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[bookmark: _Toc521068609]0. Brief overview of the PCAWG data set 
This manuscript describes analyses based on the ICGC-PCAWG dataset, which make use of the output from various PCAWG working groups. The generation of these data is described elsewhere (Campbell et al. 2017; Rheinbay et al., 2017; Sabarinathan et al., 2017; Alexandrov et al., 2018), and these publications should be consulted for more information. However, to aid the reading of this manuscript, we briefly describe the dataset here. For consistency purposes, we have included the relevant sections of this text both in the supplement of this manuscript, and in that of our companion manuscript (Dentro et al., 2018).
[bookmark: _Toc521068610]0.1 Summary of the tumour samples’ main characteristics 
The ICGC-PCAWG dataset comprises samples selected from individual ICGC and TCGA projects for which completion was imminent in 2015, as detailed in Campbell et al. (2017). Donors were included if a tumour and matched normal were sequenced to a minimum per-base coverage of 30x and 25x respectively, on the Illumina HiSeq platform with 100-150 bp paired-end reads (Figure 1 shows the average depth after alignment), and if a basic set of clinical details was reported (including age (Figure 2), sex (Figure 3) and histopathological diagnosis (Figure 4)). 2,834 donors passed these criteria, which were reduced to 2,658 after an extensive quality control procedure (also described in Campbell et al. (2017)). In total, 2,778 cancer samples from these 2,658 distinct donors were included in the final dataset, comprising 2,605 primary tumours and 173 metastases or recurrences (Figure 4).

Primary clinical annotations (age, sex and cancer type) were available for all tumours, with a handful of exceptions. Tumour stage and grade were available for 1,580 and 1,472 tumours respectively (Figure 5), while treatment annotations were available for 1,655 cases (Figure 6). Where treatment status was reported, the majority of samples fell into the “no treatment” category. In cases where treatment was specified, categories included “surgery”, “chemotherapy”, “chemotherapy + radiation therapy” and “other”, of which “other” was the most common. It should be noted that it was not always possible to determine whether this treatment was received before or after sampling. Survival data was available for 1,007 cases (Figure 8). Despite the fragmented availability of these clinical data pan-cancer, however, there can still be sufficient information for analysis within individual cohorts.  

Purity and ploidy values (Figure 9), as well as whole genome duplication status (Figure 10), were estimated via a consensus approach based on 6 CNA callers, as described in Dentro et al. (2018).

[image: /Users/dentros/Documents/projects/icgc/icgc_paper_figures/evo_paper_coverage_distribution/coverage_overview.png]
Figure 1 Coverage of tumour and normal samples, split per cancer type. Tumour samples were required to be sequenced to a spec of 30x, normal samples at 25x. After alignment, the mean depth (shown on the y-axis) for nearly all samples meet these criteria. Tumour samples have a mean coverage of 48.6, normal 36.4. 7 tumours with a coverage over 110x have been omitted from this figure.

[image: /Users/dentros/Documents/projects/icgc/icgc_paper_figures/evo_paper_age_distribution/age_diagnosis_overview.png]
Figure 2 Age of diagnosis distribution across cancer types. These data are provided by the individual projects and have been systematically collected.
[image: /Users/dentros/Documents/projects/icgc/icgc_paper_figures/evo_paper_sex/sex_overview.png]
Figure 3 Sex distribution per cancer type. Showing 1,207 female and 1,571 male donors. These data are provided by the individual projects and have been systematically collected.


[image: /Users/dentros/Documents/projects/icgc/icgc_paper_figures/evo_paper_number_of_samples_figure/histology_tumour_count.png]

Figure 4 Number of samples per type of cancer. Most cancer types consist of primary tumours, apart from melanomas, which are predominantly metastases. Nine cancer types contain over 100 samples, 20 cancer types fewer than 50.
[image: /Users/dentros/Documents/projects/icgc/icgc_paper_figures/evo_paper_stage_grade/stage_grade_overview.png]
Figure 5 Overview of the proportion of tumours for which grade and stage information is available. 
[image: /Users/dentros/Documents/projects/icgc/icgc_paper_figures/evo_paper_treatment/treatment_type_overview.png]
Figure 6 Overview of treatment annotations. Over half of the cases are annotated as “no treatment” or “surgery” only, while for 1000 cases there are no treatment annotations available.

[image: ../../Documents/projects/icgc/icgc_paper_figures/evo_paper_treatment/survival_breakdown_overview.png]
Figure 7 Treatment annotations per cancer type. 
[image: /Users/dentros/Documents/projects/icgc/icgc_paper_figures/evo_paper_treatment/survival_overview.png]
Figure 8 Proportion of cases with survival annotations per cancer type.
[image: ../../Documents/projects/icgc/icgc_paper_figures/evo_paper_purity_ploidy/purity_ploidy_overview_manualedits.pdf]
Figure 9 Ploidy (a) and purity (b) values across cancer types, sorted by median ploidy.
[image: /Users/dentros/Documents/projects/icgc/icgc_paper_figures/evo_paper_wgd_breakdown/wgd_status_breakdown.png]
Figure 10 Proportion of tumours with a whole genome duplication per cancer type.


[bookmark: _Toc521068611]0.2 Somatic SNV, indel and CNA calling
All sequencing data was collected and analysed through a series of standardised primary analysis pipelines to first realign reads to the same reference genome and subsequently call SNVs, indels and SVs, using a homogenised procedure, as is detailed in Campbell et al. (2017). High quality somatic SNV and indel calls were established via a robust consensus strategy based on multiple methods to achieve greater accuracy. Eighteen different callers were considered and asked to produce calls on 63 tumours selected across 23 cancer types and 26 contributing projects. For 50 tumours, there was sufficient DNA to perform deep sequencing via DNA hybridisation capture. Around 250,000 SNVs and indels were selected, stratified by the number of methods by which they were called, followed by uniform sampling across the overlaps. A consensus approach was then defined to maximise precision and sensitivity, based on the three core pipelines supplied by the Broad, DKFZ-EMBL and Sanger. Two additional callers (one SNV caller from MD-Anderson and an additional indel caller from the Barcelona Supercomputing Center) were added to improve the ability to detect low-allele-frequency variants. Variant allele frequency was taken into account when sampling variants for the validation; the precision obtained on SNVs at different allele frequencies is shown in Figure 11. 
[image: ../../Documents/projects/icgc/icgc_paper_figures/evo_paper_snv_validation/validation_figure_methodvaf_brief_manualedits.pdf]
Figure 11 SNV validation results. The figure shows the number of validated calls for each variant allele frequency bin (a) and the obtained precision (b). The consensus achieves the highest precision of all pipelines with a minimum of 90% of positive calls (lowest VAF bin) and over 94% in all other VAF bins. 

Robust consensus copy number profiles were established based on a consensus approach, which is described in detail in Dentro et al. (2018). Briefly, the consensus copy number calls are derived from six state-of-the-art callers and were established as follows: consensus segmentations were created by supplementing PCAWG provided structural variant calls (Campbell et al., 2017) with high-confidence copy number breakpoints agreed upon by multiple CNA callers. We then applied the six callers to the consensus segmentations, requiring the methods to use separately established consensus purity and ploidy values, and applied a multi-tiered approach to merge the copy number calls into a consensus. Three main tiers were established: (near) complete agreement on clonal segments, a strict majority on clonal segments, and complete or a strict majority consensus after rounding subclonal copy number calls. On average, a strict majority of the callers agreed on allele specific calls covering 93% of the genome (Figure 12).

[image: /Users/dentros/Documents/projects/icgc/icgc_paper_figures/copynumber_agreement/copynumber_agreement.png]

Figure 12 Fraction of the genome on which consensus is obtained. The three tiers correspond to how consensus was obtained. We achieved agreement on major and minor allele of a strict majority of the 6 callers on an average 93% of the genome.


[bookmark: _Toc521068612]0.3 Subclonal architectures
We applied 11 subclonal reconstruction algorithms to infer both the number and size of subclones, and combined this output into a robust consensus (Dentro et al., 2018). Firstly, we selected the most reliable copy number segments per tumour by ordering segments based on their confidence, and selecting segments until at least 75% of the genome was covered. Next, the 11 callers were applied to the consensus SNVs (available through PCAWG (Campbell et al., 2017) in these regions to identify the number of subclones, and to estimate their proportion of tumour cells and number of SNVs.
 
We developed three orthogonal approaches to build a consensus from these results: (1) based on cluster locations and sizes alone, (2) based on mutation co-assignment probabilities alone and (3) based on groups of mutations often assigned to the same mutation cluster. We show that the performance of these three approaches is very similar, is comparable to the best individual method (which is not always the same individual method), and that the best overall performance is obtained using all 11 callers when the best individual caller is not known a priori. We selected method 1 for this, as it is conceptually the simplest. Finally, with consensus mutation cluster locations and sizes established, we assigned all SNVs, indels and SVs for which variant allele frequencies were available using the MutationTimeR approach, described below (section 1.2).
 
The 11 callers and consensus approaches have been extensively validated on real and simulated data (Dentro et al., 2018). Simulations consist of two independently generated datasets covering a combined 1,464 tumours, and we have developed metrics to extract vital performance information about the predicted clusters and assignment of mutations. Finally, we used these automated checks, as well as manual inspection, to extensively benchmark the methods on real data.

[bookmark: _Toc521068613]0.4 Drivers
Driver calls have been made available throughout the PCAWG project; the full findings and methods are described in Rheinbay et al. (2017), while the table with driver elements are part of Sabarinathan et al. (2017). Somatic driver SNVs and indels were discovered by combining the outputs from 16 different discovery methods, including factors such as mutational burden, functional impact and mutation hotspots. To combine calls, their approach integrated p-values assigned to each event by the 16 callers, taking into account autocorrelation between methods based on similar principles, and applying multiple-testing correction. This was applied to protein-coding genes, promoters, untranslated regions (UTRs), distal enhancers and non-coding RNAs. 

[bookmark: _Toc521068614]0.5 Signatures
Mutational signatures, and estimates of their activity in each sample, have been produced by the PCAWG signatures group, with findings and methods detailed in Alexandrov et al. (2018). They applied two different computational approaches based on non-negative matrix factorisation to 4,645 genome and 19,184 exome sequences, to extract 49 single base substitution, 11 doublet base substitution and 17 indel signatures. The doublet base and indel signatures are completely novel, whilst the single base signatures are broadly concordant with the published signatures in COSMIC, with some additional signatures, and some signatures now being split. The authors report of a high concordance between the two approaches on all PCAWG samples, except in the case of hyper-mutators (5.6% of samples). Both reference sets of signatures and the per-sample quantifications of activity have been made available to the PCAWG project. In this manuscript, for simplicity we make use of the signatures output from one of the approaches only (SigProfiler). 
[bookmark: _hxvc5w52xi5t]
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[bookmark: _Toc521068615]1 Timing of copy number gains, point mutations and subclones 
Three related methods were used to time individual point mutations and copy number gains. These are described below. All three methods use the proportions of co-amplified point mutations to time gains.

[bookmark: _n5wv0fokbrbp][bookmark: _Toc521068616]1.1 cancerTiming
Clemency Jolly
[bookmark: _s5a85geta883]It is possible to infer the timing of clonal chromosomal gains using the copy number of point mutations within the gained region. Clonal mutations that have occurred before the gain become duplicated along with the chromosomal region, and themselves double in copy number, whereas mutations occurring after the duplication, or on a non-duplicated chromosome, remain in single-copy. Thus, the ratio of single to double-copy mutations gives an estimate of when the chromosomal region was gained in mutational time. 
We applied this rationale to the 2,658 samples across the PCAWG dataset using a previously established method, cancerTiming (Purdom et al., 2013), which uses a maximum-likelihood based approach to estimate the timing of single gains (regions of 2+1), double gains (3+1) and copy-neutral loss of heterozygosity (CNLOH, 2+0). cancerTiming was run with all default parameters except the minimum number of mutations per timed segment, which was lowered to 2 mutations. Confidence intervals for mutational time estimates were calculated by taking 500 non-parametric bootstrap samples.

E. Purdom, C. Ho, C. S. Grasso, M. J. Quist, R. J. Cho, and P. Spellman (2013). Methods and challenges in timing chromosomal abnormalities within cancer samples. Bioinformatics, 29:3113-20. 

[bookmark: _wmlpth65d9nb][bookmark: _Toc521068617]1.2 MutationTimeR
Moritz Gerstung
[bookmark: _4jaxbv509edy]Model
We use the following hierarchical model to calculate timing parameters based on copy number and variant allele frequency data. Let X denote the number of reads reporting a variant, n denotes the coverage. The basic model is that mutant read counts follow a beta-binomial distribution.
	X ~ BetaBin(n, f, ϱ)
Here, f denotes the variant allele frequency, which takes discrete values depending on local copy number and subclonal composition, which we will define in the following. ϱ is a dispersion parameter, which usually takes small values of ϱ=0.01. 
Suppose there are s discrete clonal and subclonal states (1 clonal denoted by s=0 and 1, ..., s-1 subclonal states). Using the placeholder S for the unknown state we hence have 
	S ~ Cat(s)
The probabilities for each state s are denoted Pr(s) and are taken as input from the subclonal composition analyses, where Pr(s) = #(s) / # total is the estimated fraction of mutations in a particular state. 
Each state allows for cs different copy number solutions, depending on the major copy number in the given clonal state. For clonal states cs = 1,..., M where M denotes the major copy number state, as mutations occur initially on a single allele and may be co-amplified with subsequent copy number gains (the total copy number is T=M+m, where m is the number of minor alleles). For subclonal states this implies cs = 1 in the absence of a subclonal mutation copy number change, and cs = 1,... ,d for cases with subclonal CN change as point mutations can be co-amplified or deleted. Here d denotes the difference between ancestral and derived copy number state, which either occurs on the major or minor allele. Values of d are usually -1,+1, denoting sublonal single loss, or gain.
Hence the number of alleles carrying a point mutation is
	C | S ~ Cat(cs)
Lastly the VAF corresponding to a given state cs and s is given by f(cs, s) = fs cs / (f0 T + (1-f0) N). f0 denotes the tumour purity, and N is the normal copy number at the given locus (usually 2 for autosomes and 1 or 2 for the allosomes). For loci with subclonal CN change, T is the weighted average of the total copy number of the two states.
Lastly, a mutant allele may not be detected. We use the assumption that typically 3 reads are required to detect a variant. This has consequences as typically for low VAF fewer mutations will be observed to a lesser extent. Thus, our Y observations will be 
 	Y | X = X if X > 3, else absent
Hence Y is given by a truncated beta-binomial distribution.
[bookmark: _f1cft1dqyedy]Parameter estimation
The only unknown parameters in the model are P(C | S), which are estimated by an EM-algorithm. P(S) are input from subclonal consensus.
Using Bayes’ formula, we have
	P(C | S, Y) = P(C, S, Y) / P(S, Y) = P(Y | C, S) P(C | S) P(S) / ΣC P(Y | C, S) P(C | S) P(S)
This implies iteratively calculating P(C | S, Y) for all observations Y and taking P(C | S) as the average over all Y in each iteration. 
Lastly, the probability P(Y | C, S) = P(X | C, S) / P( X < 3 | C, S). Here, P( X < 3 | C, S) denotes the power to detect all variants for state C and S, which we decompose into P(X < 3 | C, S) ≅ P(X < 3, C | S) P(X < 3 | S) =: Pow(C | S) Pow(S), relating to the power of detecting mutations for a particular mutation copy number C for a given state S and the power of each subclonal states S, respectively. These can be readily evaluated from the formulae above for each CN segments for Pow(C|S) and across all variants for Pow(S).
Overall, the EM algorithm for estimating the true proportions amounts to iteratively evaluating, where P(C | S) and P(S) are divided by their corresponding power terms,
P(C | S, Y) = P(X = Y | C, S) P(C | S) / Pow(C | S) P(S) / Pow(S) / const.

[bookmark: _srxiuiyletk6]Mutation assignment
Individual point mutations are assigned a mutation copy number and subclonal state using the MAP estimates
	c,s = arg max P(C, S | Y)

[bookmark: _u367vrhlfo28]Timing of copy number gains
The quantities P(C | S = clonal) =: πC denote the unbiased proportions of mutations in a given copy number state C. In cases of copy number gains, parameters carry important information about the timing of the amplification.
As previously described in (Nik Zainal et al.,  2012, Purdom et al., 2013), the timing of a gain can be expressed by the fraction of coamplified mutations, accounting for the number of available alleles. 
Mono-allelic gains. The general formula for the timing of the first mono-allelic gain on a segment with total copy number M+m and minor copy number m in {0,1} is
	t1 = (M+m) πM / Σi=1M i πi 
The expression for the latency of the second gain for M > 2, m in {0,1} is:
	t2= (M+m) πM-1 / Σi=1M i πi 
Note that tertiary gains cannot be unambiguously timed.
Bi-allelic gains. Bi-allelic gains on both copies, that is M=2, m=2 can be timed similarly, assuming synchronousity of the duplication. Here the formula reads:
t1 = ½ (M+m) πM / Σi=1M i πi
On segments with M=3, m=2, the timing of the first synchronous gain is
t1 = (M+m) πM / Σi=1M i πi
and that of the second gain reads
t2 = (M+m) (πM – πM-1) / Σi=1M i πi

Using the estimated proportions πc, unlike the number of mutations in a given state, has the advantage of implicitly adjusting for stochastic fluctuations, overlapping subclonal states and power.

Notes
1. The formulae for bi-allelic gains assume that the two alleles are amplified synchronously; this is very plausible in cased of whole-genome duplications, but not guaranteed.
2. In cases of subclonal copy number gains, we calculate the above formula for the ancestral copy number state, summing up those πc for those c corresponding to the same ancestral state.

[bookmark: _s01d1ds1r6dr]Confidence intervals
We use b = 200 bootstraps to calculate confidence intervals [tlo,, tup] for the timing estimates t. We observed empirically that these are too narrow for cases of low counts; therefore we use the following weighted average:
	tup,adj = (5 + n tup) / (5 + n)
	tlo,adj = n  tlo / (5 + n)
Where n is the number of mutations in the given segment used for timing.

Code availability 
Code for MutationTimeR is freely available at http://github.com/gerstung-lab/MutationTimeR
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[bookmark: _crzi695qs1zw][bookmark: _Toc521068618]1.3 Single Sample Timing (PhylogicNDT Timing, Fig.4a-d)
Ignaty Leshchiner and Daniel Rosebrock 
For each tumour sample, somatic events can be timed relative to one another with different certainty. Subclonal events occur in a subpopulation of cells, and thus occur at a later point in tumour development than clonal events, which occur in all cancer cells in the population. The likelihood that an event is clonal or subclonal is taken into account. In the event of copy number changes in the tumour genome, it is also possible to time clonal events overlapping these copy number altered regions. For a given clonal mutation lying in a gain region with alt_count = k and coverage = n, we compute the likelihood for each mutational copy number (multiplicity) mode as follows:
L(mult) = B(k; n,expected_af(mult)),
where B(k;n,p) is the probability mass function of the binomial distribution, and expected_af(mult) = mult×purity / (2(1-purity)+N × purity), and N is the total number of allelic copies in that region. If mutational multiplicity is 1 in a region where both alleles are gained, or one allele is deleted and the other is gained, then the mutation occurred after the copy number gain, if more than 1 then it occurred before the gain. In some instances, it is not possible to time the mutation without phasing information, for example, in regions where only one allele is gained and the other allele retains its single copy, and the mutation has estimated multiplicity of 1. The multiplicity likelihoods are propagated into the relative timing model.
Using multiplicity rates, clonal copy number gains can be timed in mutational time and relative to one another. We define the quantity  as the relative time of occurrence of a copy number gain with respect to the rate of clonal mutation accumulation. An estimate of  = 0 signifies a very early gain (all clonal mutations occurring within the gained region occurred after the gain), while an estimate of  = 1 signifies a very late gain (all clonal mutations occurring within the gained region occurred before the gain). First, a prior is defined on the relationship between the probability of a detected clonal mutation having multiplicity 2 in a given region, which we define as p2.
Single allelic gains: 
p2 = /(3-)
Double allelic gains or CNLoH: 
p2 = /(2-), etc.
Assuming  has a uniform prior distribution in [0,1], for regions of double allelic gains or CNLoH, our prior on p2 is prior(p2) =  3/(P2+1)2, and for regions of single allelic gains, our prior on p2 is prior(p2) = 2/(P2+1)2.
For a detected clonal mutation with alt count = k, and coverage = n, the likelihood (without a detection power correction) of that mutation having multiplicity 1 or 2 will be:
L(mult1) = B(k; n,expected_af(mult1))
L(mult2) = B(k; n,expected_af(mult2))
Then, for each mutation i, we build a posterior probability of the specific mutation having multiplicity 2, which we define as f_i(p), where p in [0,1],
f_i(p) = P_i(mult1) × p + (1-p) × P_i(mult2),
where 
P_i(mult1) = L(mult1)/(L(mult1)+L(mult2))
and 
P_i(mult2) = L(mult2)/(L(mult1)+L(mult2)).
To estimate the posterior distribution on the overall quantity p2 can then be estimated:
p2(p) = prior_p2(p) × PI_{i=1}^N f_i(p).
In order to account for different power to detect mutations of different multiplicities in the region of interest, we create an empirical mapping from observed p2 space into corrected p2 space by using the genomic region coverage profile and absolute local copy number.
[image: ]
Finally, we transform the corrected p2 to  space via the transformation from above:
Single allelic gains:
 = 3p2/(p2+1)
Double allelic gains or CNLoH:
 = 2p2/(p2+1), etc.
Same procedure was used to time regions of higher allelic copy number and to estimate the timing of whole genome duplications (WGD) event. Whole genome duplications present a unique opportunity to time events across physically disconnected regions of DNA on different chromosomes. Regions of focal or chromosomal full deletion of one allele are more likely to have occurred before a genome doubling event than after. The most likely timeline of events for a region of single allelic copy number is a loss after a whole genome doubling event. 

1.4 Validation of copy-number timing methods (Extended Data Figure 2)
[bookmark: _fhnrpapxihmv]Ignaty Leshchiner and Daniel Rosebrock
We simulated a cohort of samples with random evolutionary trajectories by using the PhylogicNDT TimingSimulator module.  For each simulated tumour sample, we specified a given ordering of somatic events at random times in pi space.  The clonal mutation rate for each simulated sample was chosen at random from clonal mutation rates estimated across PCAWG samples.  After specifying a clonal mutation rate, mutations were distributed randomly across the genome space.  Total bases at risk were updated upon introduction of each copy number event to the genome, as well as multiplicity (number of physical strands of DNA harboring a point mutation) of each mutation lying in the region affected by the copy number event.  By using mutation accumulation across the genome as a molecular clock and correcting for genome-wide tumour ploidy at the end of the simulation, copy number events and driver point mutations were added at their corresponding time in pi space.  The number of subclones and subclonal mutation rate within each simulated sample was chosen at random from the distribution of subclones and subclonal mutation rates estimated from all PCAWG samples.
The purity of each simulated sample was drawn from the estimated purities of PCAWG samples.  We modelled the coverage profiles of whole genome samples by fitting the coverage profiles of PCAWG samples in diploid regions to a beta binomial distribution, the average coverage and the coverage for each simulated mutation was drawn from this distribution, scaling for local ploidy and purity accordingly.  The alt count for each simulated mutation was then drawn from a binomial distribution, with the expected allele fraction for that mutation equal to (ccf) × (multiplicity) × (purity)/(2 × (1-purity)+(ploidy) × (purity)). Thus, we have simulated a realistic set of tumour samples with the ordering information preserved.
We then evaluated the 3 copy-number gain timing methods against each other on the PCAWG dataset and against the truth on the simulated dataset (Extended Data Figure 2). All results showed high concordance between each other and with the simulated truth results.

[bookmark: _Toc521068619]2 Synchronous amplification of large gains (Fig. 2c-d)
Santiago Gonzalez, Moritz Gerstung
To confirm if the presence of patients with several chromosomal amplifications co-occurring in a narrow period of time is just a simple random effect or corresponds to an underlying process, we have analysed patients classified as carrying whole genome duplications and those not carrying whole genome duplications. Duplication of the genome is a well-studied single catastrophic event that can be used as a positive control of our analysis.
For each amplified fragment, the relative timing is obtained using MutationTime.R as described above. As previously discussed, the timing confidence intervals depend on the number of mutations present in each fragment, we have arbitrary classify as uninformative those with CI (tup - tlo) > 0.5. Similarly, patients with the mean of their CI > 0.5 have been classified as uninformative and excluded from the synchronous analysis.  Afterwards, using the values of the individual segments, we estimated the gain timing as the period where most of the observed fragments overlap. Then, we considered the sample as synchronous if 75% of its amplified genome can be explained in just one gain time.
We performed the expected background distribution permuting chromosomes between patients not carrying whole genome duplications from the same tumour type due to the observation that certain tumour types can be biased towards early or late events. We repeated the same described process used on the real patients in this new sample of permuted patients.
[bookmark: _9s8vo7s4oa4][bookmark: _gv6j58m93r6m]
[bookmark: _Toc521068620]3 Timing of driver  events
[bookmark: _8eu9it35q7oi][bookmark: _Toc521068621]3.1 Qualitative timing of driver point mutations (Fig. 3a-d)
Santiago Gonzalez
In order to study the preferred timing when mutations in known driver regions occur, we analysed the list of mutations affecting driver regions provided by PCAWG-9. 
According to our previous analysis, we classified mutations in 4 different timing stages: early and late clonal, clonal (NA), and subclonal using MutationTime.R as described above. These 4 states produce 2 different transitions to analyse: (i) early/late referred if the mutation occurred preceding or after the copy number gains, and (ii) clonal/subclonal based on if the mutations is present in all tumour cells or only in a fraction of them.
We merged both substitutions and small indels for the analysis since their timing distribution agree across the different tumours and an independent analysis has shown compatible results performing the analysis separately.
For each of the 50 more mutated driver regions we selected those patients carrying mutations in the analysed locus. For each selected sample, the background is obtained using all the mutations present in fragments with the same CN configuration as the one carrying the driver mutation. In order to assess the variability of the estimations we bootstrapped each subgroup 1,000 times.
Because mutations in TP53 are present across different tumour types, we performed exactly the same analysis on the cited gene but decomposing the patients per tumour type.
[bookmark: _y0sdo3o5qp4n][bookmark: _Toc521068622]3.2 Relative timing of driver mutations (Fig. 4 & Extended Data Fig. 2-4)
League model relative ordering (PhylogicNDT LeagueModel)
Ignaty Leshchiner, Daniel Rosebrock and Gad Getz
Let {xi}, i=1,...,N be a collection of N somatic mutations and copy number events found in a given sample. For each pair of events, (xi,xj), likelihoods of relative ordering of two events are estimated according to the above procedure. When two events co-occur across M samples in the cohort, a discrete background multinomial distribution for the event pair, (xi,xj) ~ (p1, p2, p3) is formed, where:
p1 = P(xi before xj) = probability with xi before xj across cohort / M
p2 = P(xj before xi) = probability with xj before xi across cohort / M
p3 = P(order of (xi,xj) unknown) = probability with unknown timing across cohort / M.
For two events which co-occur less than 5 times across the cohort, we increase the uncertainty of the above distribution by contributing additional equal distributed density to p1, p2, p3.
Significant arm level copy number events for the corresponding cohort were included whenever available (Mermel et al., 2011), as well as the 15 most prevalent significant mutations specific to that cohort whenever available (Lawrence et al., 2014). Only events that occurred in at least 3 samples across the cohort and had a prevalence of at least 5%, were included in the final events for the league model. Similarly, the 5 most focal gains and losses, drawn from known significant focal events specific to that cohort whenever available, otherwise from pan-cancer specific focal events (Travis et al., 2014) were included in the final events for the league model.
The league model is organized into seasons. Within each season, each event “plays” each other event once. Each “game” is played by drawing from the multinomial distribution formed as described above for each event pair. If a win is drawn (event A before event B), then the winner (event A) is awarded 2 points and the loser (event B) 0 points. If an unknown ordering is drawn, then both events are awarded a single point. At the end of the season, the total score is recorded for each event. A distribution of orderings for each event is made by playing at least 1,000 seasons. This approach is in effect sampling the true underlying joint distribution of the ordering of events across the cohort (Fig. 4a).
In order to detect multi-modal orderings, potentially a result of various subtypes within a cohort with different underlying disease progression models and account for outlier samples, we subset to 70% of samples across the cohort at random for multiple league model runs on each of these subsets. The final timing probability density distribution for each event is then integrated across league model runs over all subsets. The method was comprehensively validated on simulated ordering data before being applied to real sequenced cohorts. 
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Bradley-Terry model ordering
Tom Mitchell
Contingency tables, collated from the timing estimates of common somatic and copy number events within single samples across each tumour type for were input into an implementation of the Bradley-Terry model of pairwise comparison. A score of 1 was used for wins between event pairs, with no score allocated for draws. Bias reduced maximum likelihood ratios estimated the ability or overall order of each individual contest. Spearman's rho was calculated for the association between the ordering derived from the League model and Bradley-Terry ordering models, with good concordance (Extended Data Fig. 4).

[bookmark: _Toc521068623]3.3 Validation of League model relative ordering (Fig. 4 & Extended Data Fig. 3)
Ignaty Leshchiner and Daniel Rosebrock

For the purpose of validating the League model relative ordering methods and results we used 
PhylogicNDT TimingSimulator (see section 1.4) to obtain cohorts of simulated samples according to predetermined trajectories and then run PhylogicNDT Timing and PhylogicNDT LeagueModel on the simulations.  We first validated that samples simulated from a randomly ordered trajectories will give a result where odds of events being early/late in the trajectory is centred on 1 (as expected).
Further, we simulated cohorts of samples generated from a single predefined trajectory (with varied events prevalence), results showed very high concordance with the truth trajectory, fully recovering the expected order (Extended Data Fig. 3a). 
It is expected that a cohort of real tumour samples will have a mixture of distinct trajectories, with some events potentially showing unspecific timing (appearing during different phases of tumour development). To simulate such a scenario, we simulated cohorts of samples coming from a mixture of 2 or more trajectories with varied trajectory prevalence and varied prevalence of constituent events (Extended Data Fig. 3b). Results showed that obtained League model ordering result is an average of predefined trajectories (i.e. order of events is consistent with the mixture) with events that are shared between trajectories but have differential order converging to the middle (odds of early vs late of 1) displaying unspecific order. It is worth noting, that events that were consistently early or late across the trajectories (or absent in some) maintained this predefined early or late order position, confirming our interpretation of results from ordering real PCAWG cohorts.
To quantify the overall accuracy of trajectory reconstruction we simulated a random set of 100 cohorts with random trajectory mixtures and quantifying the distance in odds early/late from perfect ordering (Extended Data Figure 3c). We find that in the vast majority of events (even with low number of occurrences in the cohort) the odds error does not exceed 10, suggesting that nearly none of the events would switch between, for example, early timing and middle timing. Most of the events have errors below odds 5 and centred on 0 median error. Mutations, copy gains and copy losses show consistent accuracy profiles (Extended Data Figure 3c). 
[bookmark: _4jq5fespbqo4][bookmark: _evtxnji01dv0]
[bookmark: _Toc521068624]4 Timing of mutational signatures (Fig. 5; Extended Data Figure 5)
Clemency Jolly, Yulia Rubanova

[bookmark: _Toc521068625]4.1 Extracting mutational signature weights from timed mutations
Mutations were classified according to the mutational features of the PCAWG-7 signatures (Alexandrov et al., 2018). The trinucleotide context for all SNVs was obtained from the human reference genome build GRCh37 using Bioconductor package BSgenome.Hsapiens.UCSC.hg19 (Pages, 2017). Mutations occurring at a purine base were converted to the pyrimidine context to obtain 96 mutational features (as described in Alexandrov et al., 2013). Adjacent SNVs, with the same timing classification, were classified as doublet base substitutions and also converted to the pyrimidine counterpart where appropriate. Whilst the indel classification used by the PCAWG-7 Mutational Signatures working group was not available, we selected four indel signatures with distinctive mutational features (ID1, ID2, ID8 and ID13), and quantified the number of these features in each sample. For ID1, we took 1bp insertions of T or A, at homopolyer regions of 5+ T’s (or A’s, respectively). ID2 is similar, although is comprised entirely of deletions of T or A at homopolymer stretches of 5 or more. To quantify ID8, we took deletions of 5+ bp that were not at repeat units, and for ID13 we took deletions of TT (or AA) at 2 bp homopolymer regions of T’s or A’s. With this catalogue of mutations defined per sample, we then used the timing of SNVs and indels as obtained from MutationTime.R (as described above) to group the mutations into early, late, clonalNA and subclonal. NNLS was used to estimate the weights of single base substitution (SBS) and doublet base substitution (DBS) signatures. For indel signatures, we simply took the counts of each indel feature in each time frame. 

[bookmark: _Toc521068626]4.2 Testing for spectral changes
We use a likelihood ratio test to assess whether the observed mutation histograms at two different time points differ. Let X ∈ ℕ096 and Y ∈ ℕ096 be the trinucleotide single base substitution spectra at two time points, respectively, in a given sample. Assuming that these follow a Multinomial distribution each,
	X ~ Mult(n, p),
	Y ~ Mult(m, q),
where n and m are the total numbers of single base substitutions at each time point, we calculate a likelihood ratio test for the alternative H1: p ≠ q against the null that the expected spectra are identical H0: p = q. Under the alternative the maximum likelihood estimates are the relative frequencies p = X/n, q= Y/m, respectively, while under the null the estimates are p = q = (X+Y)/(n+m). We use the usual χ2-approximation with 95 degrees of freedom for the deviance 2(l1-l0) to calculate p-values. 
To account for multiple testing we used the method of Bonferroni to adjust the significance level. Only samples with non-zero mutation counts at both time points were considered informative.

[bookmark: _Toc521068627]4.3 Calculating signature changes
Proportional signature weights were used to calculate signature changes per sample between early and late clonal mutations, and between clonal and subclonal mutations. The fold change was derived from relative activities (A) as follows, e.g. for early (Aearly) and late (Alate) mutations:

fold change = (Alate/(1-Alate))/(Aearly/(1-Aearly)) 

We applied a bootstrapping approach to determine 95% confidence intervals for all of the signature changes. Within each sample, mutations were resampled from their multinomial distributions in early, late, clonalNA and subclonal mutations (where appropriate). Then, the corresponding signature weights and changes were estimated. This process was repeated 1000 times per sample, to generate a distribution of signature changes per signature, from which 95% CI could be derived. To compute the average signature changes for individual signatures (both pan-cancer and across cohorts), 1000 change estimates were drawn from the corresponding bootstrap replicates, from which a mean change and 95% confidence intervals could be estimated.   
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[bookmark: _Toc521068628]5 Real-time estimation of WGD and subclonal diversification (Fig. 6; Extended Data Figure 6)
Moritz Gerstung, Santiago Gonzalez

[bookmark: _Toc521068629]5.1 Mutation types 
The logic outlined in the first section calculates the occurrence of events in “mutation time”, i.e. the fraction of mutation accumulated over a tumour’s lifetime, standardised to the genome size. Hence the estimates t are subject to biases resulting from variation in the rate at which mutations accumulate. As a general trend, we can expect the mutation rate to accelerate during tumorigenesis as a consequence of increased proliferation rate and acquired DNA repair deficiencies. The exact rates are often unknown, but recent reports and our own analysis indicates that the accumulation of C>T transitions in a CpG dinucleotide context due to spontaneous deamination of 5meC is a relatively inert process.
Hence, by accounting only for CpG>TpG. one can expect to reduce the influence of more variable mutational processes on the timing estimates. The downside is that this reduces the number of mutations used for timing to typically only 10-20%, therefore allowing only to time genome-wide events, such as whole genome duplications, or subclonal diversification due to the reduced number of data points. In melanoma samples, the UV spectrum can also generate a considerable number of CpG>TpG mutations, particularly in a CpCpG and and a TpCpG context due to the formation of pyrimidine photo dimers upon UV damage. We therefore excluded these two contexts for Skin-Melanoma samples only. A consequence of this restriction is that the estimates of WGD and MRCA shift further away from diagnosis (by about 2-5 years compared to counting all CpG>TpG mutations) and agree better with other cancer types. Applying the same restrictions to all other cancer types did not change the results systematically, but inflated the confidence intervals due to about 50% lower mutation numbers.
Mutations counted: All CpG>TpG, excluding YpCpG for Skin-Melanoma.

[bookmark: _Toc521068630]5.2 Modelling copy number changes
First, the CpG>TpG burden was adjusted for the DNA content and its changes over time by calculating an effective genome size G = n / ∑i mi / Ti , where n denotes the total number of CpG>TpG mutations in a given sample, mi   denotes the estimated multiplicity of mutation i and Ti is the total copy number at this locus. For example, a diploid genome corresponds to mi = 1 and Ti = 2 for all mutations, therefore G = 2. For a sample with WGD at time 0, all mi = 1 and Ti = 4, such that G = 4. Conversely, if WGD occurs late, immediately before diagnosis all mi = 2 and Ti = 4, such that G = 2, indicating that the genome was diploid across the life history of the sample. The advantage of using G at this stage is that it enables to regress out a wide range of ploidy changes. For a more detailed analysis of WGD using only regions of copy number 2+0, 2+1 and 2+2, see below.

[bookmark: _Toc521068631]5.3 Subclonal phylogeny
The phylogeny of subclones can only be partially resolved using the available data. It is clear though, that subclonal mutations succeed clonal mutations. The main challenge for using the number of subclonal mutations to time the most recent common ancestor MRCA stems from the fact that the branches of linearly succeeding subclones are additive, while those of branching clones are not. Hence failure to correctly account for the phylogeny can have an impact on the inferred time. The two extreme scenarios are a linear phylogeny and a maximally branching one. In the latter scenario the expected number of subclonal mutations approximately follows a 1/f–distribution resulting from the increase of possible subclonal lineages proportional to the number of cells present at different times of clonal expansion. Using a more rigorous population genetic assessment, Noorbakhsh and Chuang (2017) noted that the expected allele frequency distribution in a growing tumour is f–k, where k is the relative selective advantage and k=1 being the case of no selection. Thus, we implicitly assume that the average selective advantage within the cancer is small, k ≈ 1, and we note that individual samples may deviate from this expectation due to linearly succeeding subclones and/or drift. Nevertheless, the advantage of this approach is that it can be easily applied by scaling the number of subclonal variants at a given frequency f with the inverse of f. The median branch length, scaled by the ploidy is 7%. We use this phylogeny for the analyses shown in Figure 6, as it is most conservative (shortest branch lengths).
A linear phylogeny on the other hand increases the subclonal branch length on average by 77% (21%-108% IQR). The corresponding median subclonal branch length would be 14% (compared to 7% under a branching model), showing that the phylogeny has a profound, but also not prohibitive influence on timing the MRCA.
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[bookmark: _Toc521068632]5.4 Estimating branch lengths
For a given branch j (clonal trunk, subclones), we estimate the number of CpG>TpG mutations by summing over the posterior probability pij = P(S=j | Yi) and adjusting for the power to detect variants at the expected frequencies, both calculated by MutationTime.R, nj = ∑i pij / Pow(j). As discussed above, different subclones are folded into a single branch as nsubclonal = ∑j  fj nj. We estimate the length of each branch as
	bj = nj /Gj =  ∑j fj ∑i pij / Pow(j) / Gj
Thus, branch lengths (clonal, subclonal) are adjusted for:
· Power to detect variants
· Ploidy changes
· Phylogeny

[bookmark: _Toc521068633]5.5 Selection of samples
Hypermutation usually leads to mutation of a very characteristic spectrum, such as TpCpT>TpApT mutations in POLE mutant tumours. However, mismatch repair deficiency and also MBD4 mutations increase the rate of CpG>TpG mutations. We therefore removed hypermutant samples from the real-time inferences.
Second, let b = bclonal  + bsubclonal be the power, ploidy and branching adjusted mutation burden. The average rate of mutation acquisition prior to diagnosis at age a is µ = b/a.
If the hypermutation is acquired during the life history of the sample the change in rate may bias the inferred timing. Noting that hyper mutant samples usually display a dramatic increase in µ, we removed samples j, for which | µj  – median(µj) | <  2 in a given tissue. 
Another possible source of bias arises from tumour in normal contamination (TiN). As most variant calling algorithms remove variants found in the matched normal, the presence of cancer variants in the normal (usually blood) leads to the loss of some mutations, and especially so for variants at high VAF, as they are more likely to be detected in the normal and subsequently filtered from the cancer sample. To mitigate the possible effect of this bias samples with TiN > 0.01. This criterion was met for 2,101/2,778 samples (253 with TiN > 0.01, 423 with missing values).

Samples j selected:
· Tumour in normal ≤ 0.01 (676 samples removed)
· | µj  – median(µj) | <  2 in a given tissue (67 hyper mutant samples removed)
· Sample not cell line (1 sample removed)

[bookmark: _70abo6an7rms][bookmark: _Toc521068634]5.6 Acceleration from relapse samples
Tumours sequenced at primary and relapse stages allow to compare the number of mutations acquired during the patient’s life with the mutations acquired during the relapse period. We have used 8 different tumour types in order to verify the variability of the acceleration in the mutational rate across tumours: 9 ovarian samples from PCWAG, 4 acute myeloid leukemia samples (Ding et al., 2012), 7 breast cancer samples (Yates et al., 2017), 2 medulloblastoma (Morrissy et al., 2016), 2 liver cancer (TCGA-DD-AACA, TCGA-ZS-A9CF), 4 low grade glioma (TCGA-DU-6397, TCGA-DU-5872, TCGA-DH-A669, TCGA-FG-5963), 1 lung cancer (TCGA-50-5946) and 1 B-cell lymphoma (Moncunill et al., 2014). The age of the patients ranges from 25 years up to 74, which also confers a wide distribution.
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[bookmark: _Toc521068635]5.7 Acceleration from mutation burden at diagnosis
All somatic mutations arise between zygote and diagnosis and are practically irreversible. Hence the total mutation burden for an individual cancer can only increase over time. Hence, for a given sample the relation between then number of mutations (in retained chromosomal segments) and time is monotonously increasing. If the rate per sample was constant, the relation is linear, if there is a late increase in mutation rate, then the relation is convex. Assuming that the baseline mutation rate in a given tissue is constant across samples, the surplus of mutations relative to the linear increase can be estimated by the offset of a linear fit. This logic has been developed and demonstrated to hold across a range of evolutionary models by Tomasetti et al. (2013). Here we apply this logic to CpG>TpG mutations only (see comment above regarding Skin-Melanoma samples). 
To study the fraction of mutations attributable to a linear, fixed rate accumulation in a given tissue, be fitted a hierarchical Bayesian model to the mutation burden b as a function of age a and tissue t. The Bayesian model allows to account for offset and slope to be strictly positive and share information across cancer types. The model used is
b | c, µ, a ~ N(µa + c, a2 τ2+σ2)
µ | t ~ Gamma(α,β)
c | t ~ Gamma(δ,γ)
Here µ denotes the mutation rate in each tumour type and c measures the offset per tumour type. Both parameters are linked across tumour types by Gamma distributions to ensure positivity. The variance of the mutation burden has a constant and an age-dependent contribution τ2, and σ2. Model parameters and confidence intervals are estimated using Hamiltonian Monte-Carlo (Neal, 2011) as implemented in the rstan package (Stan Development Team, 2018) and run over 2,000 iterations after 1,000 burn in steps.
The fraction of mutations f contributed by the linear term can be calculated as f = µ a / c and the mean of this quantity is calculated across all samples of a given tumour type. A confidence interval for f is calculated from the joint distribution of µ and c.
Results for this analysis part are shown in Extended Data Figure 6a-c.
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[bookmark: _Toc521068636]5.8 Adjusting for mutation rate increase
The mutation rate prior to the first sequenced sample has been obtained using the total number of mutations of the primary tumour and the age of the patient. Similarly, the mutation rate between the primary tumour and the relapse consists on the increment of mutations observed in the relapse sample divided by the relapse time. We calculate the acceleration for all observed mutations and in 5meC deaminations. Only one AML patient has been filtered out during this process due to the relapse sample showed less mutations than the primary tumour which seems to be inconsistent.
[bookmark: _ya8jn2vgnzco]From the set of πi, one can calculate the time points [0, tg, tc, 1], where 0 denotes fertilisation, tg is the time of the first gain and tc is the time of the most recent common ancestor. In case of an intermittent rate acceleration at time ta one has to adjust these estimates accordingly. 
Clearly nothing would change if the acceleration occurs at times 0 or 1, as it would influence either all or none of the observed mutations. Generally, an acceleration at later times would inflate the estimate of the period after the acceleration and an adjustment seeks to reverse this inflation. Here, we assume that the acceleration occurs during the clonal period [0, tc].
As the exact onset is unknown we simulate different acceleration values a=1,...,10x and average this over the period from ta ∈ [t0, 1] x tc, where t0 = max{1-15yr/age, 0.5}. Note that for a median age at diagnosis of 60yr, t0 would be 0.75. The rationale of this approach is that any acceleration is expected to occur during the late stages (~25% of clonal molecular time, but not less than 50%) of tumour development. 
For the duration of [tc,1] we use the power- and branching adjusted proportion of all subclonal mutations as discussed above. Hence the acceleration in different periods is
· [0, ta] = 1
· [ta, tc] = a (variable ta)
· [tc, 1] = a

For the results shown in Figure 6e,f,h, the following acceleration was chosen
· 7.5x for Ovary-AdenoCa and Liver-HCC in agreement with the timing of relapse samples
· 2.5x for CNS-Medullo, CNS-GBM, CNS-Oligo and CNS-PiloAstro in agreement with relapse samples and mutation burden analysis.
[bookmark: _bz3cjrud35u4][bookmark: _Toc521068637]Notes
· The approach does not account for the (unknown) time between the emergence of the founder cell of a subclone and diagnosis; hence it is likely to underestimate the appearance of events by the duration of the subclonal expansion, which can be expected to take several months to a year.
· As shown in Extended Data Figure 6f, selecting an acceleration value a for each sample, based on the adjusted mutation burden b, relative to the tissue lower quartile (ie. higher acceleration for those samples with greater burden), does not qualitatively change the estimated median time of occurrence. We thus conclude that the observed variation of inferred timing is not driven by differences in acceleration between samples.
· A total of 818 samples were initially classified as WGD, from which the following number of samples were removed for absolute timing purposes
· 124 due to abnormal mutation rates
· 71 were classified as WGD uncertain
· 13 had no age information

Code
R code for this and other parts of the analysis is available at http://github.com/gerstung-lab/PCAWG-11
[bookmark: _osisojk8uzqi][bookmark: _Toc521068638]6 Construction of cancer timelines (Fig. 7)
Clemency Jolly
Taken together, these analyses allow us to build a typical picture of tumour development for each cancer type; placing key events along the timeline leading up to diagnosis, and characterising the changing activity of mutational processes. 
Each timeline spans from the fertilised egg to the median age of diagnosis per cohort, although in most cases this axis is broken to allow a clearer visualisation of events in the later stages of tumour evolution. Working back from the point of diagnosis, the median real time estimates of the MRCA, and WGD events, may be placed directly onto the timeline. 
Between these real time anchor points, it is then possible to interleave the ordered driver mutations and copy number aberrations as provided by the league model. The first time period, marked as “preferentially early”, comprises events from the league model that have an odds of being early > 10. As we do not know precisely when this interval begins, there is a break in the timeline close to the fertilised egg, and the first epoch starts from there. The subsequent “variable/constant” time period includes events that are assigned a variable timing from the league model, but are ranked before the WGD event. Again, we are unsure precisely where this interval starts, and so it also begins shortly after another break in the timeline. The “late” period does have a definite start, as this includes events which are ranked after WGD, when it occurs. In the final, “subclonal” stage, events are included if they are amongst the last in the league model ranking, and are subclonal in at least 50% of cases.   
Signatures observed in at least 3 individuals or 10% of samples per cancer type are annotated on each timeline. Where there is evidence for a signature change (i.e. confidence intervals not overlapping 0), then the signature is annotated during the epoch of its greatest intensity. Where there is no change, signatures are annotated in the middle “variable/constant” epoch.   
Additionally mutations with known timing during oncogenesis, for example if they have been described to occur in cancer precursors, are annotated. Where our timing agrees with the timing reported in the literature, events are annotated “*”, where our timing does not agree, or the event was not reported in our dataset, the event is denoted with “✝”. The set of mutations is tabulated in Table 1.


	Cancer Type
	Precursor
	Precursor driver
	Late
	Subclonal
	Note
	References

	Colorectal-AdenoCa
	Adenoma
	APC, KRAS
	TP53
	
	
	http://dx.doi.org/10.1016/0092-8674(90)90186-I

	Prostate-AdenoCa
	Prostate Intraepithelial Neoplasia; PIN
	FOXA1, +1q, +8q; TPRSS-ERG; -8p
	SPOP, KDM6A, KMT2D
	
	
	https://doi.org/10.1016/j.eururo.2015.10.031

	Myeloid
	Clonal Haematopoiesis
	DNMT3A, TET2, SRSF2, U2AF1
	
	NPM1
	
	http://dx.doi.org/10.1056/NEJMoa1409405
http://dx.doi.org/10.1056/NEJMoa1408617
http://dx.doi.org/10.1056/NEJMoa1516192

	Ovary-AdenoCa
	STIC
	TP53
	
	
	
	http://dx.doi.org/10.1158/2159-8290.CD-16-0607
http://dx.doi.org/10.1016/j.ygyno.2009.01.013

	Breast-AdenoCa
	Ductal Carcinoma In Situ; DCIS
	Unknown
	
	
	High similarity between different stages
	https://doi.org/10.1002/path.2808

	Pancreatic-AdenoCa
	Pancreatic Intraepithelial Neoplasm; PanIN
	KRAS, CDKN2A, BRAF, GNAS
	TP53, SMAD4
	
	
	http://dx.doi.org/10.1053/j.gastro.2011.12.042
http://dx.doi.org/10.1038/nrc949

	Esophagous-AdenoCa
	Barrett's Esophagous
	
	TP53, SMAD4, WGD
	
	Most recurrent genes tend to overlap
	http://dx.doi.org/10.1038/bjc.2016.219
http://dx.doi.org/10.1038/ng.3013
http://dx.doi.org/10.1038/ng.3343

	Cervix-SCC
	Cervical Intraepithelial Neoplasm; CIN
	Unknown; HPV virus
	
	
	The frequency and average number of genetic alterations corresponded directly to the extent to which the cervical carcinoma had progressed.
	https://doi.org/10.1002/gcc.1215

	Liver-HCC
	Hepatocellular Adenoma; HCA
	CTNNB1, TERT; HNF1A and IL6ST only in HCA; HBV and HCV viruses
	TP53
	
	
	http://dx.doi.org/10.1038/ng.3252

	Skin-Melanoma
	Benign nevus
	BRAF; NRAS and TERT intermediate
	CDKN2A, PTEN, TP53
	
	
	http://dx.doi.org/10.1056/NEJMoa1502583

	CNS-GBM
	Normal brain tissue
	+7
	
	
	
	http://dx.doi.org/10.1159/000132863

	Kidney-RCC
	
	t(3;5)
	
	PTEN, SETD2, KDM5C
	Timing of t(3;5) by point mutations
	https://doi.org/10.1016/j.cell.2018.02.020
http://dx.doi.org/10.1056/NEJMoa1113205

	Lung-AdenoCa
	Atypical Adenomatous Hyperplasia; AAH
Adenocarcinoma in situ; AIS
	KRAS, TP53, EGFR
	
	
	
	http://dx.doi.org/10.1038/ncomms9258



Table 1: Driver mutations in precancers and subclones.

[bookmark: _Toc521068639]7 Considerations for timing analyses
To recapitulate the typical evolutionary history of each tumour subtype, the timing of mutational events and processes is extracted in as much detail as possible from individual samples, and then aggregated across a cohort. It should be kept in mind, however, that in terms of timing, certain samples and certain tumour types can be much more informative than others, due to a variety of both technical and biological factors.

[bookmark: _Toc521068640]7.1 Sample collection
Common mutational events need to be identified within each cohort, so that it may be determined whether these events have a specific pattern of timing. This requires suitably large sample sizes, and ideally, a cohort of tumours that correspond to the same type of disease. The PCAWG dataset comprises WGS data from many different sequencing projects, with varying sample sizes (range 2-327, see Supplementary Information section 0, Figure 4). Across the project, cancer types with fewer than 15 samples were excluded from cohort-specific analyses, but nevertheless, there will be more power to reconstruct a sequence of events in the larger cohorts.
Sampling strategy is also important; comparing primary tumours with metastases, or treated and non-treated samples, risks mixing tumours with different evolutionary dynamics, and confounding the overall picture of tumour evolution. Largely, this dataset is made up of untreated, primary tumours (see Supplementary Information section 0, Figure 7), with the exception of certain cohorts, such as Skin-Melanoma which is almost entirely metastatic, and Myeloid-AML, of which all samples have undergone chemotherapy. Similarly, it may be more difficult to reconstruct a comprehensive pathway of tumour development for cancer types which contain multiple subtypes, such as Breast-AdenoCA. 

[bookmark: _Toc521068641]7.2 Detecting and timing genomic aberrations
The genomic aberrations a tumour has acquired over its lifetime may be detected from WGS data. The accuracy of these calls depends on how many reads actually correspond to each position in the tumour genome, determined by the depth of sequencing, tumour purity and ploidy. The number of reads supporting each mutation could influence our ability to not only to detect mutations, but also to separate clonal from subclonal, or early (present on two or more copies) from late (present on one copy), which is a key step in all of the timing analyses.     
In terms of sequencing depth, all samples have a minimum coverage of 30x in the tumour and 25x in the normal, which is typically lower than whole exome or targeted sequencing, for example. However, the breadth of WGS is important here; the timing analyses rely on accurate copy number profiles, and relatively high numbers of mutations, particularly for the mutational timing of gains. This would not be so achievable with targeted or whole exome sequencing. Purity values range from 0.13 to 1 (mean 0.64, median 0.66) and overall tumour ploidy varies between 1.29 and 6.18 (mean 2.38, median 2.00), see Supplementary Information section 0, Figure 9. The interplay between these different factors may mean that there is some variability in the resolution for timing point mutations, which would impact downstream timing analyses, such as the mutational timing of gains, or the league model.  
We are confident, however, that both the mutations themselves, and their timing, is largely accurate for the samples in this study. Mutation calls were provided by the PCAWG technical working group, and were validated down to low allele frequencies (see Supplementary Information section 0, Figure 11), whilst clonal and subclonal mutations and CNAs were derived from a high-confidence consensus approach (described in our companion paper, Dentro et al., 2018). For the mutational timing analysis, subclonal gains were excluded as this would require co-assignment of mutations and CNAs to subclonal populations.
It is also important to consider the effects of biological factors, such as mutation rate, on the timing analyses. The mutational timing of gains does not depend on the assumption of a constant mutation rate over time; time estimates simply describe the relative ordering between point mutations and chromosomal gains. Regional differences in mutation rate should also not impact time estimates, as long as the differences are maintained over time. If different parts of the genome do experience varying rates of acceleration, then this will skew time estimates across the genome, making them incomparable. One way to examine the effect of regional differences in acceleration is to compare the timing of individual chromosomes that are part of a WGD event. From our analyses, time estimates for single chromosomes in WGD samples cluster tightly around a single point. This would suggest that regional differences in mutation rate over time do not substantially impact mutational time estimates. 

Tumour biology
Differences in the level of genomic aberrations between tumour types means that ultimately, we can say more about the evolution of some than others. Particularly, as many of the timing analyses rely on interdependencies between mutations, it is more difficult to reconstruct the evolutionary history of tumours with few genomic alterations. For example, clonal WGD is a key event in tumour evolution, as it allows the separation of clonal time into before and after the WGD event. In samples that have not undergone genome doubling, this separation is not so clear. Where this varies within a cohort, it is inevitable that the more mutated samples, with more timing information, may dominate the cancer type summary. Furthermore, when point mutations are used to quantitatively time copy number gains, samples with more mutations are likely to have more accurate time estimates, although this is reflected in the size of the accompanying confidence intervals. 
It is also possible that certain drivers, CNAs, or large events such as WGD, may set a cancer off on a specific evolutionary trajectory that is not common to all samples in the cohort that don’t have this transformative event. As we are presenting the average timeline for each tumour type, this may in fact be a mix of multiple timelines, as discussed above. This mixture of evolutionary histories can be captured in the results of the league model, which will assign events that have a changeable timing across the cohort as “intermediate or variable”.  
Overall, we aim to characterise the evolutionary history of the average tumour from each histological subtype, from the information that we can derive from the samples. The events along this timeline are not necessarily present in every tumour, and it may be that this general profile can be more influenced by samples which have more events that can be timed.  


References
Dentro, SC. et al. Portraits of genetic intra-tumour heterogeneity and subclonal selection across cancer types. bioRxiv, doi: 10.1101/312041 (2018)

[bookmark: _Toc521068642]Data availability 
Pan-Cancer Analysis of Whole Genomes (PCAWG) data is available through the ICGC Data Portal https://dcc.icgc.org/pcawg at corresponding dbGaP and EGA accession numbers.
Processed data is available at synapse, https://www.synapse.org/#!Synapse:syn14193595

[bookmark: _Toc521068643]Code availability
[bookmark: _GoBack]All code presented in this analysis is available through the github repository https://github.com/PCAWG-11/Evolution. This archive contains relevant software and analysis workflows as submodules. For more specific information please consult the links provided in individual sections.  The MutationTimeR code is available as an R at https://github.com/gerstung-lab/MutationTimeR. An R script to recreate all analysis steps based on MutationTimeR, including Figures 1b, 2c-f, 3a,d, 6a-h can be found at https://github.com/gerstung-lab/PCWG-11
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