inconclusive in *M. maripaludis*¹. Although categorized as "general functional prediction 238 only" in the arCOG functional database, it is tempting to speculate ZPR1 plays a similar role 239 in Crenarchaeota. The remaining essential genes in this functional category were mostly 240 annotated as transcription regulators with unknown specific functions.

241

242 Translation

243 Tn-seq analysis revealed that 113 were essential among 200 genes in arCOG functional 244 category [J]), mostly composed of ribosomal proteins, aminoacyl-tRNA synthetases (aaRSs), 245 and translation initiation/elongation factors. Ribosomal proteins in S. islandicus M.16.4 are 246 composed of 37 large- and 28 small subunits, among which 27 large-subunit encoding genes 247 and 20 small-subunit encoding genes were essential. Two small-subunit ribosomal proteins 248 M164_1730 and M164_1557, homologs of the archaeon-eukaryote S25e and S26e, 249 respectively, were non-essential in S. islandicus M.16.4. The third, M164_1159, encoding the 250 small-subunit ribosomal protein S27e, was non-essential though it is widely distributed in the 251 archaeal domain.

252

253 Genomic analysis revealed 21 aaRS-related genes were present in S. islandicus M.16.4, among 254 which 18 genes were essential. Two genes, M164 0290 (hereafter named as thrS1) and 255 M164_1768 (hereafter named as thrS2), encode ThrRS in S. islandicus M.16.4. The thrS1 was 256 classified as "unassigned" whereas thrS2 was non-essential. Further genetic analysis showed 257 that *thrS1* could not be knocked out; however, the *thrS2* disruption mutant could be readily 258 generated (Supplementary Fig. 3b), suggesting that *thrS1* plays a crucial function in protein 259 synthesis. Two genes (M164_1539 and M164_1649; named as leuS1 and leuS2 respectively) 260 encoding LeuRS were annotated in S. islandicus M.16.4; however, only leuS1 was required for 261 cell survival, leaving the function of *leuS2* unknown. Notably, the two freestanding homologues 262 of AlaRS editing domain, AlaX1 (M164_1702) and AlaX2 (M164_0462), shown to hydrolyze 263 misacylated tRNA^{Ala} in S. solfataricus⁶², were non-essential in S. islandicus M.16.4. This 264 finding was further confirmed by genetic analysis (Supplementary Fig. 3b), indicating that they

265 have overlapped functions or play less fundamental roles. S. islandicus M.16.4 possesses all 266 aaRSs required for synthesizing each aminoacyl-tRNA except for GlnRS and AsnRS, which 267 are used to directly attach Gln and Asn respectively to their cognate tRNAs. These observations 268 indicate that aminoacyl-tRNA amidotransferase (Adt) is required for the synthesis of Gln-tRNA 269 and Asn-tRNA. Comparative genomic analysis showed that S. islandicus M.16.4 contained two 270 types of Adt, which are supposed to correct the misacylated Glu-tRNA^{Gln} and/or Asp-tRNA^{Asn} in the indirect pathway of Gln-tRNA^{Gln} and or/ Asn-tRNA^{Asn}. The first Adt (Asp/Glu-Adt), 271 272 existing in most bacteria and some archaea and capable of synthesizing both Asn-tRNA and 273 Gln-tRNA⁶³, is supposed to function as a heterotrimeric enzyme (GatCAB) similarly in S. 274 islandicus M.16.4. Though three GatA paralogues (named as GatA-1, 2, and 3) are present, 275 only gatA-1 (M164_1253) is essential, suggesting that gatA-2 (M164_0374) or gatA-3 276 (*M164_1369*) is functionally redundant. The other two subunits (GatB and GatC) of GatCAB 277 encoded by M164 1911 and M164 1252 respectively were essential as revealed by Tn-seq 278 analysis. Additionally, S. islandiucs M1.6.4 possesses a heterodimeric amidotransferase 279 (GatDE) for Gln-tRNA^{Gln} formation, which has been biochemically characterized in 280 Methanothermobacter thermautotrophicus and predicted to be exclusively Archaea-281 specific^{64,65}. The GatD and GatE subunits, encoded by two adjacent genes M164 1273 282 (annotated as ansB and assigned into arCOG functional category [E]) and M164 1274, 283 respectively, were essential in S. islandicus M.16.4. The existence and essentiality of both 284 GatCAB and GatDE in S. islandicus suggest these two complexes play distinct functions in 285 protein synthesis.

286

287 All 13 genes involved in the cycle of translation were essential in S. islandicus M.16.4. These 288 include 9 translation initiation factors: aIF-1A (M164_0191), aIF-2 (M164 1916), a/eIF2a 289 (M164 1158), a/eIF2ß (M164 0194), a/eIF2γ (M164 1739), aSUI1 (M164 1707), aIF5A 290 (M164 1237), aIF-6 (M164 1802), and RLI1 (M164 1861), 3 translation elongation factors: 291 EF-1 α (M164 1926), EF-1 β (M164 1968), and EF-2/EF-G (M164_1407), and one translation 292 termination factor aRF1 (M164_0157). Notably, Sulfolobales do not contain the 293 selenocysteine-specific translation elongation factor (SelB) which extensively exists in 294 Methanococcales⁶⁶ and was shown to be essential previously in M. maripaludis¹. Instead, a 295 SelB-like protein (SelBL) is present in S. islandicus M.16.4 (M164_1681) and found to be 296 widely distributed in diverse archaea⁶⁶. The function of SelBL remains elusive; however, both 297 Tn-seq and genetic analyses (Supplementary Fig. 3b) showed that *selBL* was non-essential, 298 suggesting it plays less fundamental roles in *Sulfolobus* translation.

299

300 Cell cycle, cell division, and chromosome segregations

301 In the arCOG functional category [D], six genes were essential inferred by Tn-seq data, 302 including the cdvA (M164_1293), cdvB (M164_1294; also named as escrt-III), and cdvC 303 $(M164 \ 1295;$ also named as *vps4*), which have been proved to be the crucial components of 304 ESCRT (Endosomal Sorting Complex Required for Transport)-III-based cell division 305 apparatus in *Sulfolobus*^{67,68}. Furthermore, repeated attempts to knock out individual *cdvA*, *cdvB*, 306 and *cdvC* genes in *S. islandicus* M.16.4 failed to generate any transformants in standard growth 307 conditions, further confirming the essentiality of the ESCRT-III system for Sulfolobus cell 308 survival. Additionally, like S. acidocaldarius and S. solfataricus P2, S. islandicus M.16.4 309 contains three cdvB paralogs: cdvB1 (M164 1700), cdvB2 (M164 1319), and cdvB3 310 (*M164 1510*). Interestingly, the essentiality and function of these three CdvB paralogs seemed 311 to be divergent in S. acidocaldarius and S. islandicus. Genetic analyses of cdvB paralogous 312 genes in S. acidocaldarius indicated that none was essential for cell viability though a 313 significant growth defect and impaired cell division were observed in the cdvB3 mutant⁶⁹. By 314 contrast, a recent genetic study in S. islandicus REY15A showed growth between the cdvB3 315 deletion mutant and parental strain was indistinguishable, and CdvB3 actually played a role in 316 virus budding rather than cell division⁷⁰. It should be noted that the cdvB3 in our Tn-seq analysis 317 is possibly an example of false positive essential gene calling, because we can readily obtain 318 the cdvB3 disruption mutant in standard laboratory conditions (Supplementary Fig. 3b) with a 319 recently developed microhomology-mediated gene inactivation system⁷¹. Our Tn-seq and 320 genetic knockout analyses confirmed that cdvB2 was essential in S. islandicus M.16.4, in 321 agreement with a previous study demonstrating *cdvB2* was essential and played crucial roles in 322 the late stages of cell division in S. islandicus REY15A⁷⁰. In contrast, the cdvB1 gene, which 323 has been shown to be essential and involved in the early stage of cell division in S. islandicus 324 REY15A⁷⁰, was very unlikely essential in our strain as validated by both Tn-seq ($log_2FC=0.48$; 325 EI=18) and genetic knockout analyses (Supplementary Fig. 3b).

326

327 Sulfolobus species utilize a hybrid DNA-partition machine, consisting of two interacting 328 components SegA and SegB, to drive chromosome segregation during M phase of the cell cycle 329 ⁷². Unexpectedly, Tn-seq analysis revealed *segA* (*M164 2088*; arCOG functional category [D]) 330 and segB (M164_2087; arCOG functional category [S]) were non-essential in S. islandicus 331 M.16.4, in agreement with genetic knockout experiments (Supplementary Fig. 3b). Further 332 phenotypic characterization of the mutant strains with in-frame deletion in segA, segB, and 333 segAB will help us to dissect the mechanism of chromosome segregation system in Sulfolobus 334 species. The remaining essential gene in arCOG functional category [D] M164_1692 encodes 335 an ATPase-like protein conserved in all three domains.

336

337 Gene essentiality in central carbon metabolism (CCM)

We also examined gene essentiality in pathways of CCM, including glycolysis,
gluconeogenesis, and the oxidative TCA cycle, which have been well reconstructed in a related
species *S. solfataricus* P2⁷³.

341

342 Among the genes in glycolysis and gluconeogenesis predicted by the reconstructed central 343 metabolic pathways in S. solfataricus⁷³ and KEGG pathway database, five genes were possibly 344 essential as revealed by Tn-seq data. Among those, three genes, encoding enzymes fructose-345 bisphosphatase (M164_1862), glucose-6-phosphate isomerase (M164_0092), and 346 phosphoglucomutase (M164 1935), respectively, were involved in the last three steps of 347 gluconeogenesis. The fourth, M164 2166, encodes the 2-keto-3-deoxy-(6-phospho) gluconate 348 aldolase (KDG aldolase). The remaining candidate essential gene involved in 349 glycolysis/gluconeogenesis was M164_2749, encoding the alpha subunit of 2-oxoacid: 350 ferredoxin oxidoreductase (OFOR) that was presumably responsible for the formation of 351 acetyl-CoA from pyruvate.

352

353 Next, we surveyed the essentiality of genes that involved in the reversed ribulose-354 monophosphate pathway (RuMP), a pathway that substitutes the classic pentose phosphate 355 pathway (PPP) in most of archaea including S. islandicus M.16.4. Like other Sulfolobus 356 species⁷⁴, S. islandicus M.16.4 contains all enzymes involved in the RuMP pathway, including 357 6-phospho-3-hexuloisomerase (M164_1993), 3-hexulose-6-phosphate synthase (M164_1939), 358 ribose-5-phosphate isomerase (M164_1228), ribose-phosphate pyrophosphokinase 359 (M164_1165), and transketolase fused by two subunits (M164_1848/M164_1849). Our Tn-seq 360 data showed that all six genes were essential, suggesting that the RuMp pathway was 361 indispensable for cell survival in S. islandicus under standard laboratory conditions.

362

363 Comparative genomic analysis showed that S. islandicus M.16.4 harbors a complete TCA cycle. 364 The candidate enzymes for all steps of TCA cycle were present except for the 2-oxoglutarate 365 dehydrogenase complex (OGDC). Considering the absence of OGDC and the broad substrate specificity of OFOR towards 2-oxoacids^{73,75}, formation of succinyl-CoA from 2-oxoglutarate 366 367 in the TCA cycle was proposed to be operated by the OFOR in S. islandicus M.16.4 as well. 368 There are 13 genes encoding for core enzymes of the TCA cycle in S. islandicus M.16.4, 12 369 of which were shown to be essential, whereas the remaining one, M164_2478, encoding the 370 beta subunit of SisOFOR, was classified as "unassigned". Notably, three other SisOFOR 371 (*M164_2479/M164_2478*) paralogous gene pairs i.e. *M164_0365/M164_0364*, 372 M164 0396/M164 0395, and M164 2553/M164 2552 are present in S. islandicus M.16.4, all 373 of which were non-essential. These observations and our experimental data demonstrated that

374	physiological roles of SisOFOR (M164_2479/M164_2478) were irreplaceable in the TCA
375	cycle. Lastly, our Tn-seq data revealed that M164_0683 and M164_0684, encoding isocitrate
376	lyase and malate synthase, respectively, were non-essential, indicating the glyoxylate cycle was
377	not required in our laboratory conditions.
378	
379	
380	
381	
382	
383	
384	
385	
386	
387	
388	
389	
390	
391	
392	
393	
394	
395	
396	
397	
398	
399	
400	
401	
402	
403	
404	
405	
406	
407	
408	
409	
410	

411 Supplementary Tables

412

413 Supplementary Table 1: Summary of number of reads and insertions in three

414 independent transposon mutant libraries

Library	No. of colonies	Colony collection way	No. of reads mapped to the genome	No. of unique insertions in total	No. of unique insertions(>1 reads)	No. of unique insertions(>2 reads)	No. of unique insertions(>3 reads)
CYZ-TL1	25, 318	Pick	$2.9 imes 10^7$	83, 906	30, 210	23, 948	22, 539
CYZ-TL2	36, 840	Wash	$1.7 imes 10^7$	47, 967	34, 664	33, 881	33, 582
CYZ-TL2	43, 810	Wash	$2.5 imes 10^6$	35, 217	33, 712	33, 132	32, 640
Total	105, 968	-	-	167, 090	98, 586	90, 961	88, 761

415

416 Supplementary Table 2: Summary of self-nucleotide BLAST results that reveal matching

417 sections elsewhere in the genome

Locus tag	Start	End	Match start	Match end	Match length (bp)	Match ID%	Genes hit
M164_0862	808672	809127	2010585	2010442	144	97.22	None
M164_1012	952035	951631	559226	558828	406	83.5	M164_0624
M164_1867	1712920	1711262	1264800	1264914	115	86.09	M164_1334

418

419 Supplementary Table 3: Evaluation of selected essential/non-essential gene candidates

420 inferred by Tn-seq, and then confirmed with genetic knockout analysis in S. islandicus

Cellular Process	Gene symbols/locus tags [#]	Essentiality by Tn-seq	Essentiality by KO assay ^{##}	Source/Reference
Replication	orc1-1, orc1-2, orc1-3, whip	_		76
	mcm, gins23, gins15, priS, rpa, dpoB1, rfcL, rfcS, fen1, cdc45, nrdJ, dnaG, pbp2	+	+	This study and ³⁴
	pcna1, pcna2, pcna3	+	+	13
	lig, priL, priX, rnhII	Unassigned	+	This study and ¹⁷
	dpoB2, dpoB3, dpo4, pbp1, nrdB	_	-	This study
Recombination	nurA, rad50, mre11, herA, radA	+	+	34
/Repair	radB, radC1, radC2	_	-	34,77
	hje, hjc	-	-	78
	hjm (hel308a), xer	-	-	This study
	xpb1, xpb2, xpd, xpf, bax1, phrB	-	-	34
	endoMS, ogt, ogg2, udg5	-	-	This study
	exoIII, endoIII, endoIV, endoV	-	-	This study and ⁷⁹
	udg4	Unassigned	-	This study
Chromatin	topR1	-	-	This study
	topR2	+	-	This study
	topIII (topIA)	-	-	80
	top6A, top6B	+	+	This study
	cren7, alba1	+	+	This study
	sul7d1, sul7d2, alba2, sir2, pat	-	-	This study
Cell division	cdvA, cdvB, cdvC, cdvB2	+	+	This study
/genome	cdvB3	+	-	This study
segregation	cdvB1	-	-	This study

	segA, segB	-	-	This study
Transcription	tbp, tfb1, tfb2, tfe- α , tfe- β ,	+	+	This study
	nusA, nusA-like, nusG, spt4			
	tfs2	Unassigned	+	This study
	rpo8	Unassigned	-	This study
	tfb3, tfs1, tfs3, tfs4, tip49, rpo13	-	-	This study
Translation	alaX1, alaX2, leuS2, thrS2, selBL	-	-	This study
	thrS1	Unassigned	+	This study
Other functional	lacS, pyrE, pyrF, amyA, upsE,	-	-	81-89
categories	upsF, cas1, cas3', cas3'', cas6,			
	csa5, cas7, cmr2a (cas10), cas4,			
	cas2, csa1, cbp1, csa3a*, csa3b,			
	cas5	+	+	This study
	pinA	+	+	90
	aKMT	-	-	79
	M164_0809, M164_2103,	-	-	This study
	M164_2020			
	M164_1243	+	+	91
	M164_1756, M164_0737	-	-	91
	M164_1060	+	+	This study
	apt	+	-\$	83

421

422 +: Essential; -: Non-essential.

423 [#]: Locus tags and annotations of genes were shown in Supplementary Dataset 10.

424 ##KO assay: Gene knockout experiment was performed at least 4 times for every possibly essential/non-

425 essential gene inferred by Tn-seq. The gene essentiality in the KO assay was determined based on the

426 facts that no transformants or only false positive transformants were obtained in nutrition-rich plates with

427 10-20 days' incubation at 76-78 °C.

428 *: The csa3a gene that encodes for a transcriptional regulator of cas genes⁸⁷ in *S. islandicus* M.16.4 is

429 split by an approximate 14 kb of integrated provirus.

430 ^{\$}: The strain with an inactivation of *apt* gene, encoding the adenine phosphoribosyltransferase, exhibited

- 431 extremely slow/poor growth on solid plates lacking AMP or GMP⁸³.
- 432

433 Supplementary Table 4: Comparison of observed phyletic distribution to 100 scaled

434 randomizations in terms of number of genes

Category	# genes	Mean # genes	stdev genes	p _{above}	p_{below}	p _{2-tail}
	observed	simulated	simulated			
Universal	141	163.83	3.52	0	0	0
EA	80	8.69	2.82	0	0	0
Archaea	55	9.81	2.66	0	0	0
ТАСК	18	10.39	3.21	0	0	0
Sulfolobales	73	147.09	3.89	0	0	0
Other	74	61.96	5.59	0	0.02	0.02

435

436 Notes: P-values are an estimate based on simulated distribution (See "Methods"). Counts in

the "Simulated" columns are the arithmetic mean of 100 random counts. Categories are defined

- 438 in Table 1.
- 439

440 Supplementary Table 5: Summary of essential genes compared to previously assembled

441 ancient gene sets (a summary of Supplementary Dataset 8)

Total conserved	Excluded	Essential	% Conserved	References
COGs in S. islandicus	conserved*	conserved†	essential‡	
99	6	67	72%	⁹² Puigbò, et al. 2009 NUTs (COGs)
78	3	64	85%	⁹³ Harris, et al. 2003 LCA (COGs)
236	25	123	58%	⁹⁴ Gil, et al. 2003 (COGs)
165	57	56	52%	⁹⁵ Weiss, et al. 2016 LUCA (COGs)
931	153	314	40%	⁹⁶ Wolf, et al. 2012 LACA (arCOGs)
26	0	25	96%	⁹⁷ Guy and Ettema 2011 Universal Genes
				(COGs)
48	1	36	77%	⁹⁸ Raymann, et al. 2015 Archaea/Bacteria
				(COGs)
73	2	57	80%	⁹⁸ Raymann, et al. 2015
				Archaea/Eukaryota (COGs)97
24	6	10	56%	^{99,100} ESPs and membrane remodeling
				proteins in Sulfolobus (arCOGs)
34	0	29	85%	¹⁰¹ Yutin, et al. 2012 universal ribosomal
				proteins (arCOGs)
386	70	157	50%	¹⁰² Mirkin, et al. 2003 LUCA (COGs)
111	10	73	72%	¹⁰³ Makarova, et al. 2015 (arCOGs)

442 * Excluded because of multiple matching gene for COGs.

443 † At least one *S. islandicus* gene in COG is essential.

- 444 \ddagger Equal to (Essential) / (Total Excluded).
- 445

446 Supplementary Table 6: Poorly characterized essential genes shared within Archaea,

447 Eukaryotes, and Sulfolobales

Locus tags	Phyletic category	arCOG	Predicted characteristics
M164_1243	Archaea	arCOG00557	Lhr-like helicase with C-terminal Zn finger domain
M164_1908	Archaea	arCOG00933	Radical SAM superfamily enzyme
M164_1554	Archaea	arCOG04116	ATPase (PilT family)
M164_1444	Archaea	arCOG04055	SHS2 domain protein implicated in nucleic acid metabolism
M164_1735	Archaea	arCOG04076	Uncharacterized protein, DUF359 family

M164_1930	Archaea	arCOG01831	Predicted nucleotidyltransferase
			OB-fold domain and Zn-ribbon
M164_1582	Archaea	arCOG01285	containing protein, possible acyl-
			CoA-binding protein
			Uncharacterized protein of
M164_1410	Archaea	arCOG04458	DIM6/NTAB family
M164_1948	Archaea	arCOG04290	PIN-domain and Zn ribbon
			Predicted metal-dependent RNase,
M164 1272	Archaea	arCOG00543	consists of a metallo-beta-lactamase
M164_1373	Archaea	arCOG00343	domain and an RNA-binding KH
			domain
			Uncharacterized protein related to
M164_2044	Archaea	arCOG00932	pyruvate formate-lyase activating
			enzyme
M164 1169	Archaea	arCOG01043	Predicted RNA binding protein with
M164_1168	Archaea	arCOG01043	dsRBD fold
M164_1936	Archaea	arCOG04124	Uncharacterized protein, Trm112
W1104_1950	Archaea	arCO004124	family
M164_1350	Archaea	arCOG04308	Uncharacterized protein
M164_0237	Eukaryotes/Archaea	arCOG04265	C4-type Zn-finger protein
			Uncharacterized membrane anchored
			protein with extracellular
M164_0664	Sulfolobales	arCOG01314	flavodoxin-like domain, a
			component of a putative secretion
			system
M164_2107	Sulfolobales	arCOG05396	Uncharacterized membrane protein
M164_1303	Sulfolobales	arCOG08333	Uncharacterized protein
M164_1025	Sulfolobales	arCOG08451	Uncharacterized protein
M164_1520	Sulfolobales	arCOG05995	Uncharacterized protein
M164_0149	Sulfolobales	arCOG07185	Uncharacterized protein
M164_1645	Sulfolobales	arCOG05923	Uncharacterized protein
M164_1726	Sulfolobales	arCOG05939	Uncharacterized protein
M164_1958	Sulfolobales	arCOG08308	Uncharacterized protein
M164_0627	Sulfolobales	arCOG03239	ATPase, predicted component of
101104_0027	Sunoiobales	ar COO(3237	phage defense system
M164_0066	Sulfolobales	arCOG01098	Uncharacterized protein
M164_1338	Sulfolobales	arCOG05983	Uncharacterized protein
M164_0682	Sulfolobales	arCOG08424	Uncharacterized protein
M164_1275			

	~	~~~~	von Willebrand factor type A (vWA)
M164_0178	Sulfolobales	arCOG00442	domain containing protein
M164_2177	Sulfolobales	arCOG05926	Uncharacterized protein
M164_0169	Sulfolobales	arCOG05958	Uncharacterized protein
M164_2151	Sulfolobales	arCOG03699	Uncharacterized membrane protein
M164_1620	Sulfolobales	arCOG09897	Uncharacterized protein
M164_0677	Sulfolobales	arCOG13101	Uncharacterized protein
M164_1289	Sulfolobales	arCOG04323	Zn-finger protein
M164_1789	Sulfolobales	arCOG06088	Zn finger protein
M164_1865	Sulfolobales	arCOG07188	Uncharacterized protein
M164_1724	Sulfolobales	arCOG05941	Uncharacterized protein
M164_1345	Sulfolobales	arCOG07185	Uncharacterized protein
M164_0089	Sulfolobales	arCOG05899	Cell surface protein
M164_1302	Sulfolobales	arCOG04103	Zn finger protein
M164_2100	Sulfolobales	arCOG01830	Predicted nucleotidyltransferase
M164_2636	Sulfolobales	arCOG06032	Uncharacterized membrane protein,
WI104_2050	Sunoiobales	ure0000052	DUF1404 family
M164_0727	Sulfolobales	arCOG10132	Uncharacterized protein
M164_1483	Sulfolobales	arCOG05997	Uncharacterized protein
M164_0224	Sulfolobales	arCOG05950	Uncharacterized protein
M164_0254	Sulfolobales	arCOG05929	Uncharacterized protein
M164_1337	Sulfolobales	arCOG06043	Uncharacterized protein
M164_0165	Sulfolobales	arCOG07197	Uncharacterized membrane protein
M164_0246	Sulfolobales	arCOG08319	Uncharacterized protein
M164_2845	Sulfolobales	arCOG07934	Uncharacterized protein
M164_1032	Sulfolobales	arCOG07229	Uncharacterized protein
M164_0037	Sulfolobales	arCOG05885	Uncharacterized protein
M164_2723	Sulfolobales	arCOG05922	Uncharacterized protein
M164_1572	Sulfolobales	arCOG04251	Uncharacterized protein
M164_2767	Sulfolobales	arCOG03031	Chlorite dismutase
M164_1332	Sulfolobales	arCOG04160	Uncharacterized protein
M164_0185	Sulfolobales	arCOG05956	Metal-binding protein with
W110+_010J	Sunoiobaies	arCO003930	CxxCHxxxxH signature
M164_0756	Sulfolobales	arCOG07185	Uncharacterized protein
M164_1251	Sulfolobales	arCOG07217	Uncharacterized protein

Strains and plasmids	Genotypes/Descriptions	Reference /Source	
Strains			
S. islandicus M.16.4	Wild type	104	
S. solfataricus P2	Wild type	DSMZ	
S. islandicus RJW004	$\triangle pyrEF \triangle lacS \triangle argD$; Derived from <i>S. islandicus</i> M.16.4	81	
S. islandicus RJW008	$\triangle argD$; derived from S. islandicus M.16.4	105	
S. islandicus RJW011	RJW004 \triangle slaA (\triangle slaA); slaA was deleted from RJW004 via in-frame deletion	This study	
S. islandicus RJW012	RJW004 \triangle <i>slaB</i> (\triangle <i>slaB</i>); <i>slaB</i> was deleted from RJW004 via in-frame deletion	This study	
S. islandicus RJW013	RJW004△ <i>slaAB</i> (△ <i>slaAB</i>); <i>slaA</i> and <i>slaB</i> were deleted from RJW004 via in-frame deletion	This study	
S. islandicus \triangle slaAB	$\triangle pyrEF \triangle lacS \triangle argD \triangle slaAB \triangle M 164_1049::$	This study	
<i>△M 164_1049</i>	StoargD; derived from RJW013		
S. islandicus $\triangle dpoB2$	$\triangle argD \triangle dpoB2::StoargD;$ derived from RJW008	This study	
S. islandicus $\triangle dpoB3$	$\triangle argD \triangle dpoB3::StoargD$; derived from RJW008	This study	
S. islandicus $ riangle dpo4$	$\triangle argD \triangle dpo4::StoargD$; derived from RJW008	This study	
S. islandicus $\triangle pbp1$	$\triangle argD \triangle pbp1::StoargD$; derived from RJW008	This study	
S. islandicus $\triangle topR1$	$\triangle argD \triangle topR1::StoargD$; derived from RJW008	This study	
S. islandicus $\triangle top R2$	$\triangle argD \triangle topR2::StoargD$; derived from RJW008	This study	
S. islandicus $ riangle$ udg4	$\triangle argD \triangle udg4::StoargD$; derived from RJW008	This study	
S. islandicus $ riangle udg5$	$\triangle argD \triangle udg5::StoargD$; derived from RJW008	This study	
S. islandicus $ riangle$ endoIII	$\triangle argD \triangle endoIII::StoargD$; derived from RJW008	This study	
S. islandicus $ riangle$ endoV	$\triangle argD \triangle endoV::StoargD$; derived from RJW008	This study	
S. islandicus $ riangle ogt$	$\triangle argD \triangle ogt::StoargD$; derived from RJW008	This study	
S. islandicus $ riangle ogg2$	$\triangle argD \triangle ogg2::StoargD$; derived from RJW008	This study	
S. islandicus $ riangle nrdB$	$\triangle argD \triangle nrdB::StoargD$; derived from RJW008	This study	
S. islandicus $ riangle sir2$	$\triangle argD \triangle sir2::StoargD$; derived from RJW008	This study	
S. islandicus $ riangle pat$	$\triangle argD \triangle pat::StoargD$; derived from RJW008	This study	
S. islandicus $ riangle alba2$	$\triangle argD \triangle alba2::StoargD$; derived from RJW008	This study	
S. islandicus $ riangle sul7d1$	$\triangle argD \triangle sul7d1::StoargD$; derived from RJW008	This study	
S. islandicus $ riangle sul7d2$	$\triangle argD \triangle sul7d2::StoargD$; derived from RJW008	This study	
S. islandicus $ riangle$ segA	$\triangle argD \triangle segA::StoargD$; derived from RJW008	This study	
S. islandicus $\triangle segB$	$\triangle argD \triangle segB::StoargD$; derived from RJW008	This study	
S. islandicus $\triangle xer$	$\triangle argD \triangle xer::StoargD$; derived from RJW008	This study	
S. islandicus $ riangle h$ jm	$\triangle argD \triangle hjm::StoargD$; derived from RJW008	This study	
S. islandicus $ riangle$ endoMS	$\triangle argD \triangle endoMS::StoargD$; derived from RJW008	This study	

Supplementary Table 7: Strains and plasmids used in this study 452

S. islandicus $\triangle cdvB1$	$\triangle argD \triangle cdvB1::StoargD$; derived from RJW008	This study
S. islandicus $\triangle cdvB3$	$\triangle argD \triangle cdvB3::StoargD$; derived from RJW008	This study
S. islandicus $\triangle tfb3$	$\triangle argD \triangle tfb3::StoargD$; derived from RJW008	This study
S. islandicus $\triangle M 164_{0809}$	$\triangle argD \triangle M164_0809$::StoargD; derived from RJW008	This study
S. islandicus $\triangle M164_2020$	$\triangle argD \triangle M164_2020::StoargD$; derived from RJW008	This study
S. islandicus $\triangle M 164_{2103}$	$\triangle argD \triangle M 164_{2103::StoargD}$; derived from RJW008	This study
S. islandicus $\triangle tip49$	$\triangle argD \triangle tip 49:: StoargD$; derived from RJW008	This study
S. islandicus $\triangle tfs1$	$\triangle argD \triangle tfs1::StoargD$; derived from RJW008	This study
S. islandicus $\triangle tfs3$	$\triangle argD \triangle tfs3::StoargD$; derived from RJW008	This study
S. islandicus $\triangle tfs4$	$\triangle argD \triangle tfs4::StoargD$; derived from RJW008	This study
S. islandicus $\triangle rpo8$	$\triangle argD \triangle rpo8::StoargD$; derived from RJW008	This study
S. islandicus $\triangle rpo13$	$\triangle argD \triangle rpo13::StoargD$; derived from RJW008	This study
S. islandicus $\triangle alaX1$	$\triangle argD \triangle alaX1::StoargD$; derived from RJW008	This study
S. islandicus $\triangle ala X2$	$\triangle argD \triangle alaX2::StoargD$; derived from RJW008	This study
S. islandicus \triangle selBL	$\triangle argD \triangle selBL::StoargD$; derived from RJW008	This study
S. islandicus $\triangle leuS2$	$\triangle argD \triangle leuS2::StoargD$; derived from RJW008	This study
S. islandicus \triangle thrS2	$\triangle argD \triangle thrS2::StoargD$; derived from RJW008	This study
Plasmids		
pMOD TM -2 <mcs></mcs>	Transposon construction vector	Epicentre, USA
pT-SsoargD	pMOD TM -2 $<$ MCS $>$ carrying an <i>argD</i> expression cassette derived from <i>S. solfataricus</i> P2	This study
pSeSd	Sulfolobus-E. coli shuttle vector	106
pSeSd-SsoargD	pSeSd carrying an <i>argD</i> expression cassette derived from <i>S. solfataricus</i> P2	This study
pSeSd-StoargD	pSeSd carrying an <i>argD</i> expression cassette derived from <i>S. tokodaii</i>	105
pRJW8	pUC19 carrying a triple marker gene cassette <i>pyrEF-lacS-argD</i> derived from <i>S. solfataricus</i> P2; cloning vector	81
pMID-slaA	pRJW8 carrying Up-arm and Dn-arm of <i>slaA</i> and a partial region of <i>slaA</i> (Tg-arm); <i>slaA</i> knockout plasmid	This study
pMID-slaB	pRJW8 carrying Up-arm and Dn-arm of <i>slaA</i> and a partial region of <i>slaB</i> (Tg-arm); <i>slaB</i> knockout plasmid	This study
pMID-slaAB	pRJW8 carrying Up-arm of <i>slaA</i> , Dn-arm of <i>slaB</i> , and a	This study

				Flanking	g primers	Internal	primers
Gene name	Gene length (bp)	Deletion region (bp)	Replace region (bp)	Amplicon size (bp)		Amplicon size (bp)	
	8 (-F)	8 (-F)	8 (-F)	Wt	Mutant	Wt	Mutant
dpoB2	1668	1276	740	1836	1300	990	0
dpoB3	2292	1858	740	2395	1277	868	0
dpo4	1059	897	740	1168	1011	547	0
pbp1	294	189	740	554	1105	155	0
topR1	3720	3520	740	3996	1216	777	0
topR2	3501	3250	740	3788	1278	638	0
slaA [#]	3690	3636	6	5870	2240	740	0
slaB [#]	1194	1173	6	3193	2026	540	0
slaAB [#]	N.A ^{\$}	4865	6	6973	2114	2014	0
M164_1049	1803	1761	740	2109	1046	1159	0
udg4	651	466	740	897	1171	312	0
udg5	669	613	740	847	974	327	0
endoIII	702	532	740	778	986	375	0
endoV	597	481	740	743	1002	336	0
ogt	456	413	740	643	970	397	0
ogg2	624	467	740	697	970	277	0
nrdB	927	873	740	1116	983	560	0
sir2	744	587	740	830	983	352	0
pat	483	422	740	647	965	251	0
alba2	270	228	740	477	989	181	0
sul7d1	195	195	740	370	915	N.D*	N.D*
sul7d2	195	194	740	457	1003	N.D*	N.D*
M164_0809	2001	1810	740	2319	1249	1012	0
M164_2020	2628	2449	740	2827	1118	965	0
	2226	1887	740	2262	1115	769	0
segA	663	594	740	865	1011	383	0
segB	330	253	740	554	1041	201	0
cdvB1	762	490	740	755	1005	380	0
tfb3	513	431	740	895	1204	250	0
hjm	2148	2009	740	2354	1085	780	0
xer	876	842	740	1017	915	598	0
endoMS	732	635	740	934	1039	502	0
cdvB3	507	436	740	843	1147	301	0
tfs1	336	276	740	694	1158	254	0
tfs3	273	215	740	546	1071	185	0
tfs4	228	180	740	610	1170	108	0
tip49	1359	1227	740	1771	1284	569	0
rpo13	315	180	740	615	1175	164	0
rpo8	399	310	740	727	1157	266	0
selBL	906	846	740	1026	920	553	0
leuS2	2805	2507	740	2902	1135	1166	0
thrS2	1161	1018	740	1554	1276	680	0
alaX1	711	621	740	846	965	350	0
alaX2	453	370	740	811	1181	327	0

462 Supplementary Table 8: Expected sizes of amplicons generated from the genetic host 463 (Wt) and mutant strains using two different primer sets

464

465 # Deletions of *slaA*, *slaB*, and *slaAB* were achieved via a markerless in-frame deletion approach.

466 N.A^{\$}: Not applied.

467 N.D*: Not determined.

468 469

.....

470

471		
472	Supp	lementary references
473	11	
474	1	Sarmiento, F., Mrazek, J. & Whitman, W. B. Genome-scale analysis of gene function
475		in the hydrogenotrophic methanogenic archaeon Methanococcus maripaludis. Proc
476		Natl Acad Sci U S A 110, 4726-4731, doi:10.1073/pnas.1220225110 (2013).
477	2	Pan, M., Santangelo, T. J., Li, Z., Reeve, J. N. & Kelman, Z. Thermococcus
478		kodakarensis encodes three MCM homologs but only one is essential. Nucleic Acids
479		Res 39, 9671-9680, doi:10.1093/nar/gkr624 (2011).
480	3	Ishino, S. et al. Biochemical and genetical analyses of the three mcm genes from the
481		hyperthermophilic archaeon, Thermococcus kodakarensis. Genes Cells 16, 1176-
482		1189, doi:10.1111/j.1365-2443.2011.01562.x (2011).
483	4	Liu, W., Pucci, B., Rossi, M., Pisani, F. M. & Ladenstein, R. Structural analysis of
484		the Sulfolobus solfataricus MCM protein N-terminal domain. Nucleic Acids Res 36,
485		3235-3243, doi:10.1093/nar/gkn183 (2008).
486	5	Berquist, B. R., DasSarma, P. & DasSarma, S. Essential and non-essential DNA
487		replication genes in the model halophilic Archaeon, Halobacterium sp. NRC-1. BMC
488		Genet 8, 31, doi:10.1186/1471-2156-8-31 (2007).
489	6	Xu, Y. et al. Archaeal orthologs of Cdc45 and GINS form a stable complex that
490		stimulates the helicase activity of MCM. Proc Natl Acad Sci USA 113, 13390-
491		13395, doi:10.1073/pnas.1613825113 (2016).
492	7	Burkhart, B. W. et al. The GAN Exonuclease or the Flap Endonuclease Fen1 and
493		RNase HII Are Necessary for Viability of Thermococcus kodakarensis. J Bacteriol
494		199 , doi:10.1128/JB.00141-17 (2017).
495	8	Nagata, M. et al. The Cdc45/RecJ-like protein forms a complex with GINS and
496		MCM, and is important for DNA replication in Thermococcus kodakarensis. Nucleic
497		Acids Res 45, 10693-10705, doi:10.1093/nar/gkx740 (2017).
498	9	Dieckman, L. M., Freudenthal, B. D. & Washington, M. T. PCNA structure and
499		function: insights from structures of PCNA complexes and post-translationally
500		modified PCNA. Subcell Biochem 62, 281-299, doi:10.1007/978-94-007-4572-8_15
501		(2012).
502	10	Moldovan, G. L., Pfander, B. & Jentsch, S. PCNA, the maestro of the replication
503		fork. <i>Cell</i> 129 , 665-679, doi:10.1016/j.cell.2007.05.003 (2007).
504	11	Chia, N., Cann, I. & Olsen, G. J. Evolution of DNA replication protein complexes in
505		eukaryotes and Archaea. <i>PLoS One</i> 5 , e10866, doi:10.1371/journal.pone.0010866
506	10	
507	12	Kuba, Y. <i>et al.</i> Comparative analyses of the two proliferating cell nuclear antigens
508		from the hyperthermophilic archaeon, Thermococcus kodakarensis. <i>Genes Cells</i> 17 , 022,027, doi:10.1111/stp.12007 (2012)
509 510	12	923-937, doi:10.1111/gtc.12007 (2012).
510	13	Zhang, C. <i>et al.</i> Revealing the essentiality of multiple archaeal pcna genes using a mutant propagation assay based on an improved knockout method. <i>Microbiology</i> 156 ,
511		
512	14	3386-3397, doi:10.1099/mic.0.042523-0 (2010). Dionne, I., Nookala, R. K., Jackson, S. P., Doherty, A. J. & Bell, S. D. A
514	14	heterotrimeric PCNA in the hyperthermophilic archaeon Sulfolobus solfataricus. <i>Mol</i>
515		<i>Cell</i> 11 , 275-282 (2003).
516	15	Zuo, Z., Rodgers, C. J., Mikheikin, A. L. & Trakselis, M. A. Characterization of a
517	15	functional DnaG-type primase in archaea: implications for a dual-primase system. J
518		<i>Mol Biol</i> 397 , 664-676, doi:10.1016/j.jmb.2010.01.057 (2010).
519	16	Le Breton, M. <i>et al.</i> The heterodimeric primase from the euryarchaeon Pyrococcus
520	10	abyssi: a multifunctional enzyme for initiation and repair? J Mol Biol 374 , 1172-
520		1185, doi:10.1016/j.jmb.2007.10.015 (2007).
522	17	Liu, B. <i>et al.</i> A primase subunit essential for efficient primer synthesis by an archaeal
523		eukaryotic-type primase. <i>Nat Commun</i> 6 , 7300, doi:10.1038/ncomms8300 (2015).

524	18	Lai, X., Shao, H., Hao, F. & Huang, L. Biochemical characterization of an ATP-
525		dependent DNA ligase from the hyperthermophilic crenarchaeon Sulfolobus shibatae.
526		<i>Extremophiles</i> 6 , 469-477, doi:10.1007/s00792-002-0284-5 (2002).
527	19	Zhan, K. & He, Z. G. Characterization of a new RNase HII and its essential amino
528		acid residues in the archaeon Sulfolobus tokodaii reveals a regulatory C-terminus.
529	•	Biochemistry (Mosc) 75 , 930-937 (2010).
530	20	Choi, J. Y. <i>et al.</i> Roles of the four DNA polymerases of the crenarchaeon Sulfolobus
531		solfataricus and accessory proteins in DNA replication. <i>J Biol Chem</i> 286 , 31180-
532	01	31193, doi:10.1074/jbc.M111.258038 (2011).
533	21	Taylor, K. A., Deatherage, J. F. & Amos, L. A. Structure of the S-Layer of
534	22	Sulfolobus-Acidocaldarius. <i>Nature</i> 299 , 840-842, doi:DOI 10.1038/299840a0 (1982).
535	22	Edgell, D. R., Klenk, H. P. & Doolittle, W. F. Gene duplications in evolution of
536 537	23	archaeal family B DNA polymerases. J Bacteriol 179 , 2632-2640 (1997).
538	25	Edgell, D. R., Malik, S. B. & Doolittle, W. F. Evidence of independent gene
530 539		duplications during the evolution of archaeal and eukaryotic family B DNA polymerases. <i>Mol Biol Evol</i> 15 , 1207-1217,
539 540		
540 541	24	doi:10.1093/oxfordjournals.molbev.a026028 (1998).
541	24	Yan, J. <i>et al.</i> Identification and characterization of a heterotrimeric archaeal DNA polymerase holoenzyme. <i>Nat Commun</i> 8 , 15075, doi:10.1038/ncomms15075 (2017).
542 543	25	
545 544	23	Abby, S. S. <i>et al.</i> Candidatus Nitrosocaldus cavascurensis, an Ammonia Oxidizing,
545		Extremely Thermophilic Archaeon with a Highly Mobile Genome. <i>Front Microbiol</i> 9 , 28, doi:10.3389/fmicb.2018.00028 (2018).
545 546	26	Daebeler, A. <i>et al.</i> Cultivation and Genomic Analysis of "Candidatus Nitrosocaldus
540 547	20	islandicus," an Obligately Thermophilic, Ammonia-Oxidizing Thaumarchaeon from a
548		Hot Spring Biofilm in Graendalur Valley, Iceland. <i>Front Microbiol</i> 9 , 193,
540 549		doi:10.3389/fmicb.2018.00193 (2018).
550	27	Cubonova, L. <i>et al.</i> Archaeal DNA polymerase D but not DNA polymerase B is
551	21	required for genome replication in Thermococcus kodakarensis. J Bacteriol 195,
552		2322-2328, doi:10.1128/JB.02037-12 (2013).
553	28	Adam, P. S., Borrel, G., Brochier-Armanet, C. & Gribaldo, S. The growing tree of
554		Archaea: new perspectives on their diversity, evolution and ecology. ISME J 11,
555		2407-2425, doi:10.1038/ismej.2017.122 (2017).
556	29	Guo, L. et al. Biochemical and structural characterization of Cren7, a novel
557		chromatin protein conserved among Crenarchaea. Nucleic Acids Res 36, 1129-1137,
558		doi:10.1093/nar/gkm1128 (2008).
559	30	Ishino, S. et al. Identification of a mismatch-specific endonuclease in
560		hyperthermophilic Archaea. Nucleic Acids Res 44, 2977-2986,
561		doi:10.1093/nar/gkw153 (2016).
562	31	White, M. F. & Allers, T. DNA Repair in the Archaea - an emerging picture. FEMS
563		Microbiol Rev, doi:10.1093/femsre/fuy020 (2018).
564	32	Castaneda-Garcia, A. et al. A non-canonical mismatch repair pathway in prokaryotes.
565		Nat Commun 8, 14246, doi:10.1038/ncomms14246 (2017).
566	33	Ishino, S. et al. Activation of the mismatch-specific endonuclease EndoMS/NucS by
567		the replication clamp is required for high fidelity DNA replication. Nucleic Acids Res,
568		doi:10.1093/nar/gky460 (2018).
569	34	Zhang, C. et al. Genetic manipulation in Sulfolobus islandicus and functional analysis
570		of DNA repair genes. Biochem Soc Trans 41, 405-410, doi:10.1042/BST20120285
571		(2013).
572	35	Fujikane, R., Ishino, S., Ishino, Y. & Forterre, P. Genetic analysis of DNA repair in
573		the hyperthermophilic archaeon, Thermococcus kodakaraensis. Genes Genet Syst 85,
574		243-257 (2010).
575	36	Woods, W. G. & Dyall-Smith, M. L. Construction and analysis of a recombination-
576		deficient (radA) mutant of Haloferax volcanii. Mol Microbiol 23, 791-797 (1997).

577 578	37	Hawkins, M., Malla, S., Blythe, M. J., Nieduszynski, C. A. & Allers, T. Accelerated growth in the absence of DNA replication origins. <i>Nature</i> 503 , 544-547,
579 580 581	38	doi:10.1038/nature12650 (2013). Delmas, S., Duggin, I. G. & Allers, T. DNA damage induces nucleoid compaction via the Mre11-Rad50 complex in the archaeon Haloferax volcanii. <i>Mol Microbiol</i> 87 ,
582	20	168-179, doi:10.1111/mmi.12091 (2013).
583 584	39	Kish, A. & DiRuggiero, J. Rad50 is not essential for the Mre11-dependent repair of DNA double strand breaks in Helebesterium on strain NBC 1. <i>L Pastarial</i> 100
585		DNA double-strand breaks in Halobacterium sp. strain NRC-1. <i>J Bacteriol</i> 190 , 5210-5216, doi:10.1128/JB.00292-08 (2008).
586	40	Delmas, S., Shunburne, L., Ngo, H. P. & Allers, T. Mre11-Rad50 promotes rapid
587	-10	repair of DNA damage in the polyploid archaeon Haloferax volcanii by restraining
588		homologous recombination. <i>PLoS Genet</i> 5 , e1000552,
589		doi:10.1371/journal.pgen.1000552 (2009).
590	41	Grogan, D. W. Understanding DNA Repair in Hyperthermophilic Archaea: Persistent
591		Gaps and Other Reasons to Focus on the Fork. Archaea 2015, 942605,
592		doi:10.1155/2015/942605 (2015).
593	42	Korkhin, Y. et al. Evolution of complex RNA polymerases: the complete archaeal
594		RNA polymerase structure. PLoS Biol 7, e1000102,
595		doi:10.1371/journal.pbio.1000102 (2009).
596	43	Koonin, E. V., Makarova, K. S. & Elkins, J. G. Orthologs of the small RPB8 subunit
597		of the eukaryotic RNA polymerases are conserved in hyperthermophilic
598		Crenarchaeota and "Korarchaeota". <i>Biol Direct</i> 2 , 38, doi:10.1186/1745-6150-2-38
599 600	1.1	(2007). Weiter M. N. Magni M. Millet O. Bell S. D. & Abragia N. C. Structural and
600 601	44	Wojtas, M. N., Mogni, M., Millet, O., Bell, S. D. & Abrescia, N. G. Structural and
601		functional analyses of the interaction of archaeal RNA polymerase with DNA. <i>Nucleic Acids Res</i> 40 , 9941-9952, doi:10.1093/nar/gks692 (2012).
602	45	Iqbal, J. & Qureshi, S. A. Selective depletion of Sulfolobus solfataricus transcription
604	ч.	factor E under heat shock conditions. <i>J Bacteriol</i> 192 , 2887-2891,
605		doi:10.1128/JB.01534-09 (2010).
606	46	Rauch, B. Functional analysis of multiple general transcription factors in Sulfolobus
607		acidocaldarius. PhD Thesis (2013).
608	47	Qureshi, S. A., Bell, S. D. & Jackson, S. P. Factor requirements for transcription in
609		the Archaeon Sulfolobus shibatae. EMBO J 16, 2927-2936,
610		doi:10.1093/emboj/16.10.2927 (1997).
611	48	Lundgren, M. & Bernander, R. Genome-wide transcription map of an archaeal cell
612		cycle. Proc Natl Acad Sci U S A 104, 2939-2944, doi:10.1073/pnas.0611333104
613	40	(2007).
614	49	Gotz, D. <i>et al.</i> Responses of hyperthermophilic crenarchaea to UV irradiation.
615 616	50	<i>Genome Biol</i> 8 , R220, doi:10.1186/gb-2007-8-10-r220 (2007). Frols, S. <i>et al.</i> Response of the hyperthermophilic archaeon Sulfolobus solfataricus to
617	50	UV damage. J Bacteriol 189 , 8708-8718, doi:10.1128/JB.01016-07 (2007).
618	51	Feng, X., Sun, M., Han, W., Liang, Y. X. & She, Q. A transcriptional factor B
619	51	paralog functions as an activator to DNA damage-responsive expression in archaea.
620		Nucleic Acids Res, doi:10.1093/nar/gky236 (2018).
621	52	Schult, F. <i>et al.</i> Effect of UV irradiation on Sulfolobus acidocaldarius and
622		involvement of the general transcription factor TFB3 in the early UV response.
623		Nucleic Acids Res, doi:10.1093/nar/gky527 (2018).
624	53	Blombach, F. et al. Archaeal TFEalpha/beta is a hybrid of TFIIE and the RNA
625		polymerase III subcomplex hRPC62/39. Elife 4, e08378, doi:10.7554/eLife.08378
626		(2015).
627	54	Daniels, J. P., Kelly, S., Wickstead, B. & Gull, K. Identification of a crenarchaeal
628		orthologue of Elf1: implications for chromatin and transcription in Archaea. <i>Biol</i>
629		<i>Direct</i> 4 , 24, doi:10.1186/1745-6150-4-24 (2009).

630	55	Fouqueau, T. et al. The transcript cleavage factor paralogue TFS4 is a potent RNA
631		polymerase inhibitor. Nat Commun 8, 1914, doi:10.1038/s41467-017-02081-3
632		(2017).
633	56	Fischer, S. et al. The archaeal Lsm protein binds to small RNAs. J Biol Chem 285,
634		34429-34438, doi:10.1074/jbc.M110.118950 (2010).
635	57	Martens, B. et al. The Heptameric SmAP1 and SmAP2 Proteins of the Crenarchaeon
636		Sulfolobus Solfataricus Bind to Common and Distinct RNA Targets. Life (Basel) 5,
637		1264-1281, doi:10.3390/life5021264 (2015).
638	58	Martens, B. <i>et al.</i> The SmAP1/2 proteins of the crenarchaeon Sulfolobus solfataricus
639	20	interact with the exosome and stimulate A-rich tailing of transcripts. <i>Nucleic Acids</i>
640		<i>Res</i> 45 , 7938-7949, doi:10.1093/nar/gkx437 (2017).
641	59	Gangwani, L., Mikrut, M., Theroux, S., Sharma, M. & Davis, R. J. Spinal muscular
642	57	atrophy disrupts the interaction of ZPR1 with the SMN protein. <i>Nat Cell Biol</i> 3 , 376-
643		383, doi:10.1038/35070059 (2001).
644	60	Gangwani, L., Flavell, R. A. & Davis, R. J. ZPR1 is essential for survival and is
645	00	
		required for localization of the survival motor neurons (SMN) protein to Cajal bodies.
646	C 1	<i>Mol Cell Biol</i> 25 , 2744-2756, doi:10.1128/MCB.25.7.2744-2756.2005 (2005).
647	61	Gangwani, L. Deficiency of the zinc finger protein ZPR1 causes defects in
648		transcription and cell cycle progression. <i>J Biol Chem</i> 281 , 40330-40340,
649	<i>(</i>)	doi:10.1074/jbc.M608165200 (2006).
650	62	Ahel, I., Korencic, D., Ibba, M. & Soll, D. Trans-editing of mischarged tRNAs. <i>Proc</i>
651		Natl Acad Sci U S A 100, 15422-15427, doi:10.1073/pnas.2136934100 (2003).
652	63	Tumbula, D. <i>et al.</i> Archaeal aminoacyl-tRNA synthesis: diversity replaces dogma.
653		Genetics 152, 1269-1276 (1999).
654	64	Tumbula, D. L., Becker, H. D., Chang, W. Z. & Soll, D. Domain-specific recruitment
655		of amide amino acids for protein synthesis. <i>Nature</i> 407 , 106-110,
656		doi:10.1038/35024120 (2000).
657	65	Sheppard, K. & Soll, D. On the evolution of the tRNA-dependent amidotransferases,
658		GatCAB and GatDE. J Mol Biol 377, 831-844, doi:10.1016/j.jmb.2008.01.016
659		(2008).
660	66	Atkinson, G. C., Hauryliuk, V. & Tenson, T. An ancient family of SelB elongation
661		factor-like proteins with a broad but disjunct distribution across archaea. BMC Evol
662		<i>Biol</i> 11 , 22, doi:10.1186/1471-2148-11-22 (2011).
663	67	Lindas, A. C., Karlsson, E. A., Lindgren, M. T., Ettema, T. J. & Bernander, R. A
664		unique cell division machinery in the Archaea. Proc Natl Acad Sci U S A 105, 18942-
665		18946, doi:10.1073/pnas.0809467105 (2008).
666	68	Samson, R. Y., Obita, T., Freund, S. M., Williams, R. L. & Bell, S. D. A role for the
667		ESCRT system in cell division in archaea. Science 322 , 1710-1713,
668		doi:10.1126/science.1165322 (2008).
669	69	Yang, N. & Driessen, A. J. Deletion of cdvB paralogous genes of Sulfolobus
670		acidocaldarius impairs cell division. Extremophiles 18, 331-339, doi:10.1007/s00792-
671		013-0618-5 (2014).
672	70	Liu, J. et al. Functional assignment of multiple ESCRT-III homologs in cell division
673		and budding in Sulfolobus islandicus. Mol Microbiol 105, 540-553,
674		doi:10.1111/mmi.13716 (2017).
675	71	Zhang, C. & Whitaker, R. J. Microhomology-Mediated High-Throughput Gene
676		Inactivation Strategy for the Hyperthermophilic Crenarchaeon Sulfolobus islandicus.
677		Appl Environ Microbiol 84, doi:10.1128/AEM.02167-17 (2018).
678	72	Kalliomaa-Sanford, A. K. et al. Chromosome segregation in Archaea mediated by a
679		hybrid DNA partition machine. Proc Natl Acad Sci U S A 109, 3754-3759,
680		doi:10.1073/pnas.1113384109 (2012).
681	73	Snijders, A. P. et al. Reconstruction of central carbon metabolism in Sulfolobus
682		solfataricus using a two-dimensional gel electrophoresis map, stable isotope labelling
683		and DNA microarray analysis. Proteomics 6, 1518-1529,
684		doi:10.1002/pmic.200402070 (2006).

685	74	Ulas, T., Riemer, S. A., Zaparty, M., Siebers, B. & Schomburg, D. Genome-scale
686		reconstruction and analysis of the metabolic network in the hyperthermophilic
687		archaeon Sulfolobus solfataricus. PLoS One 7, e43401,
688		doi:10.1371/journal.pone.0043401 (2012).
689	75	Yan, Z., Maruyama, A., Arakawa, T., Fushinobu, S. & Wakagi, T. Crystal structures
690		of archaeal 2-oxoacid:ferredoxin oxidoreductases from Sulfolobus tokodaii. Sci Rep
691		6 , 33061, doi:10.1038/srep33061 (2016).
692	76	Samson, R. Y. <i>et al.</i> Specificity and function of archaeal DNA replication initiator
693	10	proteins. <i>Cell Rep</i> 3 , 485-496, doi:10.1016/j.celrep.2013.01.002 (2013).
694	77	Liang, P. J. <i>et al.</i> Knockouts of RecA-like proteins RadC1 and RadC2 have distinct
695	,,	responses to DNA damage agents in Sulfolobus islandicus. J Genet Genomics 40,
696		533-542, doi:10.1016/j.jgg.2013.05.004 (2013).
697	78	Huang, Q. <i>et al.</i> Genetic analysis of the Holliday junction resolvases Hje and Hjc in
698	70	Sulfolobus islandicus. <i>Extremophiles</i> 19 , 505-514, doi:10.1007/s00792-015-0734-5
699		(2015).
700	79	Chu, Y. <i>et al.</i> aKMT Catalyzes Extensive Protein Lysine Methylation in the
700	19	Hyperthermophilic Archaeon Sulfolobus islandicus but is Dispensable for the Growth
701		of the Organism. <i>Mol Cell Proteomics</i> 15 , 2908-2923,
702		
	80	doi:10.1074/mcp.M115.057778 (2016).
704	80	Li, X. <i>et al.</i> Deletion of the topoisomerase III gene in the hyperthermophilic archaeon
705		Sulfolobus islandicus results in slow growth and defects in cell cycle control. J Genet
706	01	<i>Genomics</i> 38 , 253-259, doi:10.1016/j.jgg.2011.05.001 (2011).
707	81	Zhang, C., Cooper, T. E., Krause, D. J. & Whitaker, R. J. Augmenting the genetic
708		toolbox for Sulfolobus islandicus with a stringent positive selectable marker for
709		agmatine prototrophy. <i>Appl Environ Microbiol</i> 79 , 5539-5549,
710	00	doi:10.1128/AEM.01608-13 (2013).
711	82	Zhang, C. & Whitaker, R. J. A broadly applicable gene knockout system for the
712		thermoacidophilic archaeon Sulfolobus islandicus based on simvastatin selection.
713		<i>Microbiology</i> 158 , 1513-1522, doi:10.1099/mic.0.058289-0 (2012).
714	83	Zhang, C., She, Q., Bi, H. & Whitaker, R. J. The apt/6-Methylpurine
715		Counterselection System and Its Applications in Genetic Studies of the
716		Hyperthermophilic Archaeon Sulfolobus islandicus. Appl Environ Microbiol 82,
717		3070-3081, doi:10.1128/AEM.00455-16 (2016).
718	84	Bautista, M. A., Zhang, C. & Whitaker, R. J. Virus-induced dormancy in the
719		archaeon Sulfolobus islandicus. MBio 6, doi:10.1128/mBio.02565-14 (2015).
720	85	Peng, W. et al. Genetic determinants of PAM-dependent DNA targeting and pre-
721		crRNA processing in Sulfolobus islandicus. RNA Biol 10, 738-748,
722		doi:10.4161/rna.23798 (2013).
723	86	Li, Y. et al. Harnessing Type I and Type III CRISPR-Cas systems for genome
724		editing. Nucleic Acids Res 44, e34, doi:10.1093/nar/gkv1044 (2016).
725	87	Liu, T. et al. Transcriptional regulator-mediated activation of adaptation genes
726		triggers CRISPR de novo spacer acquisition. Nucleic Acids Res 43, 1044-1055,
727		doi:10.1093/nar/gku1383 (2015).
728	88	He, F., Vestergaard, G., Peng, W., She, Q. & Peng, X. CRISPR-Cas type I-A Cascade
729		complex couples viral infection surveillance to host transcriptional regulation in the
730		dependence of Csa3b. Nucleic Acids Res 45, 1902-1913, doi:10.1093/nar/gkw1265
731		(2017).
732	89	Deng, L., Kenchappa, C. S., Peng, X., She, Q. & Garrett, R. A. Modulation of
733		CRISPR locus transcription by the repeat-binding protein Cbp1 in Sulfolobus.
734		Nucleic Acids Res 40, 2470-2480, doi:10.1093/nar/gkr1111 (2012).
735	90	Zhai, B. et al. Structure and Function of a Novel ATPase that Interacts with Holliday
736		Junction Resolvase Hjc and Promotes Branch Migration. J Mol Biol 429, 1009-1029,
737		doi:10.1016/j.jmb.2017.02.016 (2017).

738	91	Song, X., Huang, Q., Ni, J., Yu, Y. & Shen, Y. Knockout and functional analysis of
739		two DExD/H-box family helicase genes in Sulfolobus islandicus REY15A.
740		Extremophiles 20, 537-546, doi:10.1007/s00792-016-0847-5 (2016).
741	92	Puigbo, P., Wolf, Y. I. & Koonin, E. V. Search for a 'Tree of Life' in the thicket of the
742		phylogenetic forest. J Biol 8, 59, doi:10.1186/jbiol159 (2009).
743	93	Harris, J. K., Kelley, S. T., Spiegelman, G. B. & Pace, N. R. The genetic core of the
744		universal ancestor. Genome Res 13, 407-412, doi:10.1101/gr.652803 (2003).
745	94	Gil, R. et al. The genome sequence of Blochmannia floridanus: comparative analysis
746		of reduced genomes. Proc Natl Acad Sci U S A 100, 9388-9393,
747		doi:10.1073/pnas.1533499100 (2003).
748	95	Weiss, M. C. et al. The physiology and habitat of the last universal common ancestor.
749		<i>Nat Microbiol</i> 1 , 16116, doi:10.1038/nmicrobiol.2016.116 (2016).
750	96	Wolf, Y. I., Makarova, K. S., Yutin, N. & Koonin, E. V. Updated clusters of
751		orthologous genes for Archaea: a complex ancestor of the Archaea and the byways of
752		horizontal gene transfer. Biol Direct 7, 46, doi:10.1186/1745-6150-7-46 (2012).
753	97	Guy, L. & Ettema, T. J. The archaeal 'TACK' superphylum and the origin of
754		eukaryotes. Trends Microbiol 19, 580-587, doi:10.1016/j.tim.2011.09.002 (2011).
755	98	Raymann, K., Brochier-Armanet, C. & Gribaldo, S. The two-domain tree of life is
756		linked to a new root for the Archaea. Proc Natl Acad Sci USA 112, 6670-6675,
757		doi:10.1073/pnas.1420858112 (2015).
758	99	Eme, L., Spang, A., Lombard, J., Stairs, C. W. & Ettema, T. J. G. Archaea and the
759		origin of eukaryotes. Nat Rev Microbiol 15, 711-723, doi:10.1038/nrmicro.2017.133
760		(2017).
761	100	Makarova, K. S., Yutin, N., Bell, S. D. & Koonin, E. V. Evolution of diverse cell
762		division and vesicle formation systems in Archaea. Nat Rev Microbiol 8, 731-741,
763		doi:10.1038/nrmicro2406 (2010).
764	101	Yutin, N., Puigbo, P., Koonin, E. V. & Wolf, Y. I. Phylogenomics of prokaryotic
765		ribosomal proteins. <i>PLoS One</i> 7, e36972, doi:10.1371/journal.pone.0036972 (2012).
766	102	Mirkin, B. G., Fenner, T. I., Galperin, M. Y. & Koonin, E. V. Algorithms for
767		computing parsimonious evolutionary scenarios for genome evolution, the last
768		universal common ancestor and dominance of horizontal gene transfer in the
769	100	evolution of prokaryotes. BMC Evol Biol 3, 2 (2003).
770	103	Makarova, K. S., Wolf, Y. I. & Koonin, E. V. Archaeal Clusters of Orthologous
771		Genes (arCOGs): An Update and Application for Analysis of Shared Features
772		between Thermococcales, Methanococcales, and Methanobacteriales. <i>Life (Basel)</i> 5,
773	104	818-840, doi:10.3390/life5010818 (2015).
774	104	Reno, M. L., Held, N. L., Fields, C. J., Burke, P. V. & Whitaker, R. J. Biogeography
775		of the Sulfolobus islandicus pan-genome. <i>Proc Natl Acad Sci U S A</i> 106 , 8605-8610,
776	105	doi:10.1073/pnas.0808945106 (2009).
777	105	Zhang, C. & Whitaker, R. J. Microhomology Mediated High-throughput Gene
778		Inactivation Strategy for Hyperthermophilic Crenarchaeon Sulfolobus islandicus.
779	100	Appl Environ Microbiol, doi:10.1128/AEM.02167-17 (2017).
780	106	Peng, N. <i>et al.</i> A synthetic arabinose-inducible promoter confers high levels of
781		recombinant protein expression in hyperthermophilic archaeon Sulfolobus islandicus.
782 702	107	Appl Environ Microbiol 78 , 5630-5637, doi:10.1128/AEM.00855-12 (2012).
783	107	Peyfoon, E. <i>et al.</i> The S-layer glycoprotein of the crenarchaeote Sulfolobus
784		acidocaldarius is glycosylated at multiple sites with chitobiose-linked N
785		glycans. Archaea 2010, doi:10.1155/2010/754101 (2010).
786	108	Crooks, G. E., Hon, G., Chandonia, J. M. & Brenner, S. E. WebLogo: a sequence
787		logo generator. Genome Res 14, 1188-1190, doi:10.1101/gr.849004 (2004).
788		

Supplementary Figure 1: Confirmation of genotypes of reverse gyrase disruption mutants. **a**, Genomic context of *topR1* and *topR2* in the genetic host (Wt) and mutant strains. **b**, PCR verification of $\triangle topR1$ mutant strain. **c**, PCR verification of $\triangle topR2$ mutant strain. L indicates 2-Log DNA Ladder (NEB, USA) and sizes of DNA bands are labelled.

Supplementary Figure 2: Disruption of topR2, udg4, and rpo8 reduced cell viability. The S. islandicus M.16.4 (agmatine prototrophy), $\triangle topR2$ ($\triangle argD \triangle topR2$::StoargD), $\triangle udg4$ ($\triangle argD \triangle udg4$::StoargD), and $\triangle rpo8$ ($\triangle argD \triangle rpo8$::StoargD) strains were grown in DY liquid medium at 76 °C. Cell cultures at the mid-log phase were normalized to OD₆₀₀=0.5, and then serially diluted ten fold with 1× DY. Ten microliter of diluted cells were spotted on DY plates and then incubated at 76°C for 12 days. The resulting spots are imaged using an EPSON scanner.

Allelic exchange via doulbe crossover HR IF StoargD $\triangle \textit{argD} \triangle \text{goi::} \textit{StoargD}$ -// 35-40 bp microhomology (downstream) goi: gene of interest 35-40 bp microhomology (upstream) StoargD: arginine decarboxylase expression cassette derived from S. tokodaii

StoargD

goi

//

Gene disruption cassette

(PCR products)

Genetic host (*△argD*)

а

cdvB3-FP-F/R cdvB3-IP-F/R

tfb3-FP-F/R tfb3-IP-F/R

b (Continued)

Supplementary Figure 3: Verification of selected non-essential genes via a microhomology-mediated gene inactivation approach (MMGI) in *S. islandicus*¹⁰⁵. a, Schematic illustration of the MMGI. The gene disruption cassette, consisting of the *StoargD* marker flanked by 35-40 bp of microhomology that corresponded to flanking sequences of the targeted region, was transformed into an ArgD⁻ strain, yielding ArgD⁺ colonies via a double-crossover HR event. b, Confirmation of *S. islandicus* gene disruptions (Related to Supplementary Table 3 and Dataset 10) by PCR analyses of target gene locus. A flanking primer set (-FP-F/R) annealing to upstream and downstream sequences of the HR regions of goi, and an internal primer set (-IP-F/R) specifically binding to the coding region of goi, were used to confirm the gene disruptions. L indicates the GeneRuler Express DNA Ladder (Thermo Fisher, USA) and the marker sizes are labelled. The wt and Δ denotes the parental strain and mutant strain respectively. The expected sizes of amplicons are shown in Supplementary Table 8.

- Collect fresh cells (~ 3×10¹⁰ cells in total) in 50 ml Falcon tubes,
- Add lysis buffer A (10 mM NaCl, 1 mM PMSF, 0.5% N-Lauroylsarcosine) and DNasel, then incubate at 45 °C for 20 mins,
- 3. Pellet cells at 12,000 rpm X 20 mins, and then remove the supernatant,
- Resuspend the pellet with lysis buffer A, and transfer into a microcentrifuge tube. Incubate at 45 °C for 20 mins,
- 5. Pellet cells at 13,000 rpm X 10 mins (refer to pre-S-layer extraction),
- Transfer the top layer of pellets into a microcentrifuge tube (refer to post-S-layer extraction),
- Repeat 4-7 until pure S-layer was obtained (used for TEM).

С

Supplementary Figure 4: Extraction and TEM analysis of S-layer from the wild type (RWJ004) and S-layer gene knockout strains. a, A flowchart illustrating the S-layer extraction procedure, as described previously with minor changes¹⁰⁷. b, Extraction of S-layer from the wild type and S-layer gene knockout strains. A clear whitish layer can be observed and separated from the pellet in the wild type and $\Delta s/aB$ mutant cells, whereas no whitish layer was observed in $\Delta s/aA$ and $\Delta s/aAB$ mutant cells. The whitish layer (S-layer) extracted from the wild type was more abundant than that from the $\Delta s/aB$ mutant cells. These experiments were biologically repeated 3 times and the same phenomenon was observed. c, TEM analysis of the negatively stained extracted S-layer (10 µl of MilliQ water-dissolved S-layer) from the wild type and $\Delta s/aB$ mutant cells. Scale bars, 1 µm.

Supplementary Figure 5: Confirmation of the $\Delta slaAB\Delta M164_1049$ mutant genotype. a, Genomic context of $M164_1049$ in the parental and mutant strains. $M164_1049$ was replaced with the selectable marker *StoargD* in the genetic background of the $\Delta slaAB$ mutant via homologous recombination. b, PCR verification of the $\Delta slaAB\Delta M164_1049$ mutant strain. The $M164_1049$ and slaAB loci in the $\Delta slaAB\Delta M164_1049$ mutant strain were examined using three primer sets, the relative positions of which are shown with small arrows in a. The *S. islandicus* strain RJW004, a genetic host to generate the $\Delta slaAB$ deletion mutant, is used as a control (lane 8) in PCR analysis when checking the *slaAB* mutant allele in the $\Delta slaAB\Delta M164_1049$ mutant strain. L indicates the 2-Log DNA Ladder (NEB, USA), and the marker size corresponding to each band is labelled. Expected sizes of amplicons can be found in Supplementary Table 8.

а

b

Locus_tag	Function	log₂FC	El	Essential?
M164_0130	Uncharacterized membrane protein	-1.50	8	No
M164_0134	ATPase involved in chromosome partitioning, ParA family	-2.84	9	No
M164_0216	Transcriptional regulator, contains N-terminal RHH domain	1.42	7	No
M164_0218	Zn-dependent hydrolase of the beta-lactamase fold	-2.08	10	No
M164_0267	Phosphate/sulphate permease	0.13	26	No
M164_0269	Replicative superfamily II helicase	-0.89	8	No
M164_1059	HEPN domain containing protein	-1.17	5	No
M164_1061	HAD superfamily hydrolase	1.86	19	No
M164_1727	tRNA(1-methyladenosine) methyltransferase	1.33	20	No
M164_1729	Sugar-specific transcriptional regulator TrmB	-9.84	0	Yes
M164_2075	Transcriptional regulator, contains HTH domain	-8.95	0	Yes
M164_2077	Mg-dependent DNase	-0.13	10	No

Supplementary Figure 6: Predicted essential antitoxin genes. a, Genomic context of the essential antitoxin genes in *S. islandicus* M.16.4. **b,** Essentiality/non-essentiality of genes adjacent to the essential antitoxin genes.

Supplementary Figure 7: Maximum parsimony tree for eggNOG presence/absence patterns. Bootstrap values are shown at nodes where they are greater than 50. Distance is shown in number of changes to the set of genes compared to *S. islandicus* M.16.4.

Supplementary Figure 8: Maximum parsimony tree for eggNOG presence/absence patterns, including early Asgardarchaeota genomes. Bootstrap values are shown at nodes where they are greater than 50. Distance is shown in number of changes to the set of genes compared to *S. islandicus* M.16.4.

Supplementary Figure 9: Nucleotide frequency near insertion sites shows weak sequence preference compared to random. *Left*, Nucleotide frequency of sequence 10 base-pairs upstream and 20 base-pairs downstream of all insertion sites included in essential gene calculations in logo (top) and line-graph (bottom) forms. *Right*, bits of sequence information in logo form according to WebLogo¹⁰⁸ (top) and frequency relative to counts at an equal number of randomized locations in the genome (bottom).

Supplementary Figure 10: Confirmation of *dpoB2*, *dpoB3*, *dpo4*, and *pbp1* disruption mutant genotypes. a, Genomic context of *dpoB2*, *dpoB3*, *dpo4*, and *pbp1* in the genetic host (Wt) and mutant strains. b, PCR verification of $\triangle dpoB2$, $\triangle dpoB3$, and $\triangle dpo4$ mutant strains. c, PCR verification of the $\triangle pbp1$ mutant strain. L indicates the GeneRuler Express DNA Ladder (Thermo Fisher, USA) and the marker sizes are labelled. Expected sizes of amplicons can be found in Supplementary Table 8.