SUPPLEMENTARY MATERIALS

	-	21	21	21			L	115	115	115			L	513	513	513
	p-val r	0.7975		0.0054					0.1129	0.0012			p-val r	0.4796	0.1268	
	Struct MAE p.	31.170	30.971	33.384			Resi MAE Struct MAE p-val	25.289	25.881	26.646			Struct MAE p.	28.240	28.798	28.410
bsi	si MAE	31.832	31.157	33.223		psi	Resi MAE	25.754	26.545	27.035		psi	Resi MAE	27.981	28.635	27.883
	c	21	21	21			c	115	115	115			L	513	513	513
	p-val	0.3548		0.0012					0.2340	0.0000			p-val	0.3941	0.7879	
	Struct MAE	20.255	19.991	21.855			Resi MAE Struct MAE p-val	16.934	17.084	17.607			Struct MAE	20.218	20.325	20.299
iha	i MAE	20.256	20.013	21.607		phi	Resi MAE	17.228	17.465	17.998		phi	Resi MAE	20.070	20.231	20.061
	c	21	21	21	21		c	115	115	115	115		c			
		0.5322		0.0181	0.0006				0.0282	0.0000	0.000					
	Struct FPR p-val	0.015	0.013	0.041	0.068		Resi FPR Struct FPR p-val	0.007	0.010	0.044	0.062		Struct FPR p-val			
disorder	Resi FPR	0.015	0.011	0.026	0.045	disorder	Resi FPR	0.006	0.008	0.027	0.044	disorder	Resi FPR			
	L	21	21	21	21		c	115	115	115	115		L			
			0.6304	0.4121	0.9059			0.8115		0.3207	0.1800					
	Struct MCC p-val	0.518	0.502	0.476	0.514		Resi MCC Struct MCC p-val	0.533	0.529	0.505	0.500		Struct MCC p-val			
disorder	U	0.660	0.604	0.597	0.621	disorder	Resi MCC	0.656	0.663	0.604	0.567	disorder	Resi MCC			

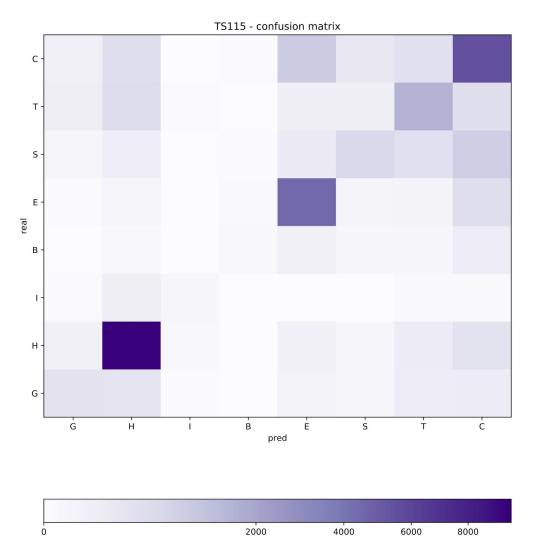
Struct [] = Mean of per-structure performance																
	of per-struct	ure performa	nce													
CASP12																
	rsa				asa				q3				q8			
	Resi PCC	Resi PCC Struct PCC p-val		u	Resi PCC	Resi PCC Struct PCC p-val	p-val	c	Resi ACC	Resi ACC Struct ACC p-val	p-val	c	Resi ACC	Resi ACC Struct ACC p-val	p-val	L
mmseqs	0.726	0.712		21	0.735	0.735	0.5292	21	0.819	0.818	0.5181	21	0.703	0.716	0.7597	21
hhblits	0.725	0.712	0.9156	21	0.737	0.738		21	0.824	0.825		21	0.711	0.718		21
nsp1	0.617	0.613	0.0000	21	0.641	0.653	0.0000	21	0.709	0.682	0.0001	21				
spider					0.687	0.688	0.0029		0.791	0.774	0.0004	21				
raptorx									0.786	0.772	0.0017	21	0.661	0.657	0.0022	21
jpred4									0.760	0.746	0.0000	21				
TS115																
	rsa				asa				q3				q8			
	Resi PCC	Resi PCC Struct PCC p-val		L	Resi PCC	Resi PCC Struct PCC p-val	p-val	c	Resi ACC	Resi ACC Struct ACC p-val	p-val	c	Resi ACC	Resi ACC Struct ACC p-val	p-val	-
mmsegs	0.778	0.751		115	0.797	0.785		115	0.857	0.862		115	0.750	0.763		115
hhblits	0.775	0.750	0.7936	115	0.795	0.785	0.9783	115	0.853	0.859	0.3780	115	0.744	0.756	0.0401	115
nsp1	0.661	0.640	0.0000	115	0.691	0.679	0.0000	115	0.326	0.317	0.0000	115				
spider					0.771	0.755	0.0000	115	0.838	0.843	0.0000	115				
raptorx									0.822	0.829	0.0000	115	0.716	0.731	0.0000	115
jpred4									0.751	0.784	0.0000	108				
CB513																
	rsa				asa				q3				q8			
	Resi PCC	Resi PCC Struct PCC p-val		u	Resi PCC	Struct PCC	p-val	L	Resi ACC	Struct ACC p-val	p-val	u	Resi ACC	Resi ACC Struct ACC p-val	p-val	L
mmseds	0.794	0.778		513	0.807	0.799		513	0.853	0.851		513	0.723	0.722		513
hhblits	0.788	0.774	0.1115	513	0.804	0.796	0.1614	513	0.853	0.849	0.3244	513	0.720	0.719	0.2298	513
nsp1	0.701	0.693	0.0000	513	0.723	0.721	0.0000	513	0.787	0.783	0.0000	513				
spider					0.797	0.790	0.0000	513	0.848	0.844	0.0025	513				
raptorx									0.827	0.827	0.0000	508	0.703	0.704	0.0000	508
jpred4									0.683	0.775	0.0000	416				

Supplementary table S1: Results of the method's validation on independent test datasets. The performance of NetSurfP-2.0 using HH-suite and MMSeqs2 profiles, NetSurfP-1.0, Spider3, SPOT-disorder, RaptorX, and JPred4, is displayed for the CASP12, TS115, and CB513 datasets. SPOT-disorder and Spider3 predictions are reported as a single row. The following performance metrics are

used: Pearson Correlation Coefficient (PCC), Q3 and Q8 accuracy, Matthew's Correlation Coefficient (MCC), False Positive Rate (FPR), and mean absolute error (MAE) in degrees. The different predicted features are reported in the column header, together with the corresponding performance metric. All metrics are calculated both *per residue*, i.e. as an average over all residues in all structures, and *per structure*, i.e. as the average of the metric per structure, which is in turn calculated as the average of all its residues. For each feature and each dataset, a p-value is calculated by performing a 2-tailed paired Student's t-test on the corresponding performances per structure.

CASP12	рсс	рсс	Q8	Q3		MCC	MAE	MAE
	RSA	ASA	Q8	Q3		Disorder	Phi	Psi
Fold 1	0.7282	0.7365	0.7000	0.8189		0.6237	20.3031	31.6195
Fold 2	0.7284	0.7373	0.7041	0.8218		0.6448	20.1904	31.6913
Fold 3	0.7294	0.7383	0.6917	0.8069		0.5708	20.2208	31.6077
Fold 4	0.7291	0.7404	0.7062	0.8184		0.6597	20.3522	31.8715
TS115								
	RSA	ASA	Q8	Q3		Disorder	Phi	Psi
Fold 1	0.7833	0.8025	0.7482	0.8577		0.6650	17.1660	25.4516
Fold 2	0.7826	0.8016	0.7506	0.8590		0.6618	17.2033	25.4277
Fold 3	0.7830	0.8020	0.7464	0.8561		0.6548	17.2587	25.5880
Fold 4	0.7806	0.7998	0.7482	0.8565		0.6601	17.2485	25.7665
CB513								
	RSA	ASA	Q8	Q3		Disorder	Phi	Psi
Fold 1	0.8002	0.8132	0.7211	0.8519		0.1045	20.1689	27.9715
Fold 2	0.7991	0.8123	0.7221	0.8533		0.1283	20.1562	28.0746
Fold 3	0.7990	0.8123	0.7212	0.8526		0.0815	 20.1293	27.9960
Fold 4	0.7985	0.8116	0.7194	0.8508		0.1244	20.2399	28.1678

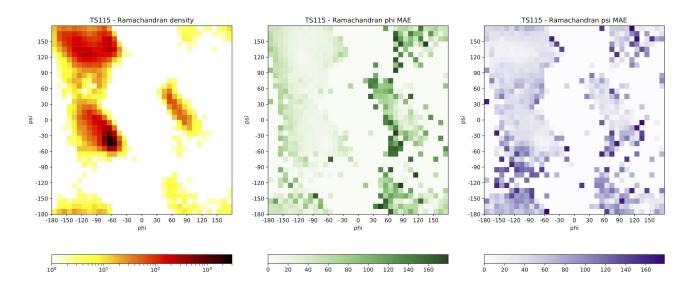
Supplementary table S2: Results of the method's validation using a 4-fold validation approach. The metric used for teach column is reported in the first row.


			CASP12			TS115			CB513		
output	metric	dist	SEQ	АТОМ	Diff	SEQ	АТОМ	Diff	SEQ	ΑΤΟΜ	Diff
q3	acc	1	0.761	0.702	0.060	0.764	0.633	0.131	0.750	0.687	0.062
	acc	2	0.682	0.712	-0.030	0.686	0.668	0.019	0.747	0.714	0.034
	acc	3	0.712	0.712	0.000	0.725	0.725	0.000	0.773	0.768	0.005
	acc	4	0.773	0.758	0.015	0.797	0.819	-0.022	0.785	0.799	-0.014
	acc	5	0.862	0.785	0.077	0.798	0.811	-0.013	0.855	0.869	-0.014
q8	acc	1	0.627	0.508	0.119	0.648	0.481	0.167	0.643	0.532	0.111
	acc	2	0.530	0.561	-0.030	0.594	0.548	0.046	0.647	0.588	0.059
	acc	3	0.591	0.621	-0.030	0.603	0.613	-0.009	0.608	0.601	0.007
	acc	4	0.621	0.652	-0.030	0.676	0.698	-0.022	0.663	0.680	-0.017
	acc	5	0.739	0.723	0.015	0.689	0.699	-0.010	0.732	0.742	-0.010
rsa	рсс	1	0.260	0.194	0.066	0.343	0.336	0.007	0.485	0.460	0.025
	рсс	2	0.452	0.455	-0.003	0.465	0.486	-0.021	0.603	0.616	-0.013
	рсс	3	0.631	0.610	0.021	0.674	0.660	0.013	0.630	0.641	-0.012
	рсс	4	0.587	0.560	0.027	0.664	0.667	-0.002	0.716	0.722	-0.006
	рсс	5	0.533	0.537	-0.004	0.739	0.753	-0.014	0.762	0.772	-0.010
asa	рсс	1	0.452	0.344	0.109	0.510	0.492	0.018	0.552	0.535	0.017
	рсс	2	0.548	0.531	0.017	0.553	0.567	-0.014	0.630	0.645	-0.014
	рсс	3	0.634	0.587	0.047	0.694	0.686	0.009	0.676	0.676	0.001
	рсс	4	0.605	0.577	0.028	0.689	0.689	0.000	0.731	0.744	-0.013
	рсс	5	0.555	0.537	0.018	0.763	0.772	-0.009	0.776	0.784	-0.008

Supplementary table S3: Accuracy of the method in the residues preceding and following disordered regions. The distance of the residue to the disordered region is reported in the dist column. The "SEQ" and "ATOM" columns contain the results obtained with the version of NetSurfP-2.0 trained without and with disordered residues, respectively. The "Diff" column shows the difference between the two methods, and it is colored in dark green, green, whilte, and orange, for results where the "ATOM" version has a difference of more than 10%, more than 3%, between 3% and -3%, and below -3%. No difference below -10% was present.

CASP12							
	RSA	ASA	Q8	Q3	Disorder	Phi	Psi
Current	0.7322	0.7414	0.7029	0.8177	0.6608	20.1658	31.5859
PDBSEQ PRO	0.7237	0.7315	0.6706	0.7962		19.9052	31.1891
PDBSEQ	0.7245	0.7329	0.6739	0.7982		19.7819	30.7876
1 output	0.7138	0.7242	0.6963	0.8225	0.7016		

TS115							
	RSA	ASA	Q8	Q3	Disorder	Phi	Psi
Current	0.7845	0.8033	0.7489	0.8566	0.6664	17.2269	25.6000
PDBSEQ PRO	0.7860	0.8043	0.7349	0.8461		16.8226	24.9746
PDBSEQ	0.7851	0.8039	0.7381	0.8477		16.7593	24.8865
1 output	0.7716	0.7924	0.7495	0.8600	0.6374		
CB513							
	RSA	ASA	Q8	Q3	Disorder	Phi	Psi
Current	0.7992	0.8126	0.7208	0.8515		20.1228	28.2267
PDBSEQ PRO	0.8067	0.8193	0.7325	0.8582		19.7445	27.2077
PDBSEQ	0.8070	0.8196	0.7334	0.8585		19.7169	27.1891
1 output	0.7879	0.8022	 0.7211	0.8534			


Supplementary table S4: A comparison of the results of NetSurfP-2.0 (Current) with respect of those obtained by training only on non-disordered region, using profiles obtained with the whole sequence (PDBSEQ PRO) or with the sequence of only non-disordered residue (PDBSEQ), and with models trained only on a single output variable (1 output).

Supplementary figure S1: Graphical representation of the 8-class secondary structure prediction confusion matrix. A non-linear scale was used for the coloring, as displayed in the bottom bar.

Supplementary figure S2: scatterplot of residue normalised B-factors plotted against their disorder prediction.

Supplementary figure S3: Ramachandran plot of all residues in the TS115 dataset (left panel), together with the average error in the prediction of their phi (central panel, shades of green) and psi (right panel, shades of blue).