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Supplementary Methods   
Here we have provided details about the animals and phenotypes measured in this study in accordance 
with ARRIVE Guidelines. All mouse experiments were approved by the University of Chicago IACUC 
(https://iacuc.uchicago.edu/). We describe how phenotypes were collected and analyzed in extended 
detail and we describe how we identified and corrected sample mix-ups in GBS and RNA-seq data. We 
also provide background about genome-wide significance thresholds and our rationale for using 1.5-LOD 
intervals to define associated loci. Finally, we list software and online resources that we used in our 
analyses. 

1. Phenotypes 

1.1. Overview of phenotype data pre-processing 
We measured phenotypes in 1,123 AIL mice (562 female, 561 male) (Aap: LG,SM-G50-56) but only 
processed phenotype data for 1,063 mice (530 female, 533 male) that had high-quality GBS data. Sex 
was included as a covariate in all trait models. Other covariates (e.g. batch, generation, coat color, 
testing chamber) were selected in three stages: (1) we used the adjusted r-squared statistic from a 
univariate linear regression model to estimate the percent of phenotypic variance explained by each 
variable. (2) Variables that explained 1% or more of the trait variance were used in the model selection R 
package, leaps, to identify an optimal set of predictors for each trait. (3) We then reviewed each list of 
selected covariates and made revisions if necessary (trait-specific details are provided below). Residuals 
from the final trait models were plotted to identify outliers. An individual was considered an outlier if its 
residual value was more than three standard deviations from the mean and fell outside the 99% 
confidence interval of the normal distribution. Traits were quantile-normalized after removing outliers. 
The final sample size for each trait is shown in Supplementary Table 2 along with a list of covariates 
used for GWAS. 

1.2 Conditioned place preference (CPP) and locomotor behavior 

1.2.1. CPP background 
CPP is an associative learning paradigm that measures the motivational properties of a drug and the 
ability to associate its effects with a particular environment 1. The subjectively positive effects of drugs 
are thought to contribute to the early stages of drug abuse in humans2,3. Humans and rodents display 
inter-individual variability in response to and preference for drugs of abuse2,4 and this variability is known 
to be heritable5–7; moreover, the positive subjective response to drugs is correlated with the development 
of drug abuse2,2,8. Accordingly, we and others have proposed that individuals who are genetically 
predisposed to respond positively to drugs are more likely to continue using them, putting them at greater 
risk to develop addiction9,10. Thus, a broad goal of our approach was to identify genes that predispose an 
individual to like or dislike drugs of abuse so that future experiments might determine how such genes 
increase or decrease risk for drug abuse. Importantly, the positive subjective response to drugs can be 
measured in rodents, humans, and other model organisms11,12 using the CPP paradigm.  

Results from studies of CPP for methamphetamine4,13,14 and d-amphetamine15,16 in healthy 
human subjects demonstrates that self-reported preference for a drug-paired room is correlated with the 
self-reported pleasant effects of psychostimulants, suggesting that CPP is a reasonable way to measure 
the hedonic properties of rewarding drugs. However, the relationship between CPP and subjective 
preference for a drug is ambiguous in model organisms because behavioral observation rather than self-
report is used to infer their internal states. Therefore, other aspects of reward, including associative 
learning, craving, or drug aversion1,17 should also be considered when interpreting CPP in animals. 
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1.2.3. CPP paradigm and testing environment 
Under the CPP paradigm, mice learn to distinguish between two environments that are paired with either 
administration of a drug or administration of saline. After repeated pairings, mice are given a choice 
between the two environments. An increased amount of time spent in the drug-paired environment is 
interpreted as 'preference' for the drug. 

As previously described 18, we created two visually and tactilely distinct environments by dividing 
a transparent acrylic testing chamber (37.5 × 37.5 x 30 cm; AccuScan Instruments, Columbus, OH, USA) 
into equally sized arenas using an opaque divider with a passage (5 x 5 cm) in the bottom center. The 
other three walls of each partition are distinguished by visual cues (stripes on the walls) and tactile cues 
(floor textures). The chamber is placed inside a frame that transmits an evenly spaced grid of infrared 
photo beams through the chamber walls. Beam breaks used to monitor the mouse's activity and location 
are converted to time (s) and distance (cm) units by the AccuScan VersaMax Software (AccuScan 
Instruments, Columbus, OH, USA). Each testing chamber is encased within a sound attenuating 
PVC/lexan environmental chamber. Overhead lighting provides low illumination (~80 lux), and a fan 
provides both ventilation and masking of background noise. 

We reversed the divider during conditioning trials to restrict the mouse to one arena within the 
testing chamber. 1 mg kg-1 methamphetamine was always paired with the left arena (white horizontal 
stripes, smooth floor) and physiological saline was always paired with the right arena (black vertical 
stripes, textured floor). We had previously established that mice did not prefer one arena over the 
other18. The 1 mg kg-1 dose of methamphetamine was intended to generate preference and locomotor 
stimulation without inducing stereotyped behaviors. 

1.2.4. Measurement of CPP and locomotor behavior 
CPP and locomotor activity were measured simultaneously. Up to a dozen mice were tested using 12 
separate CPP chambers. Median age at the beginning of CPP was 54 days (mean=55.09, range=35-
101). On each day (D) of the assay, mice were placed on a portable shelf and were transported from the 
colony to an adjacent testing room. Mice were given 30-45 min to acclimate to the room before being 
removed from their home cages. Before each 30-min test, mice were weighed and momentarily 
separated into clean holding cages. After injection and placement into test chambers, mice were free to 
travel between arenas on D1 and D8 after receiving an intraperitoneal injection of physiological saline. 
On D2-D5 (conditioning trials) mice were intraperitoneally administered either methamphetamine (1 mg 
kg-1, D2 and D4) or vehicle (saline, D3 and D5) in a volume of 0.01 ml/g body weight. We also measured 
locomotor activity (total distance travelled in cm) on each day and recorded the number of times the 
mouse switched between sides of the chamber on D1 and D8. After each 30-min testing session, we 
returned mice to their home cages. Test chambers were cleaned with 10% isopropanol between runs. 
Home cages were returned to the colony at the end of each experiment. 

1.2.5. Analysis of CPP and locomotor behavior 
We define CPP as the increase in time spent in the methamphetamine-paired arena on D8 compared to 
D1. To account for the possibility of initial preference for one arena, we also considered preference on 
the final test day (without regard to preference on D1) as a second outcome measure for CPP. We refer 
to locomotor activity on day 1 as the locomotor response to a novel environment. The locomotor 
response to saline is measured on D3 and D5. We also measure activity on D8; locomotor activity on 
both D1 and D8 are unique in that the environment is different because the mouse has access to the 
entire CPP chamber. Side changes measured on D1 and D8 provided additional measures of locomotor 
activity in response to novelty and saline, respectively. The locomotor response to 1 mg kg-1 
methamphetamine is measured on D2 and D4. We also calculated the increase in methamphetamine-
induced activity on D4 relative to D2 as a measure of locomotor sensitization. Locomotor sensitization is 
an increase in the magnitude of drug-induced activity after repeated administration of the same (or 
subthreshold) dose of the drug 19.  

Because behavior is a dynamic response to the environment, we treated each day’s 
measurements as a different set of traits. For example, a mouse’s preference for an environment may 
change after associating it with a rewarding (or aversive) drug experience, and a drug-naive mouse may 
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have a different response to methamphetamine than a mouse that has already experienced its effects20. 
All CPP and locomotor phenotypes were measured in 5-min bins over the course of 30 min. We summed 
measurements across all six 5-min time bins to obtain total activity for each day and the total number of 
side changes side changes for D1 and D8. Thus, we obtained seven individual measurements: the total, 
and the six individual 5-min time bins. As shown in Supplementary Fig. 3, binned measurements are 
highly correlated; therefore, we used the same set of covariates for all binned phenotypes within a given 
day and phenotype class.  

Occasional software malfunctions that occurred at the time of testing (in which the Accuscan 
software was unable to record movement in certain chambers for up to 14 s during the test) were 
automatically detected and included in the output for each 5-min time interval in which the error occurred. 
Data for these specific intervals and total activity on the affected day were marked as missing in 61 mice. 
Data were quantile-normalized prior to GWAS. 

1.3. Prepulse inhibition of the acoustic startle response (PPI) 

1.3.1. PPI paradigm and testing environment 
When an animal is startled by a loud noise, its skeletal muscles contract rapidly. Although the startle 
reflex is automatic, it can be inhibited to some degree by a preceding stimulus of lower intensity; this 
phenomenon is called prepulse inhibition, or PPI 21. In humans, PPI is measured from the startle-blink 
reflex, whereas in rodents, muscle contractions are measured from the whole body22–24. However, in both 
experiments, the startle reflex is elicited by a loud tone, and a transducer is used to output a voltage 
proportional to the magnitude of the animal’s response. PPI is also considered to be an endophenotype 
for various psychiatric conditions, most notably schizophrenia 22,25. 

To measure PPI, each mouse is placed inside a 5-cm Plexiglas cylinder within a lit, ventilated 
testing chamber (San Diego Instruments, San Diego, CA, USA). The mouse’s movements are detected 
by a piezoelectric sensor. Once inside the chamber, mice have five min to acclimate to 70 dB white 
noise, which remains in the background for the duration of the 18-min test. After acclimation, mice are 
repeatedly exposed to acoustic startle stimuli (120 dB pulse; 40 ms) which is sometimes preceded by a 
20 ms prepulse (3-12 dB above background noise) at variable intervals. 

The acclimation period is followed by 62 trials that are a mixture of the following five types: a 
‘pulse alone trial’, which consists of a 40-ms 120 dB burst (startle stimulus), a ‘no stimulus’ trial where no 
stimulus is presented, and three prepulse trials containing a 20 ms prepulse that is either 3, 6 or 12 dB 
above the 70-dB background noise level followed 100 ms later by a 40 ms 120 dB pulse. Trials are split 
into four consecutive blocks. Blocks 1 and 4 each contain 6 pulse-alone trials. Blocks 2 and 3 are a 
mixture of 25 trials (6 pulse-alone, 4 no stimulus and 15 prepulse trials). The variable intertrial interval is 
9–20 s (mean=15 s) throughout all 62 trials. 

1.3.2. Measurement of PPI and startle 
We measured PPI 4-9 days after the last day of CPP (mean=7.13 days; median=7 days). Median age of 
mice at the time of testing was 68 days (mean=69.2, range=49-115). The PPI system was calibrated at 
the start of each testing day according to the manufacturer’s instructions. Mice were transferred to the 
testing room one cage at a time, weighed, and then placed into the testing chamber. Mice were returned 
to their home cage after testing. PPI chambers were cleaned between sessions. Only the mice being 
tested were in the testing room to avoid exposing animals to the startling stimuli prior to the beginning of 
the test.  

1.3.3. Analysis of PPI and startle 
The startle response was calculated as the mean startle response across the startle-alone trials in blocks 
1-4. We also performed GWAS for startle amplitude in blocks 1-4 separately. We define habituation to 
startle as the difference between the mean startle response during the first and last block of pulse-alone 
trials. 

We define PPI as the normalized difference between two values: the mean startle response 
during pulse-alone trials and the mean startle response during prepulse trials. The first value is the raw 
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startle phenotype. The second value is calculated for each level of prepulse intensity (3, 6 and 12 dB 
above the 70-dB background noise) and divided by the raw startle value to obtain a proportion, which we 
transformed with the logit-10 function. To avoid extreme values caused by logit transformation of 
negative PPI values, we projected the transformed data onto an interval between 0.01 and 0.99, as 
described previously 26. Startle values, which are positive, were transformed with the log10 function. 

After transformation, we examined the distribution of startle responses during the no-stimulus 
trials to check for technical errors. Forty-four mice seemed to startle in the absence of a pulse 
(Supplementary Fig. 20), which we interpreted as a technical problem since all of these mice were 
tested in PPI box 3. We retained these mice in the analysis and included box 3 as a covariate for all PPI 
and startle phenotypes. Another group of mice had unusually low startle responses (Supplementary 
Fig. 20). It is likely that these mice are hearing-impaired because their startle responses overlapped the 
trait distribution for the no-stimulus trials (this was true once the 44 mice tested in box 3 were excluded 
due to the technical artifact mentioned above). PPI-related phenotypes for 13 mice with a mean startle 
response of 1.1 units or lower were marked as missing. Data were quantile-normalized prior to GWAS. 

1.4. Fasting blood glucose levels 
We measured blood glucose levels after a 4-hour fast 4-14 days (mean=7.3 days, median=7) after PPI 
testing. Median age of mice at the time of testing was 75 days (mean=76.4, range=56-122). Mice were 
brought into the testing room between 09:00 and 09:30 and transferred to new cages that did not contain 
food. After four hours of fasting, we weighed each mouse and used a razor blade to make a small 
incision at the tip of the tail, which allowed us to obtain a small drop of blood that we analyzed with 
glucose strips (Bayer Contour TS Blood Glucose Test Strips) and a glucometer (Bayer Contour TS Blood 
Glucose Monitoring System). Glucose levels are expressed in mg/dL units. Once all of the mice in a cage 
were tested, we gave them fresh food and returned them to the colony. Glucose measurements were 
quantile-normalized before performing GWAS. 

1.5. Coat color 
The LG x SM AIL segregates three coat color phenotypes. LG has a white (albino) coat. The SM strain is 
fully inbred except at the agouti locus on chromosome 2, where attempts to maintain a homozygous 
state have been unsuccessful; thus, LG x SM AIL mice can be either white (albino), black or brown 
(agouti) 27. We transformed coat color into three indicator variables and treated them as quantitative traits 
for GWAS. We found this approach acceptable for testing our method because the genetic basis of coat 
color is well-known. Although GEMMA's linear mixed model (LMM) was intended for quantitative 
analysis, its robustness to model misspecification makes it acceptable for mapping factors expressed as 
binary indicator variables 28. 

Because we did not expect to identify novel coat color loci, we did not consider coat color in the 
sum of 118 traits that we measured. Similarly, coat color did not contribute to the total number of 
associations reported in Supplementary Table 1. However, we provided heritability estimates for black, 
white and agouti coat in Supplementary Table 2 as a benchmark for comparison to the quantitative 
traits of interest.  

1.6. Wildness  
Laboratory mice are known to vary in their ease of handling, or wildness 29. Studying wildness could 
provide insight into the genetic consequences of domestication. We defined wild mice as those who 
escaped their home or holding cages in the moments leading up to the CPP test. Raw escape counts 
were converted into a binary indicator variable to account for increased experience in mouse handling by 
the experimenter. We did not find any loci associated with wildness, potentially due to lack of power (less 
than 10% of all mice were qualified as wild by our criteria). We also considered wildness as a potential 
covariate but found no evidence of its effect on the other traits. 
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1.7. Tissue collection 
We collected tissues for DNA and RNA extraction and additional phenotyping by our collaborators 4-15 
days (mean=7.46, median=7) after measuring glucose levels. We also measured body weight and tail 
length (cm from base to tip of the tail) at this time. Median age at death was 83 days (mean=84.4, 
range=64-129). Mice were removed from the colony immediately before dissection, weighed and killed 
using cervical dislocation followed by rapid decapitation and evisceration.   

1.8. Hind limb muscle and bone  
We phenotyped five muscles: two dorsiflexors, tibialis anterior (TA) and extensor digitorum longus (EDL), 
and three plantar flexors, gastrocnemius, plantaris and soleus. These muscles were selected because 
they differ in size and constitution of fiber types. Of the fast-twitch muscles, TA and gastroc are largest 
and express the entire range of type 2 fibers and some type 1 fibers. EDL and plantaris are smaller fast-
twitch muscles comprised mainly of type 2B, 2X and 2A fibers. Soleus, a slow-twitch muscle, is 
comprised mostly type 1, 2A and 2X fibers 30. Different morphological and functional properties are 
associated with each fiber type 31, and we reasoned that muscles composed of different types might be 
regulated by distinct genetic mechanisms.  

Tibia length is indicative of skeleton size, and elongation of bones is associated with longer, 
larger muscles. Therefore, in order to isolate muscle-specific loci (as opposed to loci that regulate growth 
across multiple tissues) we included tibia length as a covariate in muscle mass GWAS. Skeletal muscle 
contributes substantially to body weight in mammals. To avoid circular correction, which would reduce 
power to detect muscle weight loci, we did not use body weight as a covariate for muscle traits. All hind 
limb traits were quantile-normalized before GWAS.   

1.9. Locomotor phenotypes in G34 and Csmd1 mutant mice 

Similar to LG x SM G50-56, locomotor behavior for G34 32 and for Csmd1 mutant mice was measured in 
six 5-min bins for a total of 30 min. We did not observe covariate effects on locomotor behavior in Csmd1 
mutant mice; therefore, we used raw phenotype data to produce Fig.4E. However, we quantile-
normalized phenotypes for G34 after regressing out the effects of sex, testing chamber, and body weight 
(Fig.4D). Covariates for G50-56 (listed in Supplementary Table 2) were also removed before quantile-
normalizing the data to produce Fig.4C.  

2. Genotying by sequencing (GBS) quality control  

Mislabeling and sample mix-ups are common in large genetic studies and can reduce power for 
GWAS33. We were concerned about the possibility of samples being mistakenly swapped or mislabeled. 
Therefore, we called variants in two stages. First-pass variant calls were used to identify and resolve 
sample mix-ups (Section 2.1). In stage two, after correcting or discarding sample mix-ups, we repeated 
variant calling from scratch (Section 2.2). 

2.1. Identification of GBS sample mix-ups 

We used the ratio of reads that mapped to the X and Y chromosomes to validate the sex of each mouse. 
GBS data from LG, SM, and F1 controls (data sequenced from the same animals across multiple flow 
cells) and 24 mice that were genotyped using both GBS and the GigaMUGA were used as benchmarks, 
since the sex of these samples could be verified. For true females, we consistently observed that the 
number of X chromosome reads was an order of magnitude greater than the number of Y chromosome 
reads. However, a difference greater than one order of magnitude was never observed for true males. 
Twelve samples that violated these criteria were flagged as potential sex swaps. We then checked 
breeding records, mouse cage cards, pedigree information, and experiment logs to determine if the 
source of each error was typographical. We identified two female mice that were incorrectly labeled as 
male and corrected these typos in our records. However, we did not reassign mouse IDs for the 10 
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remaining samples at this time. To do this, we examined kinship estimates from genetic and pedigree 
data. 

Most mice in our sample had an opposite-sex sibling, which allowed us to identify errors by 
comparing pedigree kinship to the realized relationships estimated from genetic data using IBDLD34,35. 
To calculate genetic kinship with IBDLD, we used first-pass genotypes called using ANGSD 36 and 
Beagle 37. Here, we required that only 15% of the samples have reads at a given site in order for a call to 
be made. We removed first-pass variants with MAF<0.01 before using Beagle to fill in missing genotypes 
at 106,180 loci. We did not impute from a reference panel at this stage; instead, we inferred missing data 
from LD within the sample. This ensured that all mice had a genotype at each empirically typed GBS 
allele while avoiding perpetuating widespread errors by imputing from a reference panel or pedigree.   

The purpose of using less stringent criteria for first-pass calls than for the final call set was to 
ensure that we would have a sufficient number of overlapping GBS genotypes from Beagle to compare 
against GigaMUGA genotypes, which we obtained for 24 mice that were genotyped using GBS. The 
GigaMUGA contains probes for over 143,000 SNPs 38. After removing GigaMUGA SNPs with an Illumina 
quality score <0.7, we were left with 115,478 SNPs, only 24,934 of which were known to be polymorphic 
in LG and SM 39;Supplementary Fig. 1). As shown in Supplementary Table 6, we evaluated 
concordance among overlapping GBS and GigaMUGA genotypes at multiple stages to guide filtering and 
gauge the efficacy of our variant calling pipeline; for example, using a more stringent threshold for 
imputation quality (dosage r2; DR2) resulted in greater genotype concordance.  

Approximately 86,180 first-pass Beagle variants with DR2>0.7 and MAF>0.1 were used to 
calculate genetic kinship coefficients with IBDLD 34,35.  Pedigree kinship was calculated using a custom R 
script (see URLs). We estimated both types of kinship for every possible pair of mice in the sample. We 
compared the estimates by subsetting the data into sibling pairs and non-sibling pairs, which we 
identified using pedigree data. We flagged non-siblings with higher than average kinship and siblings 
with lower than average kinship compared to the rest of the subset. We identified 21 non-sibling pairs 
with unusually high genetic kinship and 22 sibling pairs with unusually low genetic kinship, 8 of which had 
already been flagged as sex swaps. In some cases, apparent mix-ups were caused by typos; we 
resolved these by comparing cage cards against breeding logs and experiment records. We also verified 
homozygous LG genotypes at the Tyr locus for mice listed as albino. When possible, we cross-checked 
GBS genotypes with RNA-seq genotypes (described in Section 3).  

Ultimately there were 15 out of 1,078 samples whose identities could not be resolved (some of 
these mice did not have a sibling in the data). These mice were included in the process of variant calling 
for the final sample because they provided additional information for obtaining genotype likelihoods in 
ANGSD. However, they were discarded before imputation and were not used for mapping. In the error-
corrected data, GBS and GigaMUGA genotype concordance for 18,278 overlapping SNPs after 
reference panel imputation and filtering was 97.4% (Supplementary Table 6). This is similar to 
concordance rates observed for other animal populations genotyped with GBS 26,40 and falls within the 
range of imputation concordance rates reported in human studies 41,42.  

2.2. Variant calling and quality control for error-corrected data (n=1,063)  

2.2.1. Genotype likelihoods 
We used an implementation of the Samtools 43 variant calling algorithm in ANGSD 36to obtain genotype 
likelihoods at 899,436 sites for which at least 20% of samples had reads. GBS produces variable 
coverage across individuals, which leads to highly heterogeneous call rates. In addition, GBS has a bias 
toward homozygous calls 44. Accordingly, we expected ANGSD's allele frequency estimates to be biased 
and used a lenient MAF threshold of 0.005 to filter raw genotype likelihoods. 

2.2.2. Imputation 
We used Beagle 37,45 to call genotypes from ANGSD likelihoods at 221,091 autosomal sites that passed 
our filters. When a reference panel is provided, Beagle requires hard genotype calls as input; however, 
ANGSD only outputs likelihoods. Therefore, we imputed missing genotypes in three steps. First, we used 
Beagle to phase and fill in missing calls using within-sample LD (no reference panel or pedigree was 
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provided). This produces a file with hard genotype calls, genotype probabilities and dosages that can be 
used to impute additional genotypes from an external reference panel. Next, we excluded SNPs with 
MAFs <0.1, leaving 38,238 variants for step three (we used this threshold because both alleles are 
expected to be common in an AIL; this was confirmed in G34 mice 32). We then used Beagle to impute 
untyped SNPs from LG and SM reference haplotypes 39. The JAX Mouse Map Converter (see URLs) 
was used to create a genetic map from mm10 base pair coordinates 46. We retained 3.4M variants with 
very high imputation quality (DR2>=0.9) and MAF>0.1 for further analysis. 

2.2.3. Hardy-Weinberg Equilibrium (HWE)  
An AIL is not a randomly mating population, its effective population size is not infinitely large, and LD is 
extensive. Selecting an appropriate threshold for excluding HWE deviations is further complicated by the 
tendency of GBS to wrongly call heterozygous genotypes as homozygous. We ran 1,000 gene dropping 
simulations in QTLRel 47to simulate null genotypes consistent with the AIL pedigree (but not impacted by 
the overrepresentation of homozygotes that is observed when using GBS). We used the R package 
Hardy Weinberg 48to test simulated genotypes for deviation from HWE. To reduce the computational 
burden of gene dropping, we restricted our analysis to 372,995 SNPs with unique centimorgan (cM) 
positions 46. Chi-squared p-values ≤7.62 x 10-6 were only detected for 1% of simulated genotypes. We 
used this value to identify loci where the observed genotype proportions constituted a significant 
deviation from HWE given that the data are from an AIL. 52,466 SNPs (1.5% out of 3.4M imputed SNPs 
with DR2≥0.9 and MAF≥0.1) were found to deviate from HWE at p ≤ 7.62 x 10-6 and were excluded.  

2.2.4 Linkage disequilibrium (LD) 
Finally, we used PLINK to remove variants in high LD (r2>0.95), leaving 523,028 SNPs for GWAS and 
eQTL mapping 49. 

3. Identification and correction of RNA sample mix-ups 

To identify samples that were apparently mislabeled with the incorrect mouse ID, we retrieved allele 
counts from each sample at sites with ≥25 reads and no more than one mismatched base; we used 
these data to produce RNA-seq genotype calls. We obtained up to three sets of RNA-seq genotypes 
(one per tissue). We measured RNA genotype concordance for all pairs of samples, expecting that the 
best match for each sample would be from a different tissue belonging to the same mouse. If the best 
match belonged to a different mouse, the samples were flagged as potential mix-ups.  

Next, we examined concordance between RNA and error-corrected GBS genotypes from phase 
one to reassign mixed-up sample IDs. If we could not resolve the identity of a sample, we discarded its 
expression data. 108 samples were discarded during this process (33 HIP; 36 PFC; 39 STR). We also 
discarded expression data for 29 samples whose genotype data was removed during GBS quality control 
(11 HIP; 9 PFC; 9 STR). The mean concordance rate among RNA genotypes derived from the same 
mouse was 94.6% after error correction, indicating that our approach was successful. 

We also examined Xist (X-inactive specific transcript) expression to identify apparent sex mix-
ups. Xist regulates dosage compensation and is only expressed in females. One STR sample associated 
with a male mouse (54896_STR) had high Xist gene expression. One HIP and one STR sample 
associated with the same female mouse (56203_HIP; 56203_STR) had no Xist gene expression. We 
reassigned the sex of the two female tissue samples to male, since both samples belonged to the correct 
tissue and their RNA genotypes indicated that they were extracted from the same mouse. We excluded 
54896_STR from further analyses due to a lack of evidence for sample reassignment. 

Finally, we used correlation-based statistics to identify and remove 12 additional outliers (2 HIP; 7 
PFC; 3 STR). For each tissue, we computed the mean correlation of expression level for an individual 𝑖: 

𝑟#$ =&𝑟'(/(𝑛 − 1)
(
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Where	𝑛 is the number of mice in a tissue, 𝑗 is remaining mice in the tissue that are not 𝑖, and 𝑟'( is the 
gene expression correlation between an individual 𝑖 and 𝑗.  We considered an individual 𝑖 as an outlier if 
𝑟#$ < 0.9. 	 

4. Genome-wide significance thresholds 
4.1. Multiple hypothesis testing correction for GWAS 
Because LD is greater in AILs than in human populations, we did not use 5x10-8 as a significance 
threshold. Furthermore, the complex relationships in an AIL imply a covariance among phenotypes and 
genotypes that makes the standard Bonferroni adjustment for multiple testing correction too 
conservative. Naïve permutation can effectively correct for multiple hypothesis testing even when the 
assumption of independence among phenotypes and genotypes is violated by relatedness50,51. 
Parametric bootstrapping can provide greater accuracy, but the computational expense of resampling 
null phenotypes and calculating their test statistics while also maintaining the covariance structure of the 
data makes it impractical for large studies 50. 
  We used MultiTrans52 and SLIDE 53 to obtain a genome-wide significance threshold for GWAS 
because when combined, they offer a compromise between the two methods. Like parametric 
bootstrapping, MultiTrans estimates the phenotypic covariance (V) under an LMM. Rather than 
proceeding to sample phenotypes from a multivariate normal distribution with covariance V, it uses V to 
transform the genotype data such that the correlation between transformed genotypes is equivalent to 
the correlation among test statistics sampled from an MVN 52. This improves efficiency because it 
obviates the need to generate null phenotypes and calculate their p-values. Instead, p-values are 
sampled directly from a multivariate normal distribution using SLIDE, which accounts for LD between 
nearby markers. 

We specified a sliding window of 5,000 SNPs and used 2.5 million samples to obtain a per-
marker threshold of p=8.06x10-6 given a genome-wide significance threshold (α) of 0.05. Because all 
phenotypic data was quantile-normalized, we applied the same threshold to all phenotypes. 

4.2. LOD drop intervals 
We considered using bootstrapping to estimate a confidence interval around each associated region; 
however, it is not clear that this approach would have been effective enough to justify the high 
computational cost 50. Interval coverage depends on locus effect size, chromosome size, SNP density, 
and the location of the causal SNP in relation to the associated markers. Instead we converted p-values 
to LOD scores and used a 1.5-LOD support interval to approximate a critical region around each 
association. The LOD drop approach provides a quick, straightforward way to gauge mapping precision 
and systematically identify overlap between eQTL genes and candidate QTGs; however, it does not 
correspond to a specific confidence interval (e.g. 95% confidence interval).  

5. Software and URLs 
We have provided commands used to analyze the data described in this study in the Supplementary 
Note. We have also submitted phenotype, genotype and gene expression data from this study to 
www.GeneNetwork.org. Here we provide a list of the software we used for the analyses in this paper with 
the minimum version number and a brief description of how we used it. 

5.1. R packages  
All of the R packages below were run using R v.3.1.0 or higher.  
permute v.0.9-4: permuted phenotypes and genotypes for significance thresholds  
leaps v.2.9: covariate selection for AIL phenotypes  
SOFIA v.1.0: automatic generation of files formatted for use in Circos software 54 
DEseq v.1.24.0: processing RNA sequencing reads 55 
QTLRel v.0.2-15: gene dropping simulations for HWE test 47 
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HardyWeinberg v.1.5.6: HWE test for AIL genotypes and gene dropping simulations 48 
GenomicAlignments v.1.8.4: genome assembly for RNA-seq reads 56 
ggpubr v.0.1.5; ggplot2 v.2.2.1 57; viridis v.0.4.0; VennDiagram v.1.6.17 58: plotting tools  

5.2. Other software 
BWA v.0.7.5a: sequencing read alignment 59 
GATK v.3.3.0: base quality score recalibration and indel realignment 60 
GEMMA v.0.94: QTL/eQTL mapping; heritability estimation; GRM calculation 28,61,62 
PLINK v.1.9: genotype file processing; LD pruning 49 
ANGSD v.0.912: genotype likelihoods/variant calling 36 
Beagle v.4.1: genotype imputation 37,45 
IBDLD v.3.34: pedigree error checking 34,35 
HISAT v.0.1.6: RNA-seq read alignment 63 
Circos v.0.69-5: eQTL figures 64 
CASAVA v.1.6: demultiplexing RNA-seq reads (Illumina, San Diego, USA) 
MultiTrans (no version number) 52 and SLIDE v.1.0.453: QTL significance thresholds  
bcftools v.1.3; picard-tools v.1.92; samtools v.1.2 65: file formatting; summary statistics  

5.3 URLs 
BreedAIL.R; R script to select AIL breeders 
https://github.com/pcarbo/breedail 
dbSNP v.142 data; SNP annotation and rsids (file: snp142.txt.gz) 
http://hgdownload.cse.ucsc.edu/goldenPath/mm10/database/ 
Ensembl; gene coordinates, transcript and regulatory annotations 
http://www.ensembl.org/Mus_musculus/Info/Index 
JAX Mouse Map Converter; bp to cM conversion for genetic map 
http://cgd.jax.org/mousemapconverter/ 
Mouse Genome Informatics (MGI); gene-level queries 
http://www.informatics.jax.org/ 
UCSC Genome Browser; mm10 reference genome, gene and SNP information, liftOver 
http://genome.ucsc.edu/cgi-bin/hgGateway 
GeneNetwork; AIL data is available here 
http://www.genenetwork.org 

 

Legend for Supplementary Data 1 
Supplementary Data 1 is provided separately. 

Supplementary Data 1: AIL pedigree. Text file containing the LG x SM AIL pedigree from generation 0 
(the initial cross between LG/J and SM/J) to generation 56. Columns include mouse ID, sire ID, dam ID, 
sex (1=M; 2=F), and generation. We inherited the LG x SM AIL from Dr. James Cheverud in generation 
33. We added 0.1 to all mouse ID numbers in all subsequent generations to prevent overlap between 
eartag ID numbers used by our lab and eartag IDs used by the Cheverud lab. 
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Supplementary Note   
 
AIL pipeline. Example commands and software used for the analyses described in this paper are 
provided below. A complete list of software with version numbers and references is provided in the 
Supplementary Methods. 
 
## ------------------------------------------------------------------------------------------- 
## AIL Pipeline 
## ------------------------------------------------------------------------------------------- 
 
## DEMULTIPLEX AND QC ------------------------------------------------------------------------ 
## Input: Per-lane fastq files, a tab-delimited file with sample id, barcode sequence, library 
name in columns 1-3. 
## Requirements: demux_GBS_PstI.py (below), python v.2.7.6 or other compatible version. 
demux_GBS.PstI.py --library $LIBRARY --infirst $FILE_LIST --adapters $BARCODE_KEY --zipped 
 
#! /usr/bin/env python 
########################################################## 
# Code to demux the GBS raw sequence files using the li- # 
# rary number. The input files are read from other files # 
########################################################## 
# You could import using the grammar 'from sys import argv' so you could type 
# argv instead of sys.argv with each use... but know that this decreases 
# readability and could result in name clashes. 
 
import os           # misc OS interfaces 
import re           # regular expression operations 
import argparse     # parser for cmd line options, args and sub-cmds 
import gzip         # support for gzip files 
import numpy as np  # NUMerical PYthon for scientific computing 
                    # np = alias for numpy. purpose: avoid namespace conflicts. 
import sys          # system-specific params and fxns 
import datetime     # basic date and time types 
 
 
if (__name__=='__main__'):  # 'is __name__ being run standalone by the user?' 
 
 
    parser = argparse.ArgumentParser(description='Demultiplexing script for GBS') 
 
 
    parser.add_argument('-l', '--library', metavar='Library', type=str, 
                        dest='lib', help='Library to demultiplex', 
                        required=True) 
 
 
    parser.add_argument('-1', '--infirst', metavar='LeftFile', type=str, 
                        dest='left', 
                        help='File of input filenames (left reads if paired)', 
                        required=True) 
 
 
    parser.add_argument('-2', '--insecond', metavar='RightFile', type=str, 
                        dest='right', help='File of right read filenames', 
                        required=False, default='') 
 
    parser.add_argument('-s', '--adapters', metavar='AdapterFile', type=str, 
                        dest='sidfname', help='Adapter file (tab separated)', 
                        required=True) 
 
 
    parser.add_argument('-z', '--zipped', dest='zipped', 
                        help='Input file zipped', action='store_true') 
 
    parser.add_argument('-p', '--pairedEnd', dest='paired', 
                        help='Paired end reads', action='store_true') 
 
    parser.add_argument('-q', '--qseqs', dest='qseq', 
                        help='Qseq files not sequence files', 
                        action='store_true') 
 
    parser.add_argument('-u', '--unzipoutput', dest='unzipout', 
                        help='Unzipped output', action='store_true') 
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    parser.add_argument('-e', '--enzymeSuffix', dest='enzyme', 
                        help='Overhang of Enzyme', required=False, 
                        default='TGCAG') 
 
 
    args = parser.parse_args() 
 
 
# Hamming distance between 2 strings of equal length is the num of positions 
# at which the corresponding symbols are different. E.g. it measure the min 
# num of substitutions/errors required to change one string into the other. 
def hamming (s1, s2): 
    """ 
    Computes the hamming distance between 
    2 strings of bases. 
    """ 
    if len(s1) != len(s2): return 50    # 50= #bases in common adapter seq? 
    dist = 0 
    for i in range(len(s1)): 
        if s1[i] != s2[i]: dist += 1 
    return dist 
 
 
def nearestNeigh(readstr, adapters): 
    """ 
    This function calculates the hamming distance 
    between the read and all the adapters. 
    Returns the nearest adapter if the minimium 
    hamming distance is 0 or 1. If not, returns 
    NULL. 
    """ 
    minDist = 50 
    nearest = None 
    numnearest = 0 
    for aid in adapters: 
        cd = hamming(readstr[0:len(aid)], aid) 
        if cd < 2: 
            if cd < minDist: 
                minDist = cd 
                nearest = aid 
                numnearest += 1 
            elif cd == minDist: 
                numnearest += 1 
                nearest = None 
    if numnearest > 1: return None 
    return nearest 
 
# sidfname is the adapter file name (-s arg above) 
sidfile = open(args.sidfname) 
#enzymeSuffix = 'TGCAG' #works only for PstI 
# enzyme suffix is given after -e; default is 'TGCAG' 
enzymeSuffix = args.enzyme 
line = sidfile.readline() # gets rid of header 
sids = {}   # sid stands for sample id? 
for line in sidfile: 
    line = line.strip() # line is a string with whitespace removed 
    toks = line.split() # alias for splitting a string into subunits 
 
    adap = toks[1].upper()+enzymeSuffix # make subunit[1] (the idx) an uppercase 
                                        # string & cat(TGCAG) to the end 
    if (args.lib == toks[2]):   # the toks[2] must be the library name ('AIL50') 
        sids[adap] = toks[0]    # toks[0] is the mouse id 
sidfile.close() 
 
# the function below handles paired end reads and zipped files 
fhands_1 = {} 
if (args.paired): 
    fhands_2 = {} 
if (args.unzipout): 
    for name in np.unique(sids.values()): 
        ftemp = open(name+'.fq', 'w') 
        fhands_1[name] = ftemp 
        if (args.paired): 
            ftemp = open(name+'.fq', 'w') 
            fhands_2[name] = ftemp 
else: 
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    for name in np.unique(sids.values()): 
        ftemp = gzip.open(name+'.fq.gz', 'w') 
        fhands_1[name] = ftemp 
        if (args.paired): 
            ftemp = gzip.open(name+'.fq.gz', 'w') 
            fhands_2[name] = ftemp 
 
cntReads = 0 
success = 0 
firsts = open(args.left)  # this will be the only files for SE reads 
if args.right != "":      # e.g. 'if paired end' there will be righthand reads 
    seconds = open(args.right) 
if (args.qseq):           # handles qseq files 
    fs=[x.strip() for x in firsts.readlines()] 
    for fname1 in fs: 
        if(args.paired): 
            fname3 = seconds.readline().strip() 
            if (args.zipped): 
                f3=gzip.open(fname3) 
            else: 
                f3=open(fname3) 
        if (args.zipped): 
            f1=gzip.open(fname1) 
        else: 
            f1=open(fname1) 
        if (args.paired): 
            for l1, l3 in zip(f1, f3): 
                l1=l1.strip() 
                t1=l1.split() 
                l3=l3.split() 
                t3=l3.split() 
                nearest = nearestNeigh(t1[8], sids) 
                if(nearest != None): 
                    fhands_1[sids[nearest]].write('@'+':'.join(t1[0:8])+'\n') 
                    
fhands_1[sids[nearest]].write(t1[8][len(nearest):]+'\n+\n'+t1[9][len(nearest):]+'\n') 
                    fhands_2[sids[nearest]].write('@'+':'.join(t3[0:8])+'\n') 
                    
fhands_2[sids[nearest]].write(t3[8][len(nearest):]+'\n+\n'+t3[9][len(nearest):]+'\n') 
        else: 
            for l1 in f1: 
                l1=l1.strip() 
                t1=l1.split() 
                nearest = nearestNeigh(t1[8], sids) 
                if (nearest != None): 
                    fhands_1[sids[nearest]].write('@'+':'.join(t1[0:8])+'\n') 
                    
fhands_1[sids[nearest]].write(t1[8][len(nearest):]+'\n+\n'+t1[9][len(nearest):]+'\n') 
        f1.close() 
        if(args.paired): 
            f3.close() 
else: 
#######NOT A QSEQ -- implement part for fq files. 
    sname = '' 
    curcnt = 0 
    if (args.paired): 
        print 'Cannot deal with paired end data with fq input file.' 
        sys.exit(1) 
    files=os.listdir('.') 
    fs=[x.strip() for x in firsts.readlines()] 
    print 'Processing', len(fs), 'files.' 
    for fname1 in fs: 
        if (args.zipped): 
            f1=gzip.open(fname1) 
        else: 
             f1=open(fname1) 
        for l1 in f1: 
            if (curcnt == 0): 
                if (len(l1) == 0): 
                    break 
                l1=l1.strip() 
                if l1[0] == '@': 
                    if (sname == ''): 
                        sname = l1[1:] 
                    else: 
                        print 'Error after reading read', sname, l1 
                        print 'Read', cntReads, 'reads.' 
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                        sys.exit(2) 
                curcnt += 1 
            elif (curcnt == 1): 
                seq = l1.strip() 
                curcnt += 1 
            elif (curcnt == 2): 
                if l1[0] != '+': 
                    print 'Error after reading read -', sname, '- -', l1, '-' 
                    print 'Read', cntReads, 'reads.' 
                    sys.exit(3) 
                curcnt += 1 
            elif (curcnt == 3): 
                qual = l1.strip() 
                nearest = nearestNeigh(seq, sids) 
                if (nearest != None): 
                    success += 1 
                    fhands_1[sids[nearest]].write('@'+sname+'\n') 
                    
fhands_1[sids[nearest]].write(seq[len(nearest):]+'\n+\n'+qual[len(nearest):]+'\n') 
                curcnt = 0 
                sname = '' 
                cntReads += 1 
                if (cntReads % 100000 == 0): 
                    print datetime.datetime.now().time(), ': Processed', cntReads, 'reads.' 
                    sys.stdout.flush() 
        f1.close() 
  print "Done processing file." 
 
for name in np.unique(sids.values()): 
    fhands_1[name].close() 
    if (args.paired): 
        fhands_2[name].close() 
 
firsts.close() 
if args.right != "": 
    seconds.close() 
print 'Number of reads processed:', success, '/', cntReads 
 
 
 
## ALIGNMENT --------------------------------------------------------------------------------- 
## Input: demultiplexed and gzipped fastq files 
## Requirements: bwa v.0.7.5a 
 
# our cluster uses the Torque/PBS scheduler; we submit each line in the list of fq.gz files as 
# an array, e.g. `qsub -t 1-100 align.mm10.sh` where the numbers = $PBS_ARRAYID 
LIBRARY="AIL99" 
INFILE=`head -$PBS_ARRAYID $LIBRARY.list | tail -1` 
SAMPID=`basename $INFILE .fq.gz` 
LANE="4" 
MACHINERUN="K00180.172" 
CENTER="Chicago" 
REFGENOME='mm10.fa.gz' 
STDIN='/dev/stdin' 
RG="@RG\tID:$MACHINERUN.$LANE\tPU:$MACHINERUN.$LANE\tSM:$SAMPID\tCN:$CENTER\tPL:Illumina" 
 
echo "Running alignment for $INFILE" 
if [ ! -s ${SAMPID}.bam ]; then 
  bwa mem -M -R "$RG" $REFGENOME $INFILE | \ 
  java -Xmx4g -jar picard-tools-1.126/picard.jar SortSam \ 
    INPUT=$STDIN \ 
    OUTPUT=$OUTDIR/$SAMPID.bwa.bam \ 
    SORT_ORDER=coordinate \ 
    CREATE_INDEX=true 
fi 
 
exitstatus=( ${PIPESTATUS[@]} ) 
if [ ${exitstatus[0]}  != 0 ]; then 
  echo "ERROR: Failed bwa mem with exit code "${exitstatus[0]} 
  exit ${exitstatus[0]} 
elif [ ${exitstatus[1]} != 0 ]; then 
  echo "ERROR: Could not sort and make the bam file from sam file "${exitstatus[1]} 
  exit ${exitstatus[1]} 
else 
  echo "Successfully mapped the reads and then made, sorted and indexed the bam file " 
fi 
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## STANDARDIZE PHRED QUALITY SCORES ---------------------------------------------------------- 
## Input: aligned, coordinate-sorted and indexed .bam files 
## Requirements: samtools v.1.2, convertQualScoreBam 
## Code obtained from Devon Ryan at http://seqanswers.com/forums/showthread.php?t=39549 
 
## Determine whether the file is encoded in Illumina 1.3 or 1.5 (phred+64) or Illumina 1.9 
(phred+33) 
## by looking at the first 100k reads of each file. Convert to phred+33 format. 
 
## make a list of commands to process multiple files at once as part of a Torque/PBS task 
array. 
for bamfile in /group/palmer-lab/AIL/GBS/bams/controls/*bam; do 
    n64=`samtools view $i | cut -f11 | head -100000 | grep -c [a-h]` 
    n32=`samtools view $i | cut -f11 | head -100000 | grep -c [0-9]` 
    ns64=`samtools view $i | cut -f11 | head -100000 | grep -c [\<\=\>?]` 
    if [ $n32 -eq 0 ]; then 
    if [ $ns64 -ne 0 ]; then 
        echo $bamfile Solexa - ignoring file because Solexa is obsolete 
    else 
        echo convertQualScoreBam $bamfile >> requal.cmds 
    fi 
    else 
    if [ $n64 -eq 0 ]; then 
        echo mv $bamfile ${bamfile/.bam/.requaled.bam} >> requal.cmds 
    else 
        echo $bamfile Impossible $n32 $n64 $ns64 - so ignoring file. 
    fi 
    fi 
done 
 
/*************************************************** 
Code obtained from online seqanswers thread 
http://seqanswers.com/forums/showthread.php?t=39549 
Courtesy of Devon Ryan (userid dpryan). 
***************************************************/ 
#include "bam.h" 
 
int main(int argc, char *argv[]) { 
  int i; 
  uint8_t *qual; 
  bam_header_t *header; 
  char *oname, *p; 
  bam1_t *read; 
  bamFile f, of; 
 
  if(argc != 2 || strcmp(argv[1], "-h") == 0) { 
    printf("Usage: %s file.bam\n", argv[0]); 
    printf("Converts a BAM file with Phred scores encoded as QUAL+64 into the standard QUAL+33 
format\n"); 
    return -1; 
  } 
 
  //Open the input 
  f = bam_open(argv[1], "rb"); 
  header = bam_header_read(f); 
  read = bam_init1(); 
 
  //Create the output file 
  oname = strdup(argv[1]); 
  oname = realloc(oname, sizeof(char) * (strlen(argv[1]) + strlen(".requaled "))); 
  p = strrchr(oname, '.'); 
  *p = '\0'; 
  sprintf(oname, "%s.requaled.bam", oname); 
  of = bam_open(oname, "wb"); 
  bgzf_mt(of, 4, 256); //Use 4 compression threads 
 
  //Write the header 
  bam_header_write(of, header); 
 
  //Iterate over the reads 
  while(bam_read1(f, read) > 1) { 
    qual = bam1_qual(read); 
    for(i=0; i<read->core.l_qseq; i++) *(qual+i) -= 31; 
    bam_write1(of, read); 
  } 
 
  bam_close(of); 
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  bam_close(f); 
  bam_destroy1(read); 
  free(oname); 
  return 0; 
} 
 
 
## INDEL REALIGNMENT ------------------------------------------------------------------------- 
## Input: Aligned, coord-sorted, requaled .bams 
## Requirements: GATK v.3.3-0, java, interval list, mm10 dictionary 
 
## make interval list 
java -Xmx2g -jar /apps/software/GenomeAnalysisTK/3.3-0/GenomeAnalysisTK.jar \ 
     -T RealignerTargetCreator \ 
     -R:REFSEQ mm10.fasta \ 
     -known:VCF LG_SM_Indels.vcf \ 
     -o LG_SM.mm10.realign.intervals 
 
## realign around target intervals 
INFILE=`head -$PBS_ARRAYID realignFiles.list | tail -1` 
BASE=`basename $INFILE .bam` 
echo "Running realignment for: $INFILE" 
java -Xmx2g -jar /apps/software/GenomeAnalysisTK/3.3-0/GenomeAnalysisTK.jar \ 
     -T IndelRealigner \ 
     -R mm10.fasta \ 
     -I $INFILE \ 
     -targetIntervals LG_SM.mm10.realign.intervals \ 
     -o $BASE.ra.bam 
echo "Done running realignment." 
 
 
## BASE RECALIBRATION ------------------------------------------------------------------------ 
## Input: Input: Aligned, coord-sorted, requaled, realigned, regrouped .bams 
## Requirements: GATK v.3, samples.list files, R 
 
## Generate first-pass recalibration table 
java -Xmx9g -jar /apps/software/GenomeAnalysisTK/3.3-0/GenomeAnalysisTK.jar \ 
     -T BaseRecalibrator \ 
     -R:REFSEQ mm10.fasta \ 
     -I filesLane1.list \ 
     -knownSites:VCF LGSM.mm10.SNPs.vcf \ 
     -knownSites:VCF LGSM.mm10.Indels.vcf \ 
     -o bqsrLane1.table 
 
## Generate second-pass recalibration table 
java -Xmx9g -jar /apps/software/GenomeAnalysisTK/3.3-0/GenomeAnalysisTK.jar \ 
     -T BaseRecalibrator \ 
     -R:REFSEQ mm10.fasta \ 
     -I filesLane1.list \ 
     -knownSites:VCF LGSM.mm10.SNPs.vcf \ 
     -knownSites:VCF LGSM.mm10.Indels.vcf \ 
     -BQSR bqsrLane1.table 
     -o bqsrLane1_recal.table 
 
## Apply recalibration and make new bam files. 
java -Xmx9g -jar /apps/software/GenomeAnalysisTK/3.3-0/GenomeAnalysisTK.jar \ 
     -T PrintReads \ 
     -R:REFSEQ mm10.fasta \ 
     -I filesLane1.list \ 
     -BQSR bqsrLane1.table 
     -o output.bam 
 
 
## VARIANT CALLING --------------------------------------------------------------------- 
## 1. ANGSD - get genotype likelihoods. 
## Input: Aligned, coord-sorted, requaled, realigned, regrouped bams, 1 file per sample. 
## Requirements: angsd 
 
INFILE="bamfiles.list" 
window=10000000 
for chrom in {1..19} X; do 
   length=`grep -w chr$chrom chrLengths_mm10.txt | tr -s " " " " | cut -f2 -d " "` 
   start=1 
   end=0 
   while [ $start -lt $length ]; do 
     let end=start+window-1 
     if [ $end -gt $length ]; then 
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       end=$length 
     fi 
  echo angsd -b $INFILE \ 
        -doVcf 1 \ 
        -gl 1 \ 
        -doMajorMinor 4 \ 
        -ref mm10.fasta \ 
        -doMaf 8 \ 
        -doCounts 1 \ 
        -snp_pval 1e-5 \ 
        -P 2 \ 
        -r chr$chrom:$start-$end \ 
        -minMapQ 20 \ 
        -minQ 20 \ 
        -doPost 2 \ 
        -minInd 216 \ ## 20% of sample 
        -out chr$chrom.raw.$start 
   let start=start+window 
   done 
done > angsd.cmds 
 
 
## 2. Beagle round 1 (Within) - fill in missing genotypes using within-sample LD; make 
genotype 
## calls from ANGSD likelihoods to use for quality control and imputation from a reference 
panel. 
## Input: chrwise ANGSD genotype likelihood VCF files, genetic map 
## Requirements: Beagle v.4.1 
 
## recommended: make sure REF/ALT alleles are specified correctly with respect to the 
## reference genome using bcftools v.1.3 
bcftools norm \ 
      -c s \ # fixes bad sites where REF allele is wrong or missing 
      -f mm10.fasta \ 
      -O z \ 
      -o outfile 
      infile.vcf.gz 
 
java -Xmx12g -jar ~/Beagle/beagle.27Jul16.86a.jar \ 
        gtgl=chr$chrom.raw.vcf.gz \ 
        out=chr$chrom.beagWithin \ 
        chrom=chr$PBS_ARRAYID \ 
        excludemarkers=excludeLowMafSnps.list \ 
        excludesamples=excludeErrorsMice.list \ 
        map=LGSM.genetic.map \ 
        window=300 \ 
        overlap=50 \ 
        gprobs=true \ 
        niterations=10 \ 
        err=0.04 \ 
        nthreads=4 
 
 
## 3. Beagle round 2 (Ref) - impute from a LG/SM reference panel. 
## Input: BeagleWithin VCF files with GT field, map, reference panel VCFs 
## Requirements: Beagle v.4.1 
 
java -Xmx12g -jar ~/Beagle/beagle.27Jul16.86a.jar \ 
        gt=chr$chrom.beagWithin.vcf.gz \ 
        ref=LGSM.chr$PBS_ARRAYID.phased.vcf.gz \ 
        out=chr$chrom.beagRef \ 
        chrom=chr$PBS_ARRAYID \ 
        excludemarkers=excludeLowMafSnps.list \ 
        map=LGSM.genetic.map \ 
        window=70000 \ 
        overlap=32000 \ 
        impute=true \ 
        niterations=10 \ 
        err=0.03 \ 
        nthreads=4 
 
## KINSHIP ESTIMATES ------------------------------------------------------------------- 
## Use IBDLD to estimate kinship from genotypes and compare with pedigree kinship 
## for identifying and resolving sample mix-ups. 
## Input: genotypes in Plink PED/MAP format. Map file must list cM positions. 
## Requirements: plink v.1.90, IBDLD v.3.34 
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## EXAMPLE IBDLD commands to obtain genetic kinship (different from the one 
## generated by GEMMA for GWAS) 
IBDLD -plink genos.ped \ 
      -m_int genos.map \ 
      -method GIBDLD \ 
      -ploci 50 \ 
      -dist 5 \ 
      -nthreads 4 \ 
      -error 0.035 \ 
      -ibc \ 
      -o genos.ibc 
 
## R code to obtain pedigree kinship adapted from AIL breeder selection code. 
## Author: Andrew Skol, University of Chicago 
kinship <- function(ped) { 
 
  ## ped should be a matrix with 4 cols in the follwing order: 
  ## ID, Sire, Dam, Sex. Ped should be ordered from from founding 
  ## generation to current. Sex may be coded as "M"/"F" or as 1/0. 
 
  m.idx = ped[,4] == "M" 
  f.idx = ped[,4] == "F" 
  N = dim(ped)[1] 
 
  if (sum(c(m.idx,f.idx)) == N){ 
    ped[m.idx,4] = 1 
    ped[f.idx,4] = 0 
  }else if (sum(c(m.idx,f.idx)) != 0) { 
    sex.warning() 
    return() 
  } else if (sum(ped[,4] %in% c(0,1))<N){ 
    sex.warning() 
    return() 
  } 
 
  ## Recode ids from 1:N ## 
  ped.tmp = matrix(0,N,4) 
  ped.tmp[,1] = 1:N 
  for (i in 1:N){ 
    id.tmp = ped[i,1] 
    idx = ped[,2]==id.tmp 
    ped.tmp[idx,2] = i 
    idx = ped[,3] == id.tmp 
    ped.tmp[idx,3] = i 
  } 
  ped = ped.tmp 
 
  ## Begin calculation ## 
  kinship = diag(rep(1,N)) 
  for (i in 1:N){ 
 
    i.M = ped[i,2] 
    i.F = ped[i,3] 
 
    for (j in i:1){ 
 
      if (j==i){ 
        ## if j's parents are in the pedigree ## 
        if (i.M!=0 & i.F!=0){ 
          kinship[i,j] = 1 + .5*kinship[i.M,i.F] 
        } 
      } else { 
        if (i.M!=0 & i.F!=0){ 
          kinship[i,j] = .5*kinship[i.M,j] + .5*kinship[i.F,j] 
          kinship[j,i] = kinship[i,j] 
        } 
      } 
 
    } 
  } 
  return(kinship) 
} 
 
 
## GENE DROPPING SIMULATIONS ------------------------------------------------------------ 
## Input: reduced pedigree file that only includes lineages of G50-56 mice used for GWAS. 
## A reduced genetic map that only includes one SNP from each unique cM position. These 
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## data were used in an attempt to reduce the large computational burden of gene dropping 
## simulations. 
## Requirements: R v.3.1 or higher; packages QTLRel and HardyWeinberg 
 
## EXAMPLE SHELL SCRIPT 
## e.g. `qsub -t 1-1000` geneDrop.sh such that the array id (-t) is 
## interpreted by R as the seed. 
R --vanilla --args seed $PBS_ARRAYID chrom 1 < ./geneDropHardy.R 
 
## geneDropHardy.R 
seed <- 0 
chrom <- 0 
 
library("batch") 
parseCommandArgs(evaluate=TRUE) 
 
     seed <- runif(1, min=0, max=2^31-1) 
     seed <- round(seed,0) 
     set.seed(seed) 
 
     require("QTLRel") 
     require("HardyWeinberg") 
     load("pedReduced.50to56.geneDrop.RData") 
     map <- read.table(paste0("./hardyMapReduced.chr", chrom, ".map.txt"), 
                      sep="\t", head=TRUE, stringsAsFactors = FALSE, as.is=TRUE) 
 
        drop <- genoSim(ped=pedReduced, gmap=map, ids=ids.ped, method="Haldane") 
        drop <- MakeCounts(drop, coding=c(AA=1, BB=2, AB=3)) 
        drop <- drop[,1:3] 
        mono <- (drop[,2]==0 & drop[,1]==0) | (drop[,2]==0 & drop[,3]==0) 
        drop <- drop[!mono,] 
 
        stat <- quantile(HWChisqStats(drop, pvalues = TRUE), 
         c(0, 0.001, 0.01, 0.05, 0.25, 0.5, 0.75, 1)) 
 
     write.table(stat, file=paste0("./output/sim", chrom, "/chr", chrom, ".haldaneSim_", seed, 
".txt"), 
                 sep="\t", row.names=FALSE, quote=FALSE, col.names=FALSE) 
 
 
## LD PRUNING -------------------------------------------------------------------------- 
## Input: VCF with imputed genotypes filtered for low MAF, deviation from HWE, 
## and low imputation quality. Filters were applied using bcftools v.1.3. 
## Requirements: plink v.1.90 
 
## First convert to plink BED format 
plink --vcf imputedGenos_filt.vcf \ 
   --make-bed \ 
   --mouse \ 
   --keep-allele-order \ 
   --out imputedGenos_filt 
 
## this command produces two text files; one lists SNPs that were retained 
## and one lists the SNPs that were pruned out 
plink --bfile imputedGenos_filt \ 
   --indep-pairphase 1 kb 10 0.95 \ 
   --keep-allele-order \ 
   --mouse \ 
   --out imputedGenps_filt_LD 
 
## use bcftools to filter SNPs from the input VCF 
bcftools view \ 
   --o imputedGenos_filt_pruned \ 
   --R imputedGenps_filt_LD.prune.in \ 
  imputedGenos_filt.vcf 
 
## convert to dosage format for GEMMA using 'chr.bp' in the SNP ID field 
bcftools query \ 
   --f '%CHROM\.%POS %REF %ALT[ %DS]\n' 
      --o imputedGenos_filt_pruned.dosage 
      imputedGenos_filt.vcf 
bcftools query \ 
   --f '%CHROM\.%POS %POS %CHROM\n' 
      --o imputedGenos_filt_pruned.snpinfo 
  imputedGenos_filt.vcf 
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## QTL/eQTL MAPPING ---------------------------------------------------------------------- 
 
## Make GRM 
## Input: QC-filtered, LD-pruned file with genotype dosages from all chromosomes but one 
## Requirements: gemma v.0.94 
## dummy.pheno.txt contains a single column of 1s with 1063 rows; no header. 
gemma -g chrNot7.dosage \ 
      -p dummy.pheno.txt \ 
      -gk 1 \ 
      -o chrNot7.kinship 
 
## Map QTLs or eQTLs using a LOCO-LMM 
## Input: leave-one-out GRMs, genotype dosages, phenotypes, covariates 
## Requirements: gemma v.0.94 
gemma -g chr7.dosage \ 
      -p phenos.allgeno \ 
      -k chrNot7.kinship.cXX.txt \ 
      -a chr7.snpinfo \ 
      -c trait.covs \ 
      -o trait.chr7.gwas \ 
      -lmm 2 \ 
      -n 5  # column number for trait of interest 
 
## Heritability 
## Input: GRM for all autosomal SNPs, phenotypes, covariates 
## Requirements: gemma v.0.95alpha 
## vc option 2 is the REML model (estimates are not constrained to be positive) 
## remove -noconstrain argument to constrain estimates to be positive. 
## to calculate pedigree-based heritability, replace the GRM (-k) with a kinship  
## matrix calculated from the AIL pedigree (Supplementary Data 1) 
gemma -p phenos.allgeno \ 
   -k chrAuto.refFiltFinal.kinship.cXX.txt \ 
      -c trait.covs \ 
      -o vg.trait.chr7 \ 
      -vc 2 \ 
      -noconstrain \ 
      -n 5  # column number for trait of interest 
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Legends for Supplementary Tables 1-6 
Supplementary Tables 1-6 are provided as separate files. 

Supplementary Table 1: GWAS results. This table summarizes 124 genome-wide significant 
associations identified in this study. Most information pertains to the most significantly associated SNP in 
each region, including: p-values, rsids, MAFs and alleles. We have also provided raw trait means and 
quantile-normalized residual trait means stratified by genotype at the most significant SNP at each trait-
associated locus (covariates in Supplementary Table 2 were regressed out to produce the residual 
values) Finally, we list the number of genes, cis-eQTL genes and genes containing potentially 
deleterious mutations (missense, stop-gain, or stop-loss as annotated by dbSNP v.142) that fall within 
each locus. A gene was counted as being within the locus if its transcription start-end coordinates 
overlapped the region. A cis-eQTL gene was counted if any part of the gene body or its 1 Mb cis region 
fell inside the locus.  
 
Supplementary Table 2: Traits, heritabilities, and covariates. Information about the traits measured 
in G50-56 mice is provided, including trait descriptions, raw trait means and standard deviations, GWAS 
sample size, covariates, and heritability estimates with standard error. Estimates of SNP heritability and 
pedigree-based heritability from GEMMA are provided.  
 
Supplementary Table 3: Trait correlations. Pearson’s correlation coefficients (including p-values and 
fdr), genetic variance components (Vg) and their standard errors, and environmental variance 
components (Ve) and their standard errors are reported for each pair of traits (full trait names and 
descriptions are provided in Supplementary Table 2).  
 
Supplementary Table 4: cis-eQTLs. cis-eQTLs (FDR<0.05) and gene information is provided, including 
the physical position of cis-eQTL SNPs, raw eQTL p-values, eigenMT-adjusted eQTL p-values, the 
number of cis SNPs tested and the effective number of independent tests, FDR, tissue, gene 
coordinates, cis-region coordinates, strand, and gene width.  
 
Supplementary Table 5: trans-eQTLs. This table reports trans-eQTLs (α=0.05) and target gene 
information, including position, tissue, rsid and dbSNP (v.142) annotations for each eQTL SNP, eQTL p-
values, transcription start and end positions for the target gene, and gene annotation downloaded from 
the Mouse Genome Informatics database. 
 
Supplementary Table 6: GBS and GigaMUGA genotype concordance. Concordance among 
genotypes called by the GigaMUGA genotyping array and GBS genotype calls in 24 mice are provided at 
various levels of filtering.  
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Supplementary Figures 1-24 
Supplementary Figures 1-24, listed below, are provided on the following pages.  
 
Supplementary Figure 1: SNPs obtained using GBS and GigaMUGA 
Supplementary Figure 2: Manhattan plots 
Supplementary Figure 3: MAF and locus effect size in G50-56 of the LGxSM AIL as compared to CFW 
mice 
Supplementary Figure 4: Trait correlation heat maps 
Supplementary Figure 5: Genetic and environmental correlations between traits 
Supplementary Figure 6: Summary of eQTLs by brain region 
Supplementary Figure 7: cis-eQTLs and trans-eQTLs in HIP, PFC and STR  
Supplementary Figure 8: Quantile-quantile plot of trans-eQTLs in HIP, PFC and STR 
Supplementary Figure 9: Master eQTLs in HIP, PFC and STR 
Supplementary Figure 10: A locus strongly associated with startle on chromosome 17 has pleiotropic 
effects on behavior 
Supplementary Figure 11: Average Csmd1 read coverage for SM and LG homozygotes in HIP, PFC and 
STR  
Supplementary Figure 12: Several trans-eQTLs located in Itpr1 overlap a locus associated with D1 side 
changes on chromosome 6 
Supplementary Figure 13: Pleiotropic effects of a locus associated with body weight on chromosome 2 
Supplementary Figure 14: A locus on chromosome 7 has pleiotropic effects on body weight and TA mass 
Supplementary Figure 15: A strong association with EDL mass on chromosome 13  
Supplementary Figure 16: Pleiotropic effects on physiology and behavior at a locus on chromosome 4  
Supplementary Figure 17: Pleiotropic effects on gastrocnemius weight and locomotor activity at a locus 
on chromosome 4  
Supplementary Figure 18: Pleiotropic effects of a locus associated with locomotor activity on 
chromosome 12  
Supplementary Figure 19: Sample size needed for 80% power to detect associations with effect sizes 
ranging from 0.01 to 0.05 
Supplementary Figure 20: Identification of outliers for startle and PPI 
Supplementary Figure 21: Primary alignment rate and number of reads in GBS samples 
Supplementary Figure 22: Primary alignment rate and number of reads in RNA-seq samples 
Supplementary Figure 23: Principal components analysis of RNA-seq data after correcting sample mix-
ups 
Supplementary Figure 24: Principal components of gene expression data for HIP, STR and PFC 
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Figure 1: SNPs obtained using GBS and GigaMUGA. (a) Histograms showing the distribution of GBS SNPs before refer-
ence panel imputation (top, light purple), and GigaMUGA SNPs (bottom, dark purple) that overlap known SNPs segregating
in LG and SM. SNPs are plotted in 1 Mb bins for each autosome. At the x-axes, regions predicted by Nikolskiy et al. to be
nearly IBD in LG and SM are marked in gold. (b) Histogram showing the total number of known SNPs segregating in LG
and SM that were captured using GBS before reference panel imputation (light purple) and GigaMUGA (dark purple).
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Figure 2: Manhattan plots. (a-r) Manhattan plots are grouped by trait. The dashed line in each panel indicates a
permutation-derived significance threshold of p = 8.06 × 10−6(α = 0.05). The top SNP for each locus is marked and
labeled with its rsid (dbSNP v.142). SNP heritability (proportion of variance explained by 523,028 SNPs used for GWAS)
and standard error are shown in the upper right corner of each panel. (a) body weight measured on D1-D8 of the CPP test.
(b) body weight measured after the CPP test. (c) hind limb muscle weights. (d) startle and habituation. (e) PPI (prepulse
intensities are expressed in absolute terms (e.g. 82 dB = 12 dB over the 70 dB background). (f) CPP on D8 (number of
seconds spent on the methamphetamine-paired side of the testing chamber after conditioning). (g) CPP on D1 (number
of seconds spent on the methamphetamine-paired side of the testing chamber before conditioning). (h) CPP defined as
the difference in CPP between D8 and D1 (D8-D1). (i) methamphetamine-induced activity (distance traveled) on D2. (j)
methamphetamine-induced activity (distance traveled) on D4. (k) locomotor sensitization to methamphetamine (distance
traveled on D4 D2). (l) saline-induced activity (side changes) on D1. (m) saline-induced activity (side changes) on D8. (n)
saline-induced activity (distance traveled) on D3. (o) saline-induced activity (distance traveled) on D5. (p) saline-induced
activity (distance traveled) on D1. (q) saline-induced activity (distance traveled) on D8. (r) fasting glucose levels, bone
length and wildness.
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Figure 3: MAF and locus effect size in G50-56 of the LG × SM AIL as compared to CFW mice. (a) The proportion of
phenotypic variance explained (PVE) by the most significant SNP at each locus (QTL effect size) is plotted against its MAF
for LG × SM AIL mice. Only genome-wide significant QTLs are shown (α = 0.05) (b) QTL effect size vs. MAF in CFW
mice. This plot was made using data from Supplementary Table 2 in Parker et al. (2016), which lists summary statistics
for genome-wide significant QTLs identified at α = 0.1.
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Figure 4: Trait correlation heat maps. Heat maps of Pearson’s r2 correlations for the quantile-normalized residuals of
traits measured in G50-56 AIL mice (covariate effects have been removed). We used the cor.test function in R to calculate
r2 using all pairwise complete observations. Significant correlations (p<0.05) are marked with an asterisk. We obtained p-
values using the cor.test function in R and plotted the data with the R package corrplot. Primary physiological and behavioral
traits are summarized in a-b; correlations for binned traits are plotted in c-f. Sample sizes and descriptions for each trait
are provided in Supplementary Table 2. (a) Physiological traits. AVG weight is the average of weight measured on CPP
D1, CPP D8, during PPI, glucose testing, and time of death (i.e. measurements taken one week apart). CPP, PPI, GLU
weights are weights for days when CPP, PPI, or glucose levels were tested. RIP (rest in peace) weight is weight at the time
of death. TA is tibialis anterior weight, EDL is extensor digitorum longus weight. (b) Primary behavioral traits. Only CPP,
sensitization and activity traits measured from 0-30 minutes are included (see d-f for binned measurements). ‘CPP diff’ is
the difference in CPP on D8 minus CPP on D1, ‘Meth sens is locomotor sensitization to 1 mg/kg methamphetamine (D4
minus D2 activity). Activity (act) trait labels include testing day and bin number separated by a period, and t stands for total
activity (0-30 minutes). Saline is locomotor activity following vehicle administration (control) and meth is locomotor activity
following methamphetamine administration (1 mg/kg). PPI traits are averaged over two prepulse blocks (3, 6, and 12 refer to
the prepulse intensity). AVG startle is the average of startle blocks 1-4. Habituation is the difference between startle block 4
and startle block 1. (c) Startle, PPI and habituation. Individual PPI and startle blocks are shown; trait labels are the same as
in (b). PPI3, PPI6, and PPI12 refer to prepulse intensity (3, 6, or 12 dB above 70 dB background noise). (d) CPP. Labels for
binned measurements are as described in (b). CPP diff is the difference between D8 minus D1 preference. CPP1 and CPP8
refer to CPP on D1 (initial preference for the left side of the testing chamber before it was paired with methamphetamine)
and D8 (preference for the left side of the testing chamber after conditioning). (e) Saline-induced activity. Correlations for
saline activity (act) for D1, D3, D5, and D8 and side changes on D1 and D8 are shown. Trait labels include testing day and
bin number separated by a period. For example, act1.1 stands for D1 activity during bin 1 (0-5 minutes) and t stands for total
activity (0-30 minutes). On D1 and D8, mice are allowed to explore both sides of the CPP testing chamber, and there is more
total area to explore. On D3 and D5, mice are restricted to the right side of the chamber. (f) Methamphetamine-induced
activity. Correlations for activity in response to methamphetamine and locomotor sensitization.
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a

Figure 5: Genetic and environmental correlations between traits. (a) Matrix of trait correlations (lower triangle) plotted
beside the difference between Vg, the genetic variance, and Ve, the environmental variance shared by each pair of traits
(upper triangle). For clarity, only significant trait correlations are shown (Pearson’s r2 , p<0.05), and only primary traits are
plotted (correlation data is available in Supplementary Table 3 and Supplementary Fig. 4). The sign and magnitude of
each correlation is depicted by color and circle size, respectively. In the upper triangle, the difference between Vg and Ve
is indicated with color. Negative values, which are marked by white diagonal lines, indicate that the environmental variance
shared by the two traits is greater than their shared genetic variance. Shared Vg, Ve and their standard errors are provided in
Supplementary Table 3. (b) Density plot of the difference between shared Vg and shared Ve for all pairs of traits (including
sub-traits not pictured in (a)). Values are plotted separately for pairs of behavioral traits (black), pairs of physiological traits
(purple), and behavioral-physiological trait pairs (orange). Negative values indicate that the environmental variance shared
by the two traits is greater than the genetic variance. Positive values indicate that the shared genetic variance is greater. (c)
Density plot of trait correlations for pairs of behavioral traits, pairs of physiological traits, and behavioral-physiological trait
pairs.
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Figure 6: Summary of eQTLs by brain region. (a) Number of overlapping samples analyzed from each tissue after quality
control. (b) Number of cis-eQTL genes identified in each tissue at FDR<0.05. (c) Number of genes with trans-eQTLs
identified in HIP (p = 9.01× 10−6), PFC (p = 1.04× 10−5), and STR (p = 8.68× 10−6) at α = 0.05.
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a

Figure 7: cis-eQTLs and trans-eQTLs in HIP, PFC and STR. (a) Circos plot of eQTLs in HIP. In a-c, each ring inside the
circle shows locations of cis-eQTLs. trans-eQTLs are shown inside the circle. Increasing line opacity indicates trans-eQTLs
that were associated with a greater number of trans-eQTL genes.
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b

Figure 7: cis-eQTLs and trans-eQTLs in HIP, PFC and STR. (b) Circos plot of eQTLs in PFC. In a-c, each ring inside the
circle shows locations of cis-eQTLs. trans-eQTLs are shown inside the circle. Increasing line opacity indicates trans-eQTLs
that were associated with a greater number of trans-eQTL genes.
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c

Figure 7: cis-eQTLs and trans-eQTLs in HIP, PFC and STR. (c) Circos plot of eQTLs in STR. In a-c, each ring inside the
circle shows locations of cis-eQTLs. trans-eQTLs are shown inside the circle. Increasing line opacity indicates trans-eQTLs
that were associated with a greater number of trans-eQTL genes.
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Figure 8: Quantile-quantile plot of trans-eQTLs in HIP, PFC and STR. (a) Quantile-quantile plots for trans-eQTLs in HIP,
(b) PFC, and (c) STR. Each plot compares quantiles of all observed p-values less than 0.01 for all genes tested in each
tissue (y-axis) against expected quantiles under the null (uniform) distribution of p-values (x-axis).
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Figure 9: Master eQTLs in HIP, PFC and STR. We identified over 7,000 cis-eQTLs (FDR<0.05) and 2,002 trans-eQTLs
(α = 0.05) in HIP (n=208; outer red for cis-eQTLs, inner red for trans-eQTLs), PFC (n=185; outer black for cis-eQTLs, inner
black for trans-eQTL) and STR (n=169; outer brown for cis-eQTLs, inner brown for trans-eQTLs). We also identified master
eQTLs, which we defined as loci that regulate the expression of ten or more target genes in a given tissue (central lines link
master eQTLs to eQTL genes).
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Figure 10: A locus strongly associated with startle on chromosome 17 has pleiotropic effects on behavior. (a)
Regional association plot of the association between rs33094557 (gold dot) and the mean startle response. The location of
cis-eQTL genes, 1.5-LOD interval (gold bar), areas of elevated recombination from Brunschwig et al. (plus symbols), regions
predicted by Nikolskiy et al. to be nearly IBD between LG and SM (grey bars), and SNP MAFs (grey heatmap) are indicated.
Points are colored by LD (r2) with rs33094557. The dashed line indicates a significance threshold of −log10(p) = 5.09(α =
0.05). eQTL genes containing missense mutations (dbSNP v.142) are highlighted with bold text. There are two SNPs which
appear more significant than rs33094557; however, they did not exhibit strong LD with nearby SNPs. We considered that
these SNPs might be imputation errors. Therefore, we conservatively listed rs33094557, the most significant SNP that
was consistent with adjacent markers, as the top association. We used rs33094557 to calculate the 1.5-LOD interval. (b)
PheWAS plot showing an association on chromosome 17 between rs33094557 and other traits measured in this study.
Dashed lines mark the genome-wide significance threshold as in (a) and a nominal significance level of p=0.05. Traits
are listed by ID, grouped by type and sorted in ascending order of association with rs33094557 (full trait descriptions are
provided in Supplementary Table 2).
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Figure 11: Average Csmd1 read coverage for SM and LG homozygotes in HIP, PFC and STR. Csmd1 coverage in each
tissue is averaged by genotype class. Only mice that were consistently homozygous-LG or consistently homozygous-SM
throughout the Csmd1 locus were included in the average (we excluded mice that had more than two inconsistent genotypes
among the 559 SNPs in the region). HIP had 13 SM and 93 LG homozygotes, PFC had 11 SM and 101 LG homozygotes,
and STR had 10 SM and 79 LG homozygotes. Reads are plotted as RPKM (length normalization was performed with
respect to a bin size of 0.001 kb). Ensembl (release 90) annotates seven transcript structures for Csmd1, among which only
ENSMUST00000082104 is known to code for a protein. Read coverage indicates the (differential) expression of alternative,
presumably non-coding transcripts. Transcript ENSMUST00000125551 is believed to retain intronic sequence, supporting
intronic reads differing consistently between LG and SM in all three tissues (a). Conversely, SM samples seem to express
alternative transcript ENSMUST00000133933 at higher levels than LG across tissues (g). Overall, LG and SM samples
exhibit a similar expression pattern of exons unique to the protein coding transcript (e). Several exons, however, show a
slightly higher read coverage in LG than in SM, e.g. first and last exon in (b), and first and second exon (from left) in (f), HIP.
Furthermore, samples seem to express novel transcripts missing in the annotation (missing read coverage in b-d).
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Figure 12: Several trans-eQTLs located in Itpr1 overlap a locus associated with D1 side changes on chromosome
6. (a) Manhattan plot of loci identified for D1 side changes (10-15 min). The most significant SNP on chromosome 6
(rs108610974; p = 2.18 × 10−7) is highlighted in gold in both plots. The dashed lines in each plot indicate a permutation-
derived threshold of p = 8.06 × 10−6, or −log10(p) = 5.09(α = 0.05). (b) Circos plot highlighting eQTLs that overlap the
region associated with D1 side changes. A zoomed-in plot of the locus is shown on chromosome 6 with −log10 (p-values) on
the y-axis and physical position (Mb) on the x-axis. The dark shaded region highlights the 1.5-LOD interval, and SNPs are
colored according to LD (r2) with rs108610974. eQTL genes are shown in black and other genes at the locus that did not
have eQTLs are shown in purple. The inner circle shows eQTLs and their target genes; HIP eQTLs are shown in orange,
PFC eQTLs are shown in black, and one STR eQTL is shown in brown. Only chromosomes targeted by trans-eQTLs at the
chromosome 6 region are plotted.
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Figure 13: Pleiotropic effects of a locus associated with body weight on chromosome 2. PheWAS plot of an associa-
tion on chromosome 2 between rs256070923 and other traits measured in this study. Dashed lines mark the genome-wide
significance threshold −log10(p) = 5.09(α = 0.05) and a nominal significance level of p = 0.05. Traits are listed by ID,
grouped by type and sorted in ascending order of association with rs256070923 (full trait descriptions are provided in Sup-
plementary Table 2).
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Figure 14: A locus on chromosome 7 has pleiotropic effects on body weight and TA mass. (a) PheWAS plot of an
association on chromosome 7 between rs36249846 (the top SNP for body weight on D5 of the CPP test at this locus) and
other traits measured in this study. (b) PheWAS plot of an association between rs36989380 (the top SNP for TA mass at this
locus) and other traits measured in this study. rs36249846 and rs36989380 are located 5.04 Mb apart; LD (r2) between the
two SNPs is 0.557. Dashed lines mark the genome-wide significance threshold −log10(p) = 5.09(α = 0.05) and a nominal
significance level of p = 0.05. Traits are listed by ID, grouped by type and sorted in ascending order of association with the
top SNP (full trait descriptions are provided in Supplementary Table 2).
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Figure 15: A strong association with EDL mass on chromosome 13. (a) Regional association plot of the association
between rs259015074 (gold dot) and EDL mass, drawn from the set of 4.3M SNPs imputed from LG and SM. The location
of cis-eQTL genes, 1.5-LOD interval (gold bar), areas of elevated recombination from Brunschwig et al. (plus symbols),
regions predicted by Nikolskiy et al. to be nearly IBD between LG and SM (grey bars), and SNP MAFs (grey heat map)
are indicated. Points are colored by LD (r2) with rs259015074. The dashed line indicates a significance threshold of
−log10(p) = 5.09(α = 0.05). eQTL genes containing missense mutations (dbSNP v.142) are highlighted in bold. (b)
PheWAS plot showing an association on chromosome 13 between rs259015074 and other traits measured in this study.
Dashed lines mark the genome-wide significance threshold as in (a) and a nominal significance level of p=0.05. Traits
are listed by ID, grouped by type and sorted in ascending order of association with rs259015074 (full trait descriptions are
provided in Supplementary Table 2).
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Figure 16: Pleiotropic effects on physiology and behavior at a locus on chromosome 4. (a) PheWAS plot of an
association on chromosome 4 between rs27884249 (the top SNP for body weight on D8 of the CPP test at this locus) and
other traits measured in this study. (b) PheWAS plot of an association between rs239008301 (the top SNP for EDL mass at
this locus) and other traits measured in this study. rs27884249 and rs239008301 are located 2.01 Mb apart; LD (r2) between
the two SNPs is 0.663. Dashed lines mark the genome-wide significance threshold of −log10(p) = 5.09(α = 0.05) and a
nominal significance level of p = 0.05. Traits are listed by ID, grouped by type and sorted in ascending order of association
with the top SNP (full trait descriptions are provided in Supplementary Table 2).
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Figure 17: Pleiotropic effects on gastrocnemius weight and locomotor activity at a locus on chromosome 4. Phe-
WAS plot of an association on chromosome 4 between rs252884440 (the top SNP for gastrocnemius muscle weight
at this locus) and other traits measured in this study. Dashed lines mark the genome-wide significance threshold of
−log10(p) = 5.09(α = 0.05) and a nominal significance level of p = 0.05. Traits are listed by ID, grouped by type and
sorted in ascending order of association with the top SNP (full trait descriptions are provided in Supplementary Table 2).
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Figure 18: Pleiotropic effects of a locus associated with locomotor activity on chromosome 12. PheWAS plot of
an association on chromosome 12 between rs29176165 and other traits measured in this study. Dashed lines mark the
genome-wide significance threshold of −log10(p) = 5.09(α = 0.05) and a nominal significance level of p = 0.05. Traits
are listed by ID, grouped by type and sorted in ascending order of association with the top SNP (full trait descriptions are
provided in Supplementary Table 2).
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Figure 19: Sample size needed for 80% power to detect associations with effect sizes ranging from 0.01 to 0.05.
Each line represents the Bonferroni-corrected false positive rate (α = 0.05) for a hypothetical data set containing between
5,000 and 50,000 independent SNPs. For example, a sample of 1,000 mice would be needed to detect associations with an
effect size of 0.03 given a Bonferroni-corrected false positive rate of 1.0× 10−06 (or, equivalently, given 50,000 independent
association tests). Calculations are based on a simple linear model that does not account for relatedness or non-additive
genetic effects.
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Figure 20: Identification of outliers for startle and PPI. (a) Distribution of the mean response measured across eight
trials when no startle stimulus was presented. The right tail includes 44 mice, all of whom were tested in box 3, that appear
to startle in the absence of a startle stimulus. We interpreted this as a technical effect and included box 3 as a covariate
for all PPI and startle traits. (b) Distribution of the mean startle response during the first block of pulse-alone trials. Mice
falling within the tail of the startle response distribution are not responding to the startle stimuli, possibly due to a hearing
impairment. We excluded PPI and startle measures for 13 mice whose mean startle response overlapped the distribution of
no-stimulus trials (not including mice from box 3). The cutoff point of 1.1 is marked with a dashed line. Each panel includes
data for 1,123 phenotyped mice.
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Figure 21: Primary alignment rate and number of reads in GBS samples. Mean alignment rate and mean log10-
transformed number of reads for all 1,100 GBS samples are shown as solid lines; their standard deviations are shown as
dashed lines. We sequenced 24 samples per lane on an Illumina HiSeq 2500 (Illumina, San Diego, USA) using 100 bp SE
reads. We discarded 32 samples with <1M reads aligned to the main chromosome contigs (1-19, X, Y) or with a primary
alignment rate <77% (3 s.d. Lower than the mean). Data for the remaining 1,078 samples are plotted as blue points.
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Figure 22: Primary alignment rate and number of reads in RNA-seq samples. Samples with an alignment rate less than
91.48% (blue vertical line) or fewer than 5M reads (blue horizontal line; log10 − transformedvalue = 6.698) were removed.
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Figure 23: Principal components analysis of RNA-seq data after correcting sample mix-ups. The first two PCs cluster
RNA-seq samples into the correct tissue types, indicating that we assigned mixed-up samples to the correct tissue. HIP is
shown in pink, PFC in green, and STR in blue.
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Figure 24: Principal components of gene expression data for HIP, STR and PFC. Scree plots showing the percent
variance explained (PVE) by the first 100 principal components (PCs) of gene expression data for HIP (a), STR (b), and
PFC (c). We performed GWAS in each tissue using the first 100 PCs as phenotypes. PCs that showed evidence of
association with a SNP (−log10(p) = 5.09;α = 0.05) were retained; these are shown as solid red dots. In total, 71 PCs were
removed from HIP data, 81 PCs were removed from STR data, and 93 PCs were removed from PFC data.


