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Overview

This document provides additional details about the methods we used in the main text. We also
include some additional analyses and figures referenced in the main text.

Additional details about topic modeling methods and results

Optimizing topic model parameters

In order to create accurate video and recall models, we used an optimization method that was
driven by our ability to explain hand-annotated memory performance metrics collected by Chen
et al. (2017). Specifically, we used a grid search to compute the ω (video sliding window duration,
in scenes), ρ (recall sliding window duration, in sentences), and K (number of topics) that satisfied

argmax
ω,ρ,K

[
corr
(
corr
(
µ
(
ω, ρ,K

)
, ν
(
ω, ρ,K

))
, θ
)]
,

where corr(µ, ν) is the per-participant correlation between the upper triangles of the temporal
correlation matrices of the video (µ) and recall (ν) trajectory, and θ is the per-participant hand-
annotated memory performance. We searched over a grid of pre-specified values for each of these
parameters; the resulting correlations are displayed in Figure S1. The optimal parameters were
ω = 50, ρ = 10, and K = 100.

The optimized model converged on 27 unique topics that were assigned non-zero weights over
the course of the video. We provide a list of the top ten highest-weighted words from each topic
in Figure S2.

Feature importance analyses

To determine the contribution of each feature to the structure of the video topic proportions, we
conducted a “leave one out” analysis. Specifically, we compared the original video topic trajectory
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Figure S1: Optimizing topic model parameters. We performed a grid search over video sliding window
length (ω ∈ {5, 10, 25, 50, 100}), recall sliding window length (ρ ∈ {5, 10, 25, 50, 100}, and number of topics
(K ∈ {5, 10, 25, 50, 100}. The reported correlations are between per-subject video-recall trajectory correlations
and per-subject hand-annotated memory performance ratings.

(created using all hand-annotated features from the 1000 hand-annotated scenes spanning the
Sherlock episode; see Methods for a full list of features) with video trajectories created using all but
one type of feature. We created temporal correlation matrices for each trajectory (using the topic
proportions matrices) and correlated the upper triangles of each impoverished trajectory with
the original feature-complete trajectory. Observing a lower correlation between an impoverished
trajectory (holding out a particular feature) and the feature-complete trajectory would suggest that
the given feature played a more prominent role in shaping the structure of the feature-complete
trajectory. We found that hand-annotated narrative details provided the most structure to the
feature-complete trajectory, whereas transcriptions of onscreen text provided the least structure
(Fig. S3A).

We also carried out an analysis of which annotated features tended to shape aspects of the
video topic trajectory that were preserved in participants’ recalls. Specifically, we computed the
timepoint-by-timepoint correlation matrix of the video topic trajectory, and correlated its upper
triangle with that of the timepoint-by-timepoint correlation matrices of each participant’s recall
topic trajectory (resampled using linear interpolation to have the same number of timepoints as
the video trajectory). This yielded a single correlation coefficient for each participant. We then
repeated this analysis with each annotated feature held out in turn. Observing a lower correlation
between the video and recall trajectories (when a given feature was held out) would indicate that
the feature tends to be preserved in participants’ recalls. We found that hand-annotated narrative
details were the most preserved type of feature, whereas information about the camera angle
tended not to influence participants’ recalls (Fig. S3B).

Next, we wondered how the different types of features might relate. For example, knowing
which characters are on screen during a given scene may also provide information about which
characters are speaking. We computed video topic trajectories for each feature in turn, and then
compared the temporal correlation matrices of all pairs of features. This provided additional
confirmation that the shape of the full trajectory (including all types of features) was largely driven
by narrative details. We also found that character-driven features (characters on screen, characters
speaking, and characters in focus) were strongly correlated. Other details, such as the presence or
absence of music, led to very different topic trajectories (Fig. S3C).
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1 sir, je�rey, indoor, yes, o�ce, building, aide,
 helen, lestrade, medium
2 sherlock, john, outdoor, taxi, yes, medium, road,
 says, phone, continues
3 sherlock, john, donovan, medium, lauriston,
 gardens, anderson, street, outdoor, lestrade
4 lestrade, donovan, room, indoor, press, conference,
 police, medium, reporter, reporters
5 john, man, yes, warehouse, indoor, medium,
 shoulder, says, hand, asks
6 sherlock, lestrade, john, indoor, medium, gardens,
 lauriston, room, �oor, crime
7 john, road, brixton, outdoor, phone, box, yes,
 medium, man, camera
8 john, sherlock, street, medium, baker, indoor,
 says, mrs, hudson, 221b
9 john, donovan, lauriston, gardens, yes, street,
 medium, outdoor, shoulder, policeman
10 lestrade, donovan, indoor, room, medium, aide,
 press, conference, police, reporter
11 john, mike, lestrade, medium, donovan, park,
 indoor, square, russell, outdoor
12 john, sherlock, medium, street, baker, anthea,
 indoor, yes, 221b, suite
13 sherlock, john, st, bartholomew, hospital, indoor,
 medium, molly, mike, laboratory
14 john, man, yes, anthea, medium, warehouse, indoor,
 car, road, outdoor
15 john, mike, sherlock, medium, molly, park, russell,
 square, outdoor, bench
16 jimmy, yes, indoor, donovan, medium, aide, gary,
 lestrade, press, conference
17 sherlock, john, crime, scene, room, �oor,
 lauriston, gardens, indoor, lestrade
18 sherlock, john, mrs, hudson, baker, street, 221b,
 indoor, suite, yes
19 john, je�rey, sir, indoor, yes, medium,
 psychotherapist, helen, o�ce, london
20 john, sherlock, yes, laboratory, indoor, hospital,
 bartholomew, st, medium, mike
21 sherlock, lestrade, indoor, yes, room, �oor,
 gardens, lauriston, scene, crime
22 john, indoor, room, medium, psychotherapist, yes,
 soldiers, close, london, outdoor
23 yes, je�rey, sir, jimmy, aide, indoor, medium,
 woman, helen, man
24 sherlock, john, suite, street, 221b, baker, indoor,
 medium, says, asks
25 man, john, warehouse, indoor, yes, shoulder,
 medium, says, continues, looks
26 jimmy, yes, gary, sir, je�rey, medium, indoor,
 outdoor, psychotherapist, rain
27 sherlock, john, indoor, street, baker, medium,
 221b, suite, yes, phone

Topic ID Top 10 words Topic description
The �rst death

John being followed (a)

Discussing the fourth death

Press conference (a)

Meeting with Mycroft (a)

Examining a body (a)

John being followed (b)

221b Baker St. (a)

Consulting with the police

Press conference (b)

Exposition

Bringing John back

John meets Sherlock (a)

Kidnapping John

John runs into an old friend

The second death (a)

Examining a body (b)

221b Baker St. (b)

John’s psychotherapy appointment

John meets sherlock (b)

Examining a body (c)

John’s PTSD

Press conference (c)

221b Baker St. (c)

Meeting with Mycroft (b)

The second death (b)

221b Baker St. (d)

Figure S2: Topics discovered in Sherlock. We applied a topic model to hand-annotated information about
1000 scenes spanning the 45 minute episode. We identified 27 unique topics with non-zero weights (we
used K = 100 topics to fit the model). Each topic comprises a distribution of weights over all words in the
vocabulary. For each topic, we show the words with the 10 largest weights, along with a suggested description
of the topic.
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Narrative details

Characters on screen

Location

Character speaking

Character in focus

Text on screen

Camera angle

Indoor vs outdoor

Music presence
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Figure S3: Feature importance analysis. A. Contributions of each feature type to the structure of the video
trajectory. The bar heights reflect the correlation between the video trajectory computed using all features with
a video trajectory computed using all features except the indicated feature. (Lower bars reflect features that
contribute more substantially to the video trajectory’s shape.) B. Which features are preserved during recall?
The bar heights reflect the (average) across-participant correlations between the video and recall trajectories.
Error bars denote bootstrap-estimated standard error of the mean. C. Feature correlation matrix. Each
entry displays the correlation between video topic trajectories created using only the indicated (row/column)
features.

Additional analyses of memory performance

Naturalistic extensions of classic list-learning analyses

In traditional list-learning experiments, participants view a list of items (e.g., words) and then recall
the items later. Our video-recall event matching approach affords us the ability to analyze memory
in a similar way. The video and recall events can be treated analogously to studied and recalled
“items” in a list-learning study. We can then extend classic analyses of memory performance and
dynamics (originally designed for list-learning experiments) to the more naturalistic video recall
task used in our study.

Perhaps the simplest and most widely used measure of memory performance is accuracy– i.e.,
the proportion of studied (experienced) items (in this case, the 34 video events) that the participant
later remembered. Chen et al. (2017) developed a human rating system whereby the quality of
each participant’s memory was evaluated by an independent rater. We found a strong across-
participants correlation between these independant ratings and the overall number of events that
our HMM approach identified in participants’ recalls (Pearson’s r(15) = 0.67, p = 0.003).

As described below, we next considered three more nuanced measures of the memory perfor-
mance and dynamics that are typically associated with list-learning studies. We also provide a
software package, Quail, for carrying out these analyses (Heusser et al., 2017).

Probability of first recall (PFR). PFR curves (Welch and Burnett, 1924; Postman and Phillips,
1965; Atkinson and Shiffrin, 1968) reflect the probability that an item will be recalled first as a
function of its serial position during encoding. To carry out this analysis, we initialized a number-
of-participants (17) by number-of-video-events (34) matrix of zeros. Then for each participant, we
found the index of the video event that was recalled first (i.e., the video event whose topic vector
was most strongly correlated with that of the first recall event) and filled in that index in the matrix
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Figure S4: Naturalistic extensions of classic list-learning memory analyses. A. The probability of first
recall as a function of the serial position of the event in the video. B. The probability of recalling each event,
conditioned on having most recently recalled the event lag events away in the video. C. The proportion of
participants who recalled each event, as a function of the serial position of the events in the video. All panels:
error bars denote bootstrap-estimated standard error of the mean.

with a 1. Finally, we averaged over the rows of the matrix, resulting in a 1 by 34 array representing
the proportion of participants that recalled an event first, as a function of the order of the event’s
appearance in the video (Fig. S4A).

Lag conditional probability curve (lag-CRP). The lag-CRP curve (Kahana, 1996) reflects the
probability of recalling a given event after the just-recalled event, as a function of their relative
positions (or lag). In other words, a lag of 1 indicates that a recalled event came immediately after
the previously recalled event in the video, and a lag of -3 indicates that a recalled event came 3
events before the previously recalled event. For each recall transition (following the first recall),
we computed the lag between the current recall event and the next recall event, normalizing by
the total number of possible transitions. This yielded a number-of-participants (17) by number-
of-lags (-33 to +33; 67 lags total) matrix. We averaged over the rows of this matrix to obtain a
group-averaged lag-CRP curve (Fig. S4B).

Serial position curve (SPC). SPCs (Murdock, 1962) reflect the proportion of participants that
remember each item as a function of their serial position during encoding. We initialized a number-
of-participants (17) by number-of-video-events (34) matrix of zeros. Then, for each recalled event,
for each participant, we found the index of the video event that the recalled event most closely
matched (via the correlation between the events’ topic vectors) and entered a 1 into that position
in the matrix (i.e., for the given participant and event). This resulted in a matrix whose entries
indicated whether or not each event was recalled by each participant (depending on whether the
corresponding entires were set to one or zero). Finally, we averaged over the rows of the matrix
to yield a 1 by 34 array representing the proportion of participants that recalled each event as a
function of the order of the event’s appearance in the video (Fig. S4C).

Temporal clustering scores. Temporal clustering refers to the extent to which participants group
their recall responses according to encoding position (Polyn et al., 2009). For instance, if a par-
ticipant recalled the video events in the exact order they occurred (or in exact reverse order), this
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would yield a score of 1. If a participant recalled the events in random order, this would yield
an expected score of 0.5. For each recall event transition (and separately for each participant), we
sorted all not-yet-recalled events according to their absolute lag (i.e., distance away in the video).
We then computed the percentile rank of the next event the participant recalled. We averaged
these percentile ranks across all of the participant’s recalls to obtain a single temporal clustering
score for the participant (mean: 0.808, SEM: 0.022). Overall, we found that participants with higher
temporal clustering scores also tended to recall more events (Pearson’s r(15) = 0.62, p = 0.007).

Semantic clustering scores. Semantic clustering measures the extent to which participants clus-
tered their recall responses according to semantic similarity (Polyn et al., 2009). Here, we used the
topic vectors for each event as a proxy for its semantic content. Thus, the similarity between the
semantic content for two events can be computed by correlating their respective topic vectors. For
each recall event transition, we sorted all not-yet-recalled events according to how correlated the
topic vector of the closest-matching video event was to the topic vector of the closest-matching video
event to the just-recalled event. We then computed the percentile rank of the observed next recall.
We averaged these percentile ranks across all of the participant’s recalls to obtain a single semantic
clustering score for the participant (mean: 0.813, SEM: 0.022). We found that participants who
exhibited stronger semantic clustering scores overall remembered more video events (Pearson’s
r(15) = 0.55, p = 0.02).

Additional measures of naturalistic memory

To quantify the similarity between the video topic trajectory and individual recall topic trajectories,
we considered several novel metrics. First, we tested whether each participant’s recall trajectory
matched the video trajectory in a general sense. For each participant we filtered the video trajectory
to only include the events that the participant remembered. We then computed the root mean
squared difference (RMSD) between the remaining video events and the (closest-matching) recalled
events. For example, if the topic vectors for a participant’s recall event topic vectors matched the
corresponding video event topic vectors exactly (and in order), the expected RMSD for those events
would be 0. However, if the participant’s recall events did not perfectly match the video events,
or if they were out of order, then the RMSD would be greater than 0. To assess the significance
of the match between the video and recall trajectories, we carried out a permutation procedure
whereby, for each of 10000 repetitions, we circularly shifted the recall trajectories (in time) by a
random amount and then re-computed the RMSD each time. This yielded a distribution of “null”
RMSD values for each participant. The observed RMSD values reached significance (i.e., p < 0.05,
reflecting that more than 95% of the null RMSD values were greater than the observed RMSD value)
for nine of the participants (3, 4, 8–13, and 17). (For the remaining participants this test yielded
0.05 ≤ p < 0.25.) The observed RMSD values were also reliably correlated with hand-annotated
memory performance across participants (Pearson’s r(15) = −0.57, p = 0.016). In other words, a
closer match between the video and recall topic trajectories was related to better overall recall
performance.

Precision. We next tested whether participants who recalled more events were also more precise
in their recollections. For each participant, we computed the correlation between the topic vectors
for each recall event and that of its closest-matching video event (only for the events which they
recalled). We defined the precision as the average video-recall correlation across all of the events a
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participant recalled. We found a strong correlation between hand-annotated memory performance
and precision, suggesting that participants who remembered more events also remembered them
more veridically (Pearson’s r(15) = 0.74, p = 0.0006).

Distinctiveness. We also considered the distinctiveness of each recalled event. That is, how
uniquely a recalled event’s topic vector matched a given video event topic vector, versus the
topic vectors for the other video events. We hypothesized that participants with high memory
performance might describe each event in a more distinctive way (relative to those with lower
memory performance who might describe events in a more general way). To test this hypothesis
we define a distinctiveness score for each recalled event as

d(event) = 1 − c̄(event),

where c̄(event) is the average correlation between the given recalled event’s topic vector and the
topic vectors from all video events except the best-matching video event. We then averaged these
distinctiveness scores across all of the events recalled by the given participant. We found that
participants with higher average distinctiveness scores tended to also have better hand-annotated
memory performance (Pearson’s r(15) = 0.8, p = 0.0001).

Other order effects. We tested whether participants with better memory performance were also
more likely to remember the events in order. For each participant, we computed the Spearman
rank correlation between the order of events that the participant recalled and the order the events
actually occurred in the video (considering in the analysis only the events that the participant
recalled). Participants who recalled more events also recalled more of them in order (Pearson’s
r(15) = 0.5, p = 0.04). In summary, we found that better memory performance was associated with
more precise, distinctive, and ordered recalls.

Participant-level figures referenced in the main text
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Figure S5: Recall trajectory temporal correlation matrices and event segmentation fits. Each panel is in the
same format as Figure 2E in the main text. The yellow boxes indicate HMM-identified event boundaries.
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Figure S6: Video-recall event correlation matrices. Each panel is in the same format as Figure 2G in the main
text. The yellow boxes mark the maximum correlation in each column.
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