
Lam et al. Page 17 of 31

Appendices
This appendix includes the following sections.

1 Implementation details of the break point finding algorithm

2 Data analysis of the Breaker and Merger

3 Feasbility of Breaker to recover consistent contigs

4 More information on the EM algorithm and the MSA

5 Commands used to run various tools

6 Detailed Quast reports

7 Future work

Appendix A: Implementation details of the break point finding
algorithm

In forming a De Bruijn graph, we use the following method. First, we fill in the

hidden end points by inspecting any inconsistent number of end points between

repeat copies. In our example of x1 = a[b(c]d)e, x2 = f [bc]g, x3 = h(cd)i, we

have [()] as the long(� 2L) repeat end points. We fill in the hidden end points

x1 = a[b(c]d)e, x2 = f [b|c]g, x3 = h(c|d)i because between [] there should be a),

and between (), there should be a]After filling in the hidden end points, we label

and cluster the end points. At first, two end points have the same label if they cor-

respond to the same side of the same repeat. Then, we cluster end points that are

close to each other to have the same label. With the relabelled end points along each

contig, we form a graph. Note that the end points correspond to edges of the graph.

In the previous example, let the label of end point of [(]) be 1, 2, 3, 4 respectively, we

have the edge sequences of x1, x2, x3 being (1, 2, 3, 4), (1, 2, 3), (2, 3, 4). And we will

append beginning and ending edge to the sequences, so the actual edge sequences

of x1, x2, x3 are (b1, 1, 2, 3, 4, e1), (b2, 1, 2, 3, e2), (b3, 2, 3, 4, e3). Next, we need to find

the nodes. This can be done by scannig for successive end points in the edge se-

quences. Any two successive end points define a node. And if they do not correspond

to a closed end point followed by an open end point, it is considered as a repeat

node. For example, (1, 2) is a repeat node node, and (b1, 1) is a non-repeat node.

Now we note that from the repeat nodes, we can gather together the edges to form

the graph. For example, the incoming edges of node (1, 2) are the two end points

corresponding to 1 and outgoing edges of the node (1, 2) are the two end points

corresponding to 2. In order to handle double stranded nature of the genome, when

scanning the edge sequences, we search both forward and backward to identify the

nodes. The approximate nature of matching is handled when we cluster end points

close to each other.

Appendix B: Data analysis of the Breaker and Merger
We perform independent data analysis of the performance of Breaker and Merger of

BIGMAC. We note that we both use QUAST and an independent evaluation(which

is implemented by us) from QUAST. Users can use our evaluation scripts to eval-

uate the performance of their own improvement as well. We note that the dataset

1,2,3 are those studied in the experiment section and the dataset 0 is the synthetic

dataset.

Lam et al. Page 18 of 31

B.1 Quast reports

The Breaker only and BIGMAC end-to-end results are tabulated as follows. We

note that Breaker can decrease the number of contigs because it remove redundant

contigs after breaking at potentially mis-assembled points. The are located at the

QUAST report section.

B.2 Data anaysis on Breaker

We measure mis-assemblies fixing capability of Breaker. Specifically, we study the

performance of ChimericContigFixing(Palindrome) and the combination of Lo-

catePotentialMisassemblies and ConfirmBreakPoints (Repeat&Coverage). We map

the contigs back to the ground truth to see if the segments mapped to di↵erent

locations. We note that our method is more stringent that QUAST. Even in the

cases of repeat, we only map the segment to the best matched location. Thus, oc-

casionally, a FP may not be a real false positive. The script can be run as python

-m srcRefactor.evalmfixer foldername mummerpath The precision and recall

on the subcompoents are as follows.

Table 4: Breaker Evaluation
Dataset Break point detector Precision Recall Number of TP Number of FP
0 Palindrome 1 0 0 0
0 Repeat&Coverage 1 1 2 0
1 Palindrome 1 0 0 0
1 Repeat&Coverage 0.102041 0.483871 15 132
2 Palindrome 0.605556 0.246606 109 71
2 Repeat&Coverage 0.021898 0.032967 9 402
3 Palindrome 0.818182 0.157895 9 2
3 Repeat&Coverage 0.142857 0.113636 5 30

B.3 Data anaysis on Merger

To evaluation, we collect data from graphsurgery merges(when condensing edges),

BRepeat merges(when repeat node is not a separte node) and XRepeat merges(when

repeat node is a separate node). We map back to reference to identify correct suc-

cessors. Then we report the percentage left. The scripts can be run as python -m

srcRefactor.evalasplitter foldername mummerpath The precision and recall

on the subcompoents are as follows. Note that we are more stringent than QUAST,

because if two are not immediate successors then we report as FP here. Also, we use

best match on the reference, meaning that repeat can be mapped to more than one

location, thus a FP may not really be a FP. So, the number reported only serves as

an approximation here. We note that we have duplicated tje contigs to handle re-

verse complements, so all numbers are approximately double of the actual number,

with some o↵set due to slight variation due to tie-breaking in the alignment tool.

Appendix C: Feasbility of Breaker to recover consistent contigs
In this section, we study why Breaker can recover contigs by modelling the mis-

assemblies formed by an upstream assembler

We define the ground truth to be S0 = {s1, s2, ..., sn} which is a set of strings

with alphabets taken from ⌃ = {A,C,G, T}. Now we specify their repeat structures

as follows. Let x, y be length L substrings of si, sj respectively , where i 6= j and

Lam et al. Page 19 of 31

Table 5: Merger Evaluation
Dataset Merger subroutine precision recall TP num FP num
0 GraphSurgery 1 0 0 0
0 BResolve 1 1 4 0
0 XResolve 1 0 0 0
1 GraphSurgery 0.829268 0.164251 68 14
1 BResolve 0.745455 0.099034 41 14
1 XResolve 0.823529 0.033816 14 3
2 GraphSurgery 0.741379 0.076512 43 15
2 BResolve 0.384615 0.008897 5 8
2 XResolve 0.250000 0.001779 1 3
3 GraphSurgery 0.235294 0.090909 4 13
3 BResolve 0.333333 0.045455 2 4
3 XResolve 1.000000 0.022727 1 0

L > 2. If 81 < k < L, x[k] = y[k] and x[1] 6= y[1], x[L] 6= y[L], then we call (x, y)

be a maximal exact repeat of length L� 2. Although this notion of maximal exact

repeat can be generalized to the same string, for simplicity of discussion, we assume

they are extracted from di↵erent strings. We fix K0 to be a large constant which is

related to the length of the reads and assume that there are only r maximal exact

repeats of length > K0.

Next, we model the upstream assembler’s mis-assembly formation process by the

following sequence of operations of strings. Let {Tj}1jm be a sequence of opera-

tions that act on strings S0 and form {S(j)}1jm successively. That is, S(0) = S0

and 1 j m,S(j) = Tj(S(j�1)). Now, we specify the action of Tj . It picks two

arbitrary strings with a maximal repeat of length ¿ K0. Then, it breaks at the start

of the repeat and joins the corresponding string at the breakpoint. Symbolically,

let T operate on two strings s = axb, t = cxd, where the common segment is x

and the breakpoint is the position immediately before x. The resultant strings are

s0 = axd, t0 = cxb. We further assume that each string under the operations does

not have repeat within itself of length > K0.

Under this setting, we prove the following theorem.

Theorem C.1 Given S(m) generated from S0 = {si}1in after successive opera-

tions by {Tj}1jm , we can recover a set of strings W of cardinality at most n+4r

such that W is consistent with S0 (i.e. for each string w 2 W , w is a substring of

some string s 2 S0).

Proof The way to construct the set W is as follows. We first identify all maximal

exact repeats across the strings in S(m). We then break the strings at every end-

points of each of these maximal exact repeats. Now, it remains to show that 1)

there are at most n + 4r strings in W and 2) they are consistent with the ground

truth.

To show them, we use the following bookkeeping method. Let us assign a

unique label to each position at each string in the ground truth S0. Let the

set of all the labels be B and the mapping from B to string index and o↵-

set be f0. At the beginning, we define �0 as the labels that are the end-

points of any maximal exact repeat of length > K0. That is, �0 = {a 2
B | a corresponds to an endpoint of some maximal exact repeat of of length >

K0 in S(0)}. When we apply Tj on the strings, let x be the repeat. We move

Lam et al. Page 20 of 31

both the segment and the associated labels to the other string starting at

the left endpoint of x. The exceptions are the labels within the repeat x

which are associated with some right endpoints of another repeat x0 that has

left endpoint before x. We keep those labels at the original positions. Since

the set of labels remains invariant, and they correspond to a bijection, fj ,

from B to string position at each stage after Tj , we can define �j = {a 2
B | a corresponds to an endpoint of some maximal exact repeat of of length >

K0 in S(j)}
We consider the simple case when initially no two pairs of repeat copies overlap

at exactly one point(otherwise, we just need to generalize our book keeping scheme

by introducing multiple labels at those points). In that case, it turns out that �j

is invariant(i.e. �j = �0 for all j), which we will prove in a separate Lemma. With

this Lemma, then we can show the theorem follows.

We first show that W is consistent with S0. We note that for each Tj , if we mark

the label of the junction as bj and break them, then the resulting set of string will

be consistent throughout. But since bj 2 �j and
S

j{bj} ⇢
S

j �j = �m = �0, it

su�ces to break at every position corresponding to �m in S(m) to obtain consistent

strings. Moreover, |�m| = |�0| 4r. So, if we break at every position corresponding

to �m in S(m), we have at most n+ 4r resultant strings. This gives, |W | n+ 4r.

Lemma C.2 If 0 j m, we have �j = �0.

Proof We consider j = 1 and inductively, the lemma follows. Without loss of gen-

erality, we assume s1, s2 are the strings that T1 acts on and the associated repeat

is x.

If T1 can cause an element b 2 B to enter or leave �1, it could only belong to

a maximal repeat that includes a copy of x. Otherwise the labels and the moving

segment, which include that potential repeat segment, are moved together. Thus,

there cannot be any creation/destruction of maximal exact repeats. We will show

that, even for those repeats that include a copy of x, their endpoints are still invari-

ant. Without loss of generality, we take the suspicious repeat to end at the right

endpoint of s1. There are two cases that can cause changes in �1 upon T1. These in-

clude getting a bigger maximal repeat or getting a big repeat separated into smaller

pieces with a third string. Since we assume that we cannot have a repeat of length

¿ K0 on the same string in the sequence of operations, the third string cannot be

s1 or s2. They correspond to a T1 that goes either from left to right or right to

left in Fig 4. We enumerate the pairwise maximal repeats as shown in Fig 4. It

turns out that in both cases, the set of associated repeat endpoints is invariant.

This concludes the proof that �1 = �0

Appendix D: More information on the EM algorithm and the
MSA

In this section, we discuss about the details of the EM algorithm used and related

materials.

Lam et al. Page 21 of 31

�����������������F���������������F���������������G�

D��������������E���������������E�
��
D��������������H���������������H���������������G�

�����������������F���������������E���������������

D��������������E���������������F���������������G�
��
D��������������H���������������H���������������G�

V��YV�V������F���F�����E��E��
V��YV�V������F���G�����H���G��
V��YV�V������D��E�����D���H��

V�

V�

V�

V�¶

V�¶

V�¶

V�¶�YV�V�¶�����F���E�����E��F��
V�¶�YV�V�¶�����F���E�����H���H��
V�¶�YV�V�¶�����D��G�����D���G��

,QYROYHG�HQGSRLQWV�
 �^D���D���E���E���F���F���G���G���H���H�`

,QYROYHG�HQGSRLQWV�
 �^D���D���E���E���F���F���G���G���H���H�`

Figure 4: Illustration of conservation of endpoints

D.1 Derivation of the EM algorithm

logP✓(X,Z)

= log⇧1inP✓(Ri, Zi)

=
X

1in

logP✓(Ri, Zi)

=
X

1in

log⇧1jk(�jP (Ri | Zi = j))1Zi=j

=
X

1in

X

1jk

1Zi=j [log �j � log `j + log(qd(Ri,Ij)(1� 2q)L�d(Ri,Ij))]

=
X

1in

X

1jk

1Zi=j [log �j � log `j + d(Ri, Ij) log
q

1� 2q
+ L log(1� 2q)]

Thus, after taking expectation, we get Eq(z|x,✓t)[`(x, Z, ✓
t+1)] as desired.

D.2 Feasibility of MSA in our setting

Note that when we only have substitution noise and if all the Ri originates from the

same genomic location, the problem of minx
P

d(x,Ri) can be readily solved by a

majority vote. We expect similar results regarding indel noise. However, we need to

pre-process with an alignment phase before the majority vote. We thus introduce

Algorithm majority-consensus-star-alignment.

1 Compute alignment of R1 and Rj where j � 2

2 for j = 2 to n, use the alignment of R1 and Rj to form introduce gaps to

previous alignment with the principle of ”once a gap always a gap”

3 Take column-wise majority to form x⇤

4 return x⇤

We note that in the alignment, we use the scoring scheme of (1, -1 ,-1 ,-10) for

match, insertion, deletion, substitution. It is because pure substitution noise is rare

in current long read technology. We also note that when there is a run of alphabet,

we will push the gap towards the end of the alignment. For example CCAAATT is

aligned to CCAA TT.

Lam et al. Page 22 of 31

Theorem D.1 Let {Ri}1in be a set of string with alphabets in {A,C,G, T} of

length {`(Ri)}1in where `(Ri) > n > 5. If 8i 6= j, d(Ri, Rj) = 2 and 9x⇤ such that

8i, d(x⇤, Ri) = 1 then the majority-consensus-star-alignment can find the optimizer

of minx
P

d(x,Ri).

Proof We can break it down into the following three steps. A high level intuition is

that we are randomly placing an error on Ri generated from the same source, so, a

simple majority vote should just work after doing an initial alignment.

1 Note that x⇤ is the optimizer. If we defineRn+1 = R1, we have, 8x,
P

1in d(x,Ri) =
1
2

P
1in[d(x,Ri) + d(x,Ri+1)] � 1

2

P
1in d(Ri, Ri+1) = n But sinceP

1in d(x
⇤, Ri) =

P
1in 1 = n , we know that x⇤ is the optimizer.

2 Second, we assume we input the ground truth x⇤ as a read, we will find that

the algorithm give x⇤ as the output.

The reason is as follows. Let ei be the edit introduced by Ri when aligned to

x⇤. Note that ei 6= ej if i 6= j otherwise, d(Ri, Rj) = 0. So, it means that ei
cannot win the majority vote at the end because n � 6 and |{A,C,G, T,�}| =
5, so entry at x⇤ will be voted instead.

3 Finally, we find that the alignment with x⇤ is the same as that without it as

input.

The reason is as follows. We have the notation of M(A,B) as the alignment

of A and B when x⇤ is the first input, and MS(A,B) as the alignment of A

and B when x⇤ is the input. We claim that a small lemma, which says that

8j,M(R1, Rj) = MS(R1, Rj). Note that it su�ces because no gaps are intro-

duced without conflicting some Ri. Then with the lemma, we have alignment

of every reads be identical with and without x⇤, and by step 1 and 2, we know

that the algorithm will output the right optimizer. Now we proceed to show

the lemma. First note ei corresponds to edit on x⇤ for Ri. Recall that, ei has

to be distinct due to d(Ri, Rj) = 2. Now consider , without loss of generality,

e1, e2 and their corresponding location when x⇤ is the input. We define runs

of alphabets that ei lands on under MS as ri. Now, we exhaust the cases on

ri.

(a) There exists at least one other run between r1 and r2. For example,

AAAA-CCCTTT vs AAA-CCCTT- Since putting e1, e2 on MS gives

two edits between r1, r2, we cannot shift the alphabets at the middle to

give the same edit distance. This means that the same alignment shows

up under M so as to conserve the same edit distance. Moreover, as the -

is always put to the end of run, we will have that consistent under both

MS and M too.

(b) r1, r2 are neighboring runs. For example, CCC-TTT vs CCCCTT-. Shift-

ing of run at r1, r2 will cause substitution error, so it is not used under

MS . Thus, r1, r2 will have the same alignment too under M to conserve

the edit distance of 2.

(c) r1, r2 are on the same run. For example, CCCC– vs CCCCC while x⇤gives

CCCC- Since the - is always put at the end of the run, we have the

alignment conserved under M and MS .

Lam et al. Page 23 of 31

We note that, in our implementation of BIGMAC, we use ClustalW2[16] to do the

core of multiple sequence alignment. We first use MUMmer to get a rough anchors

of the reads and then we chop up the reads into smaller Kmers. Then, we group

the related Kmers together use ClustalW2 to do the multiple sequence alignment.

D.3 An interesting repeat

There is an interesting case which can justify why we need the EM algorithm for

some tough cases. Consider the situation in Fig 5. The correct matching is the one

that follows row by row. However, there exists matching at the interior such that the

polymorphic sites are still consistent (as shown in the figure). Moreover, if we only

consider abundance information alone, this repeat cannot be resolved as well (in

the sense that we cannot find the correct matching). However, if we consider both

the abundances and the polymorphism together during the decision making, we can

identify the correct linkage. That is why we introduce the parameter formulation

to incorporate both of these quantities.

Figure 5: An example regarding why it requires abundances and edit dis-

tance should be considered together

$ *
$ &
7 &
$ *

�;

�;

�;

�;

�;

�;

�;

�;

Appendix E: Commands for datasets
Commands for using BIGMAC on synthetic data and real data are all based on the

following commands.

$ python �m srcRe f a c t o r . misassemblyFixerLib . mFixer destF mPath

$ python �m srcRe f a c t o r . repeatPhaserLib . a S p l i t t e r destF mPath

FinisherSC, SSPACE LongRead and PBJelly are run at their default settings.

In particular, the commands used to run them are as follows.

Lam et al. Page 24 of 31

FinisherSC :

$ python f i n i sh e rSC . py dest mPath

PBJelly :

$ J e l l y . py setup Protoco l . xml

$ J e l l y . py mapping Protoco l . xml

$ J e l l y . py support Protoco l . xml

$ J e l l y . py ex t r a c t i on Protoco l . xml

$ J e l l y . py assembly Protoco l . xml

$ J e l l y . py output Protoco l . xml

SSPACE\ LongRead :

$ p e r l SSPACE�LongRead . p l �t 20 �c LC. f a s t a �p LR. f a s t a �b e2e /

The protocol.xml has the following setting for BLASR, <blasr>-minMatch 8

-minPctIdentity 70 -bestn 1 -nCandidates 20 -maxScore -500 -nproc 20

-noSplitSubreads</blasr>

Moreover, we note that you can reproduce results regarding BIGMAC by running

python reproduce.py to download data, dependencies and run the tools. The re-

sults is saved in allinone.txt

Appendix F: Detailed Quast reports
The Quast reports for various comparison for synthetic data and dataset 1,2,3 are

in the following tables.

Appendix G: Future work
It would be interesting to apply similar ideas to hybrid data. Moreover, it would

also be interesting to investigate the optimal way to use abundance information.

Lam et al. Page 25 of 31

Table 6: Synthetic data (Comparison with Breaker only and HGAP results). All

statistics are based on contigs of size � 500 bp, unless otherwise noted (e.g., ”#

contigs (� 0 bp)” and ”Total length (� 0 bp)” include all contigs).
Assembly Original Breaker only BIGMAC end-to-end
contigs (� 0 bp) 2 4 2
contigs (� 1000 bp) 2 4 2
Total length (� 0 bp) 10000000 10000000 9999992
Total length (� 1000 bp) 10000000 10000000 9999992
contigs 2 4 2
Largest contig 5000000 2512000 4999998
Total length 10000000 10000000 9999992
Reference length 10000000 10000000 10000000
GC (%) 50.01 50.01 50.01
Reference GC (%) 50.01 50.01 50.01
N50 5000000 2512000 4999998
NG50 5000000 2512000 4999994
N75 5000000 2488000 4999994
NG75 5000000 2488000 4999994
L50 1 2 1
LG50 1 2 2
L75 2 3 2
LG75 2 3 2
misassemblies 2 0 0
misassembled contigs 2 0 0
Misassembled contigs length 10000000 0 0
local misassemblies 0 0 0
unaligned contigs 0 + 0 part 0 + 0 part 0 + 0 part
Unaligned length 0 0 0
Genome fraction (%) 100.000 100.000 100.000
Duplication ratio 1.000 1.000 1.000
N’s per 100 kbp 0.00 0.00 0.00
mismatches per 100 kbp 0.00 0.00 0.05
indels per 100 kbp 0.00 0.00 2.38
Largest alignment 2512000 2512000 4999998
NA50 2512000 2512000 4999998
NGA50 2512000 2512000 4999994
NA75 2488000 2488000 4999994
NGA75 2488000 2488000 4999994
LA50 2 2 1
LGA50 2 2 2
LA75 3 3 2
LGA75 3 3 2

Lam et al. Page 26 of 31

Table 7: Dataset 1 (Comparison with Breaker only and HGAP results): All statistics

are based on contigs of size � 500 bp, unless otherwise noted (e.g., ”# contigs (�
0 bp)” and ”Total length (� 0 bp)” include all contigs).

Assembly Original Breaker only BIGMAC end-to-end
contigs (� 0 bp) 130 199 131
contigs (� 1000 bp) 130 197 129
Total length (� 0 bp) 30499818 29452892 29273543
Total length (� 1000 bp) 30499818 29452752 29273403
contigs 130 197 129
Largest contig 8887616 8615553 8615553
Total length 30499818 29452752 29273403
Reference length 30128987 30128987 30128987
GC (%) 56.54 57.45 57.68
Reference GC (%) 56.98 56.98 56.98
N50 818655 758280 4352719
NG50 1595590 567256 4352719
N75 274801 157172 274801
NG75 277114 132279 256020
L50 4 4 3
LG50 3 5 3
L75 23 28 14
LG75 22 32 16
misassemblies 18 4 7
misassembled contigs 15 4 7
Misassembled contigs length 16357196 536534 1785642
local misassemblies 6 6 9
unaligned contigs 0 + 0 part 0 + 0 part 0 + 0 part
Unaligned length 0 0 0
Genome fraction (%) 98.189 96.217 96.325
Duplication ratio 1.033 1.016 1.010
N’s per 100 kbp 0.00 0.00 0.00
mismatches per 100 kbp 33.76 22.38 44.80
indels per 100 kbp 7.13 5.40 63.44
Largest alignment 8631596 8615553 8615553
NA50 758280 758280 4351628
NGA50 758280 567256 4351628
NA75 227835 148337 262515
NGA75 254545 132279 181075
LA50 5 4 3
LGA50 5 5 3
LA75 26 29 14
LGA75 25 32 17

Lam et al. Page 27 of 31

Table 8: Dataset 2 (Comparison with Breaker only and HGAP results). All statistics

are based on contigs of size � 500 bp, unless otherwise noted (e.g., ”# contigs (�
0 bp)” and ”Total length (� 0 bp)” include all contigs).

Assembly Original Breaker only BIGMAC end-to-end
contigs (� 0 bp) 477 382 351
contigs (� 1000 bp) 477 371 341
Total length (� 0 bp) 32897488 29572416 29605579
Total length (� 1000 bp) 32897488 29569477 29603092
contigs 477 374 344
Largest contig 4673711 4673711 4673711
Total length 32897488 29571716 29605331
Reference length 66662626 66662626 66662626
GC (%) 47.38 48.81 48.80
Reference GC (%) 46.01 46.01 46.01
N50 397611 354308 397611
N75 38471 59190 75666
L50 9 13 12
L75 101 70 57
misassemblies 187 25 28
misassembled contigs 176 21 22
Misassembled contigs length 18192123 8079336 8582043
local misassemblies 22 18 19
unaligned contigs 39 + 7 part 30 + 7 part 29 + 8 part
Unaligned length 1646412 982915 993710
Genome fraction (%) 41.946 41.941 41.995
Duplication ratio 1.118 1.023 1.022
N’s per 100 kbp 0.00 0.00 0.00
mismatches per 100 kbp 1.58 1.97 8.68
indels per 100 kbp 8.63 9.02 37.15
Largest alignment 4547258 4547258 4547258
NA50 369454 333580 369454
NA75 32926 47209 56711
LA50 12 15 14
LA75 123 81 68

Lam et al. Page 28 of 31

Table 9: Dataset 3 (Comparison with Breaker only and HGAP results). All statistics

are based on contigs of size � 500 bp, unless otherwise noted (e.g., ”# contigs (�
0 bp)” and ”Total length (� 0 bp)” include all contigs).

Assembly Original Breaker only BIGMAC end-to-end
contigs (� 0 bp) 185 154 145
contigs (� 1000 bp) 185 149 140
Total length (� 0 bp) 17393660 13844743 13912664
Total length (� 1000 bp) 17393660 13843875 13911796
contigs 185 149 140
Largest contig 3968563 3968563 3968563
Total length 17393660 13843875 13911796
Reference length 7883268 7883268 7883268
GC (%) 61.18 60.96 60.98
Reference GC (%) 61.71 61.71 61.71
N50 257044 359704 359704
NG50 3968563 3968563 3968563
N75 82370 82649 99878
NG75 3924590 474671 517104
L50 5 7 7
LG50 1 1 1
L75 38 29 27
LG75 2 5 5
misassemblies 26 11 14
misassembled contigs 20 5 5
Misassembled contigs length 5470082 4234268 4328506
local misassemblies 2 2 2
unaligned contigs 118 + 0 part 121 + 1 part 115 + 2 part
Unaligned length 5585886 5543409 5553281
Genome fraction (%) 99.983 99.982 99.982
Duplication ratio 1.498 1.053 1.060
N’s per 100 kbp 0.00 0.00 0.00
mismatches per 100 kbp 0.18 0.24 2.30
indels per 100 kbp 8.70 22.88 23.60
Largest alignment 3924590 1719755 1719755
NA50 137772 284436 284436
NGA50 1719755 569978 576251
NGA75 1452284 474671 517104
LA50 11 10 10
LGA50 2 4 4
LGA75 3 7 7

Lam et al. Page 29 of 31

Table 10: Dataset 1 (Comparison with other tools) : All statistics are based

on contigs of size � 500 bp, unless otherwise noted (e.g., ”# contigs (� 0

bp)” and ”Total length (� 0 bp)” include all contigs).
Assembly original BIGMAC finisherSC e2e jelly e2e SSPACE e2e
contigs (� 0 bp) 130 131 53 100 86
contigs (� 1000 bp) 130 129 53 100 86
Total length (� 0 bp) 30499818 29273543 29883342 30619263 30589751
Total length (� 1000 bp) 30499818 29273403 29883342 30619263 30589751
contigs 130 129 53 100 86
Largest contig 8887616 8615553 8887616 8889022 8887616
Total length 30499818 29273403 29883342 30619263 30589751
Reference length 30128987 30128987 30128987 30128987 30128987
GC (%) 56.54 57.68 57.14 56.54 56.54
Reference GC (%) 56.98 56.98 56.98 56.98 56.98
N50 818655 4352719 2531294 4642330 4657611
NG50 1595590 4352719 2531294 4642330 4657611
N75 274801 274801 415024 418480 493683
NG75 277114 256020 399053 818655 818655
L50 4 3 3 3 3
LG50 3 3 3 3 3
L75 23 14 12 6 6
LG75 22 16 13 5 5
misassemblies 18 7 32 19 32
misassembled contigs 15 7 23 16 20
Misassembled contigs length 16357196 1785642 20096169 21804531 17545253
local misassemblies 6 9 11 9 36
unaligned contigs 0 + 0 part 0 + 0 part 0 + 0 part 0 + 11 part 0 + 0 part
Unaligned length 0 0 0 33217 0
Genome fraction (%) 98.189 96.325 98.330 98.423 98.189
Duplication ratio 1.033 1.010 1.030 1.034 1.037
N’s per 100 kbp 0.00 0.00 0.00 0.00 294.00
mismatches per 100 kbp 33.76 44.80 73.10 34.06 33.96
indels per 100 kbp 7.13 63.44 23.53 9.39 6.69
Largest alignment 8631596 8615553 8631596 8631646 8631596
NA50 758280 4351628 2530093 3871007 3854031
NGA50 758280 4351628 1537643 3871007 3854031
NA75 227835 262515 304665 361412 361362
NGA75 254545 181075 304665 414429 414429
LA50 5 3 3 3 3
LGA50 5 3 4 3 3
LA75 26 14 16 8 8
LGA75 25 17 16 7 7

Lam et al. Page 30 of 31

Table 11: Dataset 2 (Comparison with other tools) : All statistics are based

on contigs of size � 500 bp, unless otherwise noted (e.g., ”# contigs (� 0

bp)” and ”Total length (� 0 bp)” include all contigs).
Assembly original BIGMAC finisherSC e2e jelly e2e SSPACE e2e
contigs (� 0 bp) 477 351 447 403 307
contigs (� 1000 bp) 477 341 447 403 307
Total length (� 0 bp) 32897488 29605579 32870423 34484366 33520228
Total length (� 1000 bp) 32897488 29603092 32870423 34484366 33520228
contigs 477 344 447 403 307
Largest contig 4673711 4673711 4673711 4673711 4673711
Total length 32897488 29605331 32870423 34484366 33520228
Reference length 66662626 66662626 66662626 66662626 66662626
GC (%) 47.38 48.80 47.40 46.90 47.38
Reference GC (%) 46.01 46.01 46.01 46.01 46.01
N50 397611 397611 654163 1585584 1568442
NG50 - - - 17013 14909
N75 38471 75666 43018 61775 95133
L50 9 12 8 6 7
LG50 - - - 329 294
L75 101 57 89 65 45
misassemblies 187 28 192 271 255
misassembled contigs 176 22 168 246 165
Misassembled contigs length 18192123 8582043 18393113 24250973 23415983
local misassemblies 22 19 22 37 101
unaligned contigs 39 + 7 part 29 + 8 part 34 + 7 part 38 + 23 part 17 + 5 part
Unaligned length 1646412 993710 1594170 1760782 1479235
Genome fraction (%) 41.946 41.995 41.999 43.521 41.946
Duplication ratio 1.118 1.022 1.117 1.128 1.146
N’s per 100 kbp 0.00 0.00 0.00 0.00 1857.80
mismatches per 100 kbp 1.58 8.68 4.39 15.40 1.58
indels per 100 kbp 8.63 37.15 16.06 71.69 8.49
Largest alignment 4547258 4547258 4547258 4547258 4547258
NA50 369454 369454 401563 742006 737193
NA75 32926 56711 33995 46245 42004
LA50 12 14 11 9 9
LA75 123 68 113 90 82

Lam et al. Page 31 of 31

Table 12: Dataset 3 (Comparison with other tools) : All statistics are based

on contigs of size � 500 bp, unless otherwise noted (e.g., ”# contigs (� 0

bp)” and ”Total length (� 0 bp)” include all contigs).
Assembly original BIGMAC finisherSC e2e jelly e2e SSPACE e2e
contigs (� 0 bp) 185 145 162 133 97
contigs (� 1000 bp) 185 140 162 133 97
Total length (� 0 bp) 17393660 13912664 17391031 18003698 17738519
Total length (� 1000 bp) 17393660 13911796 17391031 18003698 17738519
contigs 185 140 162 133 97
Largest contig 3968563 3968563 3968563 3971059 4319145
Total length 17393660 13911796 17391031 18003698 17738519
Reference length 7883268 7883268 7883268 7883268 7883268
GC (%) 61.18 60.98 61.19 61.19 61.18
Reference GC (%) 61.71 61.71 61.71 61.71 61.71
N50 257044 359704 996532 1103847 1266912
NG50 3968563 3968563 3968563 3971059 4319145
N75 82370 99878 97964 128718 290104
NG75 3924590 517104 3924590 3927083 3985906
L50 5 7 3 3 3
LG50 1 1 1 1 1
L75 38 27 27 19 10
LG75 2 5 2 2 2
misassemblies 26 14 25 27 43
misassembled contigs 20 5 17 21 23
Misassembled contigs length 5470082 4328506 5465644 9434182 10736561
local misassemblies 2 2 2 2 5
unaligned contigs 118 + 0 part 115 + 2 part 99 + 0 part 66 + 14 part 50 + 0 part
Unaligned length 5585886 5553281 5602837 6149028 5791170
Genome fraction (%) 99.983 99.982 99.983 99.983 99.983
Duplication ratio 1.498 1.060 1.496 1.504 1.516
N’s per 100 kbp 0.00 0.00 0.00 0.00 1944.13
mismatches per 100 kbp 0.18 2.30 0.16 0.60 0.18
indels per 100 kbp 8.70 23.60 5.14 6.39 8.70
Largest alignment 3924590 1719755 3924590 3925633 3924590
NA50 137772 284436 152488 107893 126445
NGA50 1719755 576251 1719755 1719755 1719755
NGA75 1452284 517104 1452284 1453076 1452284
LA50 11 10 10 13 12
LGA50 2 4 2 2 2
LGA75 3 7 3 3 3

