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SI Appendix

Maximum Likelihood approach. Our goal is to develop a frame-
work that allows us to analytically determine the effects of
different measurement matrices QM on inferred site-wise rates
r̂(k). We employ a maximum likelihood (ML) approach, and
we use the simplest log-likelihood function to be able to derive
an analytical solution. This log-likelihood function describes a
pair of sequences that have diverged from a common ancestor.
To infer divergence time t̂ from these sequences, we can use
the log-likelihood function

L(t̂) =
∑
i,j

nij log[π̂ipM,ij(t̂)]. [1]

Here, nij is the number of times amino acid i has been substi-
tuted by an amino acid j across sites in the two sequences, π̂i
is the estimated equilibrium frequency of amino acid i, and
pM,ij(t̂) is the probability of an amino acid i replacing amino
acid j after time t under the inference model. The probabilities
are defined by the model PM(t̂) = et̂QM , where pM,ij(t̂) are
the elements of PM(t̂), and QM is an amino acid substitution
matrix under the inference model. The product π̂ipM,ij(t̂),
therefore, is the probability that amino acid i is substituted by
amino acid j, assuming the inference model is correct. To infer
t̂, we find the value of t̂ for which the log-likelihood function
is maximized.

Equation 1 is not site-specific, since the nij aggregate infor-
mation over all sites. However, we seek to infer a site-specific
rate r̂(k). We cannot directly use equation 1 for this purpose,
because the nij will either be 0 or 1. (Either a given substitu-
tion did happen at a site or it did not.) In a multiple sequence
alignment, rates can be inferred at individual sites because we
have more than two sequences and hence can observe more
than one substitution at one site. However, working with
more than two sequences adds unnecessary complications to
the analytic calculations we seek to perform. Here, we instead
employ a mathematical trick where we envision that each site
is duplicated many times, and each duplicate of a site evolves
independently according to the same true model that governs
that site. This trick makes our analytical derivation feasible.
We will show later that the number of assumed duplicates
cancels from the calculation and can hence be set to 1. The
site-specific log-likelihood equation for a pair of sequences with
duplicates can be written as

L(r̂(k)) =
∑
i,j

n
(k)
ij log[π̂(k)

i p
(k)
M,ij(t̂, r̂

(k))]. [2]

Here, n(k)
ij is the number of times the amino acid i has been

substituted by an amino acid j among all the duplicates of
site k, and π̂(k)

i and p(k)
M,ij(t̂, r̂

(k)) are specific to site k. The
inference model here has an additional parameter to the model
used previously in the simplest ML. We define the inference
model as PM(t̂, r̂(k)) = et̂r̂

(k)Q
M(k) with the parameter r̂(k) for

the rate of evolution at site k. Using this model, we seek to
infer divergence time t̂ from all sites and their duplicates and
the rate of evolution r̂(k) from individual sites’ duplicates.

We can write n(k)
ij in terms of the true model as

n
(k)
ij = nπ

(k)
i p

(k)
T,ij(t), [3]

where n is the number of duplicates of a site (we assume n
is the same for all sites), and π

(k)
i is the true equilibrium

frequency of an amino acid i at site k. Strictly speaking,
this equation is only correct in the limit of infinitely large n,
because the left-hand side represents the observed numbers
of specific substitutions and the right-hand side represents
the expected numbers of specific substitutions under the true
model. For smaller n, equation 3 is correct only on average.

To solve for the rate that maximizes the log-likelihood
function, we insert the expression for n(k)

ij into equation 2,
take the derivative with respect to r̂(k), set it to zero, and
then solve for r̂(k):

0 = d

dr̂(k)L(r̂(k))

=
∑
i,j

d

dr̂(k)

(
nπ

(k)
i p

(k)
T,ij(t) log[π̂(k)

i p
(k)
M,ij(t̂, r̂

(k))]
)

= n
∑
i,j

π
(k)
i p

(k)
T,ij(t)

p
(k)
M,ij(t̂, r̂(k))

d

dr̂(k) p
(k)
M,ij(t̂, r̂

(k)). [4]

Here, π̂(k)
i cancels out when we take the derivative because

d
dx

log(af(x)) = 1
ax
a d
dx
f(x) = 1

x
d
dx
f(x). We see that n also

cancels, since it is a positive constant. Thus, the ML solution
is independent of the number of assumed site duplicates. Be-
cause d

dr̂(k) p
(k)
M,ij(t̂, r̂

(k)) =
(
P

(k)
M (t̂, r̂(k))t̂Q(k)

M

)
ij
, equation 4

becomes

0 =
∑
i,j

π
(k)
i p

(k)
T,ij(t)

p
(k)
M,ij(t̂, r̂(k))

(
P

(k)
M (t̂, r̂(k))t̂Q(k)

M

)
ij
. [5]

At this point in our calculations, we can start assessing the
effects of different Q(k)

M on the inference of r̂(k). In the fol-
lowing subsections, we will solve the equation for r̂(k) using
a variety of different choices for Q(k)

M , including Q(k)
M = Q

(k)
T

(the measurement matrix equals the true substitution matrix
at site k) and Q(k)

M = QJC (the measurement matrix equals
the Jukes-Cantor-like matrix at all sites). Note that we also
need to infer t̂, so the two parameters will be derived as a
product t̂r̂(k) in the following sections.

Site-wise rate for an arbitrary measurement matrix and small
divergence. If divergence is limited, we can solve equation 5
for an arbitrary measurement matrix. We assume that t→ 0,
so that we can expand the ML equation to first order. In
this limit, without loss of generality we can assume that t̂ is
proportional to t, and for simplicity we write t̂ = t. Under
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these assumptions, the true model becomes P (k)
T (t) = I+tQ(k)

T
and the inference model becomes P (k)

M (t̂, r̂(k)) = I + tr̂(k)Q
(k)
M ,

where I is the identity matrix. We insert these expressions
into equation 5 and obtain

0 =
∑
i,j

π
(k)
i

(
I + tQ

(k)
T

)
ij(

I + tr̂(k)Q
(k)
M

)
ij

(
tQ

(k)
M

)
ij
. [6]

We separate the diagonal and off-diagonal elements,

0 =
∑
i

π
(k)
i tq

(k)
M,ii

1 + r̂(k)tq
(k)
M,ii

+
∑
i,j 6=i

π
(k)
i tq

(k)
T,ii

r̂(k) , [7]

expand each sum to first order, and solve for r̂(k). We find

r̂(k) =
∑

i,j 6=i π
(k)
i q

(k)
T,ij∑

i,j 6=i π
(k)
i q

(k)
M,ij

. [8]

True matrix as measurement matrix. When the measurement
matrix equals the true matrix, Q(k)

M = Q
(k)
T , then t̂ = t and

r̂(k) = 1. We can show this by noting that equation 5 becomes

0 =
∑
i,j

π
(k)
i

(
etQ

(k)
T

)
ij(

et̂r̂
(k)Q(k)

T

)
ij

(
et̂r̂

(k)Q(k)
T t̂Q

(k)
T

)
ij
, [9]

and the right-hand side of this equation simplifies to 0 under
these assumptions. First, for t̂ = t and r̂(k) = 1, equation 9
simplifies to

0 =
∑
i,j

π
(k)
i

(
etQ

(k)
T tQ

(k)
T

)
ij
. [10]

We note that if a is a vector and B is a matrix, then∑
i,j
aiBij =

∑
j
(aB)j . Using this fact and the identity

etQtQ = tQetQ, we can rewrite equation 10 as

0 =
∑
j

(
π(k)tQ

(k)
T etQ

(k)
T

)
j
, [11]

where π(k) is the vector of equilibrium frequencies at site k,
π(k) = (π(k)

1 , π
(k)
2 , π

(k)
3 , . . . ). Because Q(k)

T is an infinitesimal
generator of a continuous-time Markov process, π(k) is a left-
eigenvector to Q(k)

T with eigenvalue 0, π(k)Q
(k)
T = 0. Thus, the

right-hand-side of equation 11 vanishes and t̂ = t and r̂(k) = 1
are the solution to equation 5.

True matrix as a multiple of the measurement matrix. We now
consider the case where Q(k)

T = r(k)Q for an arbitrary transi-
tion matrix Q. Here, r(k) is the true rate parameter at site
k. In this case, if we use Q as measurement matrix, QM = Q,
then t̂ = t and r̂(k) = r(k). The argument is similar to the
preceding subsection. We insert the expressions for Q(k)

T and
QM into equation 5 and then show that the right-hand side
vanishes if t̂ = t and r̂(k) = r(k). Following the same steps as
before, we find

0 =
∑
j

(
πtQetr

(k)Q
)
j
, [12]

where π is the site-independent vector of equilibrium frequen-
cies for Q. Again, because π is a left-eigenvector to Q with
eigenvalue 0, so that πQ = 0, the right-hand side of equation
12 vanishes.

Naïve substitution matrix as measurement matrix. We now as-
sume that Q(k)

M = QJC. The QJC matrix is not site-specific,
and it assumes that each amino acid is equally likely to be
replaced by any other amino acid. For this reason, we also
refer to this matrix as the naïve substitution matrix. The
matrix elements of QJC are given by

qJC,ij =


1
19 if i 6= j,

−1 if i = j.

[13]

If Q(k)
M = QJC, equation 5 can be written as

0 =
∑
i,j

π
(k)
i p

(k)
T,ij(t)Aij(r̂

(k)), [14]

where

Aij(t̂, r̂(k)) =


20t̂

19(−1 + exp(20t̂r̂(k)/19))
if i 6= j,

−20t̂
19 + exp(20t̂r̂(k)/19)

if i = j.

[15]

This expression is the result of a computer-algebra calculation
of the matrix exponential of QJC, performed in Mathematica
and validated numerically for correctness. We solve equation 14
for t̂r̂(k) and find

t̂r̂(k) = 19
20 log 19

19− 20
∑

i,j 6=i π
(k)
i p

(k)
T,ij(t)

. [16]

Since we normalize site-wise rates by their mean, we divide
this equation by t̂〈r̂(t)〉 = t̂

m

∑
l
r̂(l), where m is the total

number of sites in the protein sequence, and find

r̂(k)(t) =
log [1− 20

19
∑

i,j 6=i π
(k)
i p

(k)
T,ij(t)]

1
m

∑
l
log [1− 20

19
∑

i,j 6=i π
(l)
i p

(l)
T,ij(t)]

. [17]

Here, for simplicity, we have assumed without loss of gener-
ality that r̂(k)(t) = r̂(k)(t)/〈r̂(t)〉. We can further simplify
equation 17 by making assumptions about the true time t.

Limiting cases for small and large t. To find r̂(k)(t) when t is
0, we take the limit of equation 17 as t → 0. By applying
l’Hospital’s rule, we find

r̂(k)(0) = lim
t→0

r̂(k)(t)

=

lim
t→0

∑
i,j 6=i π

(k)
i

d
dt
p

(k)
T,ij(t)

1− 20
19
∑

i,j 6=i π
(k)
i p

(k)
T,ij(t)

lim
t→0

1
m

∑
l

∑
i,j 6=i π

(l)
i

d
dt
p

(l)
T,ij(t)

1− 20
19
∑

i,j 6=i π
(l)
i p

(l)
T,ij(t)

. [18]

Because d
dt
p

(k)
T,ij(0) = q

(k)
T,ij and pT,ij(0) = 0 when i 6= j, the

equation simplifies to

r̂(k)(0) =
∑

i,j 6=i π
(k)
i q

(k)
T,ij

1
m

∑
l

∑
i,j 6=i π

(l)
i q

(l)
T,ij

. [19]

When t → ∞, off-diagonal elements of P (k)(t) become
p

(k)
T,ij(∞) = π

(k)
j . Therefore, equation 17 becomes

r̂(k)(∞) =
log [1− 20

19
∑

i,j 6=i π
(k)
i π

(k)
j ]

1
m

∑
l
log [1− 20

19
∑

i,j 6=i π
(l)
i π

(l)
j ]

. [20]
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True model is codon. The derivations above assumed that the
true model operates in an amino-acid space. Here, we derive
the inferred rate assuming the true model is a codon model.
We define a true site-wise codon model as P (k)

T (t) = etQ
(k)
T ,

where Q(k)
T is a site-wise matrix that captures the true rates of

substitution between all codons except the stop codons. Here,
t is the true time measured relative to codon substitutions (as
opposed to amino-acid substitutions as was done above).

Similarly to the ML derivations for amino-acid models, we
infer site-wise rate from two sequences with m sites that have
evolved from a common ancestor. We also assume that the
inference model is in an amino acid model. The ML function,
therefore, is

L(r̂(k)) =
∑
i,j 6=i

∑
a∈Ci

∑
b∈Cj

nπ(k)
a p

(k)
T,ab(t) log[π̂(k)

i p
(k)
M,ij(t̂, r̂

(k))).

[21]
Here, π̂(k)

i is the estimated equilibrium frequency of an amino
acid i at site k, and p

(k)
M,ij(t̂, r̂

(k)) is the probability that at
site k an amino acid i changes into an amino acid j under the
inference model. The subset of codons that translate to amino
acid i is indicated as Ci. The true equilibrium frequency of
codon a at site k is π(k)

a , and the true probability of a codon
a changing into codon b after time t is p(k)

T,ab(t).
We take the derivative of equation 21 with respect to r̂(k)

and set it equal to zero. We assume that the amino acid
inference model uses the Jukes-Cantor like matrix, so that
Q

(k)
M = QJC, and then solve for r̂(k). The derivations follow

the same procedure as equations 13–17.
The final result for the inferred site-wise rate at arbitrary t

is

r̂(k)(t) =
log [1− 20

19
∑

i,j 6=i

∑
a∈Ci

∑
b∈Cj

π
(k)
a p

(k)
T,ab(t)]

1
m

∑
l
log [1− 20

19
∑

i,j 6=i

∑
a∈Ci

∑
b∈Cj

π
(l)
a p

(l)
T,ab(t)]

.

[22]
In the limiting case of t→ 0, this expression can be simplified
to

r̂(k)(0) =

∑
i,j 6=i

∑
a∈Ci

∑
b∈Cj

π
(k)
a q

(k)
T,ab

1
m

∑
l

∑
i,j 6=i

∑
a∈Ci

∑
b∈Cj

π
(l)
a q

(l)
T,ab

. [23]

Similarly, in the limiting case of t → ∞, the expression can
be simplified to

r̂(k) =
log [1− 20

19
∑

i,j 6=i

∑
a∈Ci

∑
b∈Cj

π
(k)
a π

(k)
b ]

1
m

∑
l
log [1− 20

19
∑

i,j 6=i

∑
a∈Ci

∑
b∈Cj

π
(l)
a π

(l)
b ]

. [24]

The Halpern–Bruno mutation–selection model. We used the
Halpern–Bruno mutation–selection model (1) to parameterize
our simulations of sequence evolution. For reference, we here
recapitulate the model’s derivation.

The model assumes that sites evolve independently of each
other and experience the same selection pressure across all
branches in the phylogenetic tree. The model also assumes
that the mutation process is the same at all sites and that
time is reversible. For simplicity, we describe the model at a
single site, and refer to the site-specific rate of substitution
from amino acid i to amino acid j at a site as qij . The rate of
substitution is the product of the probability of a mutation
and the probability that the mutation will go to fixation:

qij = Nemijuij , [25]

where mij is the probability of an amino acid i mutating into
an amino acid j, uij is the probability of fixation, and Ne is
the effective population size. The probability of fixation is
given by (2)

uij = 2sij
1− e−2Nesij

= 1
Ne

2Nesij
1− e−2Nesij

, [26]

where sij is the difference in fitness between amino acids i and
j. We introduce scaled selection coefficients Sij = 2Nesij and
rewrite the fixation probability as

uij = 1
Ne

Sij

1− e−Sij
. [27]

After inserting equation 27 into equation 25, we arrive at

qij = mij
Sij

1− e−Sij
. [28]

Because we are using a time-reversible model, we can esti-
mate Sij using the detailed-balance condition:

qijπi = qjiπj for all i, j, [29]

where πi is the equilibrium frequency of amino acid i. We
substitute equations 25 and 27 into equation 29 and find

Sji
Sij

1− e−Sij

1− e−Sji
= mjiπj
mijπi

[30]

Because Sij = −Sji by definition, we can simplify this equation
to

Sij = ln
(
mjiπj
mijπi

)
. [31]

After inserting equation 31 into equation 25, we arrive at a site-
specific substitution matrix qij defined entirely in terms of the
mutation process and the equilibrium amino-acid frequencies:

qij = mij

ln
(
mjiπj

mijπi

)
1− mijπi

mjiπj

. [32]

Using the mutation–selection model to populate a protein
substitution matrix. For our simulations of sequence evolution,
we needed an appropriate model of site-wise substitution. We
chose the Halpern–Bruno mutation–selection model (1) pa-
rameterized by amino-acid equilibrium frequencies predicted
from a structural model of protein evolution. As shown in
equation 32, the site-specific substitution matrix q(k)

ij can be
written in terms of the mutation matrix mij and the amino-
acid equilibrium frequencies π(k)

i . We calculate the equilibrium
frequencies π(k)

i using the theory and data from Echave et al.
(3), who provide an expression for π(k)

i in terms of the stability
effects of mutations,

π
(k)
i = e−α∆∆G(k)

oi∑
j
e
−α∆∆G(k)

oj

, [33]

where α is a positive free parameter and ∆∆G(k)
oi is the change

in stability of the protein structure when an arbitrarily chosen
reference amino acid at site k is substituted with amino acid
i.

Here, we assume all mutations are equally likely, so that
mij = 1 for i 6= j. Further, following Ref. (3), we set α = 1,
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so that the scaled selection coefficients directly correspond to
the difference in ∆∆G reference values,

Sij = ∆∆Goi −∆∆Goj . [34]

We calculated corresponding substitution matrices qij for all
124 sites for which Ref. (3) provides ∆∆G values for the

protein egg white lysozyme (PDB ID: 132L) .
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Fig. S1. Inferred rates converge to the analytically predicted value as the number of site duplicates is increased. Each dot represents one rate inference for the same site in a
simulated alignment. A moderate amount of random jitter has been applied to the x position of each point to visualize multiple points with similar relative rates. Rate was
inferred for the same site in 250 replicate simulations (50 simulations per number of site duplicates). The red line represents the site’s analytically derived rate.

Fig. S2. Comparison of the true and inferred rate when the true model matrix is a scalar multiple of the inference model matrix. In the shown example, the true model matrix
is r(k)QJC and the inference matrix is QJC. The black line represents the true rate, and the red dots represent the mean inferred rate over 30 simulations. The error bars
represent the standard error. For all points, the bars are smaller than the symbol size. The thin horizontal line at 1 represents the average rate in the sequence. (A-F) Rate over
time for sites 1-6, respectively.
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Fig. S3. Relationship between analytically derived rates and rates inferred with Jukes-Cantor-like (JC), JTT, LG, and WAG matrices. Sequence alignments were simulated for
binary trees with 512 taxa and 124 sites, parameterized using data from egg white lysozyme (see Methods). No site duplicates were used in these simulations. The inferences
with the JTT, LG, and WAG matrices assumed that each amino acid’s equilibrium frequency is equal to the frequency of that amino acid in the entire alignment. The inference
with JC matrix assumed that each amino acid’s equilibrium frequency is 1/20. The inferred rates plotted above are mean inferred rates over 50 simulations for each time point
and site. The analytically derived rate was calculated with equation 19. The numbers on top of the plot panels indicate the time t used for each simulation. The labels on the
right indicate the substitution matrix used for inference. Each point represents one site, and the diagonal line represents x = y.
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Fig. S4. Relationship between rates inferred with the Jukes-Cantor-like matrix with different assumptions about amino-acid equilibrium frequencies. One inference approach
assumes that all equilibrium frequencies are 1/20 for each amino acid (denoted as “equal frequencies”). The other approach assumes that each amino acid’s equilibrium
frequency is equal to the frequency of that amino acid in the alignment (denoted as “observed frequencies”). The numbers at the top of the plot indicate the time t used for each
simulation. The alignments were simulated over trees with 512 number of taxa. Each point represents the mean inferred rate per site over 50 simulations, and the diagonal line
represents x = y.

Fig. S5. Comparison of the inferred rates and the analytically derived rates when the true model is a codon model. The inference model used an amino acid Jukes-Cantor-like
matrix. The black line represents the analytically derived rate (equation 22). The blue line represents analytically derived rate when time t is small (equation 23). The green line
represent the analytically derived rate when time t is large (equation 24). The red dots represent the mean inferred rate over 30 simulations. The error bars represent the
standard error. For all points, the bars are smaller than the symbol size. The horizontal line at 1 represents the average rate in the sequence. The time plotted is measured
relative to amino acid substitutions. (A-F) Rate over time for sites 1, 2, 4, 5, 7, and 9, respectively.
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