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1 Non-probabilistic clustering methods

1.1 EuclideanClust

EuclideanClust is a region-based method in which we first compute for each cell the mean methylation

level of each region of interest. Because of the sparsity of the data, we cluster the cells taking as

input data not the original matrix of mean methylation levels, but instead we apply complete-linkage

hierarchical clustering on the symmetric matrix of Euclidean distances between every pair of cells with

a dissimilarity matrix based also on Euclidean distances. EuclideanClust is similar to the approach

used by Smallwood et al. [1] and Angermuller et al. [2], with the difference that the regions are

defined differently in our case (functional genomic regions) versus Smallwood (sliding windows across

the genome) and Angermuller et al. (gene bodies). We use the Calinski-Harabasz (CH) index [3] to

automatically choose the number of clusters that best fit the data.

1.2 DensityCut

As in EuclideanClust we first compute for each cell the mean methylation level of each region of in-

terest. We then use principal component analysis as a dimensionality reduction technique considering

a maximum of 20 first principal components, and apply DensityCut, a density based clustering algo-

rithm proposed by [4], to the resulting principal component scores. This method is somewhat similar

to the approach proposed by Mulqueen et al. [5], except that they used a different dimensionality

reduction technique (NMF) and a different density-based clustering algorithm (DBSCAN).

1.3 HammingClust

This method is a CpG-based method as we consider the data from all individual CpGs from all

regions of interest to cluster the cells. Because of the sparsity of the data, similarly to EuclideanClust,

clustering is done by first calculating Hamming distance based dissimilarities between each pair of

cells and then applying Ward’s linkage hierarchical clustering with Euclidean distances on the matrix

of Hamming dissimilarities. HammingClust is essentially equivalent with the recent PDclust of Hui et

al. [6]. As in EuclideanClust, the CH-index is used to select the optimal number of clusters.

1.4 PearsonClust

PearsonClust is also a CpG-based approach similar to HammingClust, except that instead of Hamming

and Euclidean distances it is based entirely on Pearson correlation, that is, we first compute the Pearson

correlation between every pair of cells and then apply Ward’s linkage hierarchical clustering with again

a Pearson-based dissimilarity matrix on the initial correlation matrix. This method is equivalent to

the approach used by Hou et al. [7]. The CH-index is also used for best clustering partition.
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2 Proposed probabilistic method - Epiclomal

Our proposed methodology extends the approach of [8] to single-cell DNA methylation data. In

what follows we describe our model and inference technique for the case we call EpiclomalRegion,

which is based on the assumption that the probability of a given locus being methylated depends on

the genomic region that locus is located and that loci in the same genomic region share the same

methylation probability. Our EpiclomalBasic approach is a special case of EpiclomalRegion obtained

by assuming that all loci belong to one single region sharing the same probability of being methylated

and, therefore, can be obtained by setting R = 1 in all calculations and steps below. See graphical

models in Figure 1 of the main text.

2.1 Model and inference

Let us consider a set of R regions in the genome (e.g., CpG islands, gene bodies, etc). Let Xnrl be

the observed methylation status (or epigenotype) for cell n at locus l of region r, for n = 1, . . . , N ,

r = 1, . . . , R and l = 1, . . . , Lr. Our approach allows for the set of loci with observed data to vary across

cells, but for simplicity we write our model and inference derivations assuming there are data for all loci

in all cells, i.e., assuming complete data. Each Xnrl takes value in S = {unmethylated, methylated}
or simply S = {0, 1}.

Let Xnr = (Xnr1, . . . , XnrLr)T be the vector of observed data for region r in cell n and Xn =

(XT
nr, . . . ,X

T
nR)T be the vector with all observed data for cell n. We assume that

• X1,. . . ,XN are independent;

• Xn1, . . . ,XnR are independent for all n;

• Given a vector of true methylation states, Xnr1, . . . , XnrLr are independent with the distribution

of Xnrl depending on the true methylation state at locus l of region r.

We assume that there are K << N vectors of true hidden methylation states shared across the

cells. Let Zn taking values in {1, . . . ,K} be the hidden variable indicating the true cluster (epi-

clonal) population of cell n. We consider Z1, . . . , ZN independent with P (Zn = k) = πk such that∑K
k=1 πk = 1. If Zn = k then the distribution of Xn depends on the k-th vector of true hidden

epigenotypes Gk = (GT
k1, . . . ,G

T
kR)T , where Gkr = (Gkr1, . . . , GkrLr)T . We consider that

• G1, . . . ,GK are independent;

• Gk1, . . . ,GkR are independent for all k;

• Gkr1, . . . , GkrLr are independent with P (Gkrl = s) = µkrs such that
∑
s∈S

µkrs = 1, that is, Gkrl

follows a categorical distribution with parameter set µkr = {µkrs : s ∈ S}.
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Therefore, given the true hidden methylation states, the observed data Xnr are independent with

Xnrl following a categorical distribution with parameters depending on the hidden true state at locus

l of region r for cluster population k, that is,

P (Xnrl = t|Gkrl = s) = εst with
∑
t∈S

εst = 1. (1)

We can also interpret the probability in (1) as a misclassification error, which in this context is

related to sequencing error.

Let Θ be the set containing all the model parameters, i.e., Θ = {µ, ε,π}, where

• µ = (µT
1 , . . . ,µ

T
K)T with µk = (µT

k1, . . . ,µ
T
kR)T and µkr = {µkrs : s ∈ S};

• ε = {εs : s ∈ S} with εs = {εst : t ∈ S} and

• π = (π1, . . . , πK)T .

In order to infer Θ and the hidden states Z = (Z1, . . . , Zn)T and G = {G1, . . . ,GK} we take on a

Bayesian approach and consider the Variational Bayes (VB) algorithm ([9] and [10]) to approximate

the posterior distribution

q(Z,G,Θ) ≡ P (Z,G,Θ|X). (2)

We consider the following prior distributions for the parameters in Θ.

• p(µ) =
K∏
k=1

p(µk) =
K∏
k=1

R∏
r=1

p(µkr), where µkr ∼ Dirichlet(β0)

• p(ε) =
∏
s∈S

p(εs), where εs ∼ Dirichlet(γ0
s)

• π ∼ Dirichlet(α0)

In what follows we describe the main steps of the VB algorithm we used to infer Z,G and Θ.

Step 1. Posterior factorization

We assume the following factorization of the posterior distribution in (2):

q(Z,G,Θ) ≡ q(Z)q(G)q(µ)q(ε)q(π)

=
[ N∏
n=1

q(Zn)
][ K∏

k=1

R∏
r=1

Lr∏
l=1

q(Gkrl)
][∏

s∈S
q(εs)

][ K∏
k=1

R∏
r=1

q(µkr)
]
q(π). (3)

Step 2. Joint distribution of observed data, hidden variables and parameters

Considering the assumptions previously made for the observed data, hidden variables and model
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parameters, we can write the logarithm of the joint distribution of X, Z, G and the parameters in Θ

as

logP (X,Z,G,Θ) = logP (X|Z,G,Θ) + logP (G|Θ) + logP (Z|Θ) + logP (Θ), (4)

where

logP (X|Z,G,Θ) =
N∑

n=1

R∑
r=1

Lr∑
l=1

K∑
k=1

∑
s∈S

∑
t∈S

I(Zn = k)I(Xnrl = t)I(Gkrl = s) log εst; (5)

logP (G|Θ) =
K∑
k=1

R∑
r=1

Lr∑
l=1

∑
s∈S

I(Gkrl = s) logµkrs; (6)

logP (Z|Θ) =
N∑

n=1

K∑
k=1

I(Zn = k) log πk and (7)

logP (Θ) = logP (ε) + logP (µ) + logP (π)

with

logP (ε) =
∑
s∈S

[∑
t∈S

(γ0st − 1) log εst − logB(γ0
s)
]
; (8)

logP (µ) =

K∑
k=1

R∑
r=1

[∑
s∈S

(β0s − 1) logµkrs − logB(β0)
]

and (9)

logP (π) =
K∑
k=1

(α0
k − 1) log πk − logB(α0). (10)

The function B in (8)-(10) is the multivariate Beta function, which can be expressed in terms of

gamma functions. So, for example,

B(α0) =

∏K
k=1 Γ(α0

k)

Γ(
∑K

k=1 α
0
k)
.

Step 3. Approximation

We now approximate each term in the factorization (3) by calculating the expectation of logP (X,Z,G,Θ)

over the distribution of all terms except the one of interest. So, for example, we obtain the approxi-

mation q∗(π) for q(π) by calculating

log q∗(π) = EZ,G,ε,µ
(

logP (X,Z,G,Θ)
)

+ C, (11)
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where the expectation is taken with respect to the posterior distributions of X,Z,G and Θ. This form

of approximation arises from finding the distribution that minimizes the Kullback-Leibler divergence

to the exact posterior, which is equivalent to maximizing the evidence lower bound (ELBO) given by

ELBO(q) = E
[

logP (X,Z,G,Θ)
]
− E

[
log q(Z,G,Θ)

]
. (12)

See [9] and [10] for more details.

In what follows we show how we obtain q∗ for each of our quantities of interest.

• Approximating q(π) by q∗(π)

We find q∗(π) that satisfies

log q∗(π) = EZ,G,ε,µ
(

logP (X,Z,G,Θ)
)

+ C.

As only the terms (7) and (10) in (4) depend on π we calculate:

log q∗(π) = EZ,G,ε,µ
(

logP (Z|Θ)
)

+ EZ,G,ε,µ
(

logP (π)
)

+ C∗

=
N∑

n=1

K∑
k=1

Eq∗(Zn)

(
I(Zn = k)

)
log πk + logP (π) + C∗

=

K∑
k=1

log πk

[ N∑
n=1

Eq∗(Zn)

(
I(Zn = k)

)]
+

K∑
k=1

log πk(α0
k − 1) + C∗∗

=
K∑
k=1

log πk

[( N∑
n=1

Eq∗(Zn)

(
I(Zn = k)

)
+ α0

k

)
− 1
]

+ C∗∗. (13)

Therefore, q∗(π) is a Dirichlet distribution with parameters α∗ = (α∗1, . . . , α
∗
K)T , where

α∗k = α0
k +

N∑
n=1

Eq∗(Zn)

(
I(Zn = k)

)
. (14)

• Approximating q(Zn) by q∗(Zn)

To find q∗(Zn) we calculate

log q∗(Zn) = EZi:i 6=n,G,ε,µ
(

logP (X,Z,G,Θ)
)

+ C. (15)

As only (5) and (7) in (4) depend on Zn, calculating the approximation in (15) is equivalent to

calculating the following:

log q∗(Zn) = EZi:i6=n,G,ε,µ
(

logP (X|Z,G,Θ)
)

+ EZi:i 6=n,G,ε,µ
(

logP (Z|Θ).
)

(16)
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Note that we can split logP (X|Z,G,Θ) in (5) into two terms: one that depends on Zn and one

that is constant on Zn, that is,

logP (X|Z,G,Θ) =
R∑

r=1

Lr∑
l=1

K∑
k=1

∑
s∈S

∑
t∈S

I(Zn = k)I(Xnrl = t)I(Gkrl = s) log εst

+
∑
i 6=n

R∑
r=1

Lr∑
l=1

K∑
k=1

∑
s∈S

∑
t∈S

I(Zi = k)I(Xirl = t)I(Gkrl = s) log εst. (17)

Similarly, we can write

logP (Z|Θ) =
K∑
k=1

I(Zn = k) log πk

+
∑
i 6=n

K∑
k=1

I(Zi = k) log πk. (18)

Therefore, considering the second terms in (17) and (18) as constants and taking the expectation

in (16), we obtain:

log q∗(Zn) =

K∑
k=1

I(Zn = k)
{
Eq∗(π)(log πk)

+
R∑

r=1

Lr∑
l=1

∑
s∈S

∑
t∈S

Eq∗(Gkrl)

(
I(Gkrl = s)

)
I(Xnrl = t)Eq∗(εs)(log εst)

}
+ C∗∗.

So that q∗(Zn) ∼ Categorical(π∗n) with parameters π∗n = (π∗n1, . . . , π
∗
nK)T where

K∑
k=1

π∗nk = 1 and

each π∗nk is given by

π∗nk =

exp
{
Eq∗(π)(log πk) +

R∑
r=1

Lr∑
l=1

∑
s∈S

∑
t∈S

Eq∗(Gkrl)

(
I(Gkrl = s)

)
I(Xnrl = t)Eq∗(εs)(log εst)

}
K∑
j=1

exp
{
Eq∗(π)(log πj) +

R∑
r=1

Lr∑
l=1

∑
s∈S

∑
t∈S

Eq∗(Gjrl)

(
I(Gjrl = s)

)
I(Xnrl = t)Eq∗(εs)(log εst)

} .
(19)

Using similar calculations as the ones above for q∗(Zn) and q∗(π), we obtain the following

posterior approximations for the remaining quantities of interest.
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• q∗(µkr) ∼ Dirichlet(β∗kr) where β∗kr is the vector containing β∗krs for every s ∈ S with

β∗krs = β0s +

Lr∑
l=1

Eq∗(Gkrl)

(
I(Gkrl = s)

)
for all s ∈ S. (20)

• q∗(Gkrl) ∼ Categorical(µ∗krl) where µ∗krl = {µ∗krls : s ∈ S} with

µ∗krls =

exp
{ N∑

n=1

∑
t∈S

Eq∗(Zn)

(
I(Zn = k)

)
I(Xnrl = t)Eq∗(εs)(log εst) + Eq∗(µkr)

(logµkrs)
}

∑
v∈S

exp
{ N∑

n=1

∑
t∈S

Eq∗(Zn)

(
I(Zn = k)

)
I(Xnm = t)Eq∗(εv)(log εvt) + Eq∗(µkr)

(logµkrs)
}
(21)

• q∗(εs) ∼ Dirichlet(γ∗s) where γ∗s = {γ∗st : t ∈ S}, where

γ∗st = γ0st +

N∑
n=1

M∑
m=1

K∑
k=1

Eq∗(Zn)

(
I(Zn = k)

)
Eq∗(Gkrl)

(
I(Gkrl = s)

)
I(Xnrl = t) (22)

Step 4. Expectations and updates

Let ψ be the digamma function defined as

ψ(x) =
d

dx
log Γ(x), (23)

which can be easily calculated via numerical approximation. The values of the expectations in (19)-(22)

taken with respect to the approximated distributions are given as follows.

Eq∗(Zn)

(
I(Zn = k)

)
= π∗nk

Eq∗(Gkrl)

(
I(Gkrl = s)

)
= µ∗krls

Eq∗(εs) = ψ(γ∗st)− ψ
(∑

t∈S
γ∗st

)
(24)

Eq∗(µkr)
(logµkrs) = ψ(β∗krs)− ψ

(∑
s∈S

β∗krs

)
(25)

Eq∗(π)(log πk) = ψ(α∗k)− ψ
( K∑

k=1

α∗k

)
(26)

Using the results above regarding the expectations, we update the parameters of the approximated

distributions iteratively as follows.

We initialize γ∗s, β
∗
kr and π∗n with some arbitrary values (e.g., γ

∗(0)
s = γ0

s and β
∗(0)
kr = β0). At each

iteration c we compute:
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1. α∗(c) using π
∗(c−1)
n

2. µ
∗(c)
krl using γ

∗(c−1)
s , π

∗(c−1)
n and β

∗(c−1)
kr

3. β
∗(c)
kr using µ

∗(c)
krl

4. γ
∗(c)
s using µ

∗(c)
krl and π

∗(c−1)
n

5. π
∗(c)
n using µ

∗(c)
krl , γ

∗(c)
s and α∗(c)

We then conduct many iterations of 1-5 until the convergence of the ELBO in (12).

2.2 Initialization and choice of K

We run EpiclomalBasic or EpiclomalRegion 1000 times starting from different initial π∗n values for

each cell n (the other two values are initialized with the corresponding hyperparameter γ
∗(0)
s = γ0

s

and β
∗(0)
kr = β0). That is, each vector π∗n of length K will have K − 1 values of 0 and one value of

1, corresponding to the initial cluster for that cell. Most initializations are uniformly random, but

informative starting values often lead to better results. Therefore, for all analyses we use the following

initialization strategy. First we run EuclideanClust and if the hierarchical clustering is successful we

cut the hierarchical tree at 1, 2 . . .K clusters, obtaining the first K initial points. Then, we do the

same for HammingClust and PearsonClust, obtaining 2 ×K more initial points. Finally, we add the

prediction made by DensityCut. Note that initializations from more additional clustering methods

can be easily added to our framework.

In our analyses we used K = 10 and, therefore, a maximum of 31 initializations from the non-

probabilistic methods. For all these 31 runs, the VB algorithm allows a maximum of also K = 10

clusters. The remaining 969 runs were initialized randomly, with each initial number of clusters being

a number chosen uniformly at random between 1 and 10. For each run, the VB algorithm returns a

number of recommended clusters c ≤ K and the corresponding cell-to-cluster assignments. With this

strategy we obtain a more uniform number of clusters across all runs than if we use the same K for

each run. Therefore, our strategy is similar to a BIC or AIC selection criterion in which we would

perform a roughly equal number of runs for each possible number of recommended clusters.

After obtaining the 1000 runs (this was done in parallel on a computing cluster), we have for each

run the number of recommended clusters c ≤ K and the computed DIC score that takes into account

the likelihood of the model as well as the model complexity [11]. Then, for each c, we compute the

minimum DIC obtained for all runs that recommended c clusters, and we plot the DIC curve, such as

the one in Supplementary Figure 1.

Now, having a DIC curve, we find the elbow point as follows. We draw a line from the first

to the last point of the curve and then find the DIC point that is the farthest away from that line.
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Sometimes, the DIC curve is not a smooth decreasing function, but instead it can increase and decrease.

Therefore, we decided to consider only the part of the curve with DIC values decreasing by at least

a small percentage threshold (0.2%) - the green line in Supplementary Figure 7. We then find the

elbow for this part of curve, which corresponds to the best choice of number of clusters - the red line

in Supplementary Figure 1.

2.3 EpiclomalBulk

Often, bulk CpG-level methylation data are produced, that is, a vector of natural numbers, represent-

ing the number of methylated cytosines for each CpG, from 0 to the read depth D (e.g., D = 60).

For instance, a number of 0 means that we expect no cell to be methylated (all are unmethylated) at

that CpG site. A number of 60 means that we expect all the cells to be methylated, and a number of

30 means that roughly half of the cells are methylated and half are unmethylated. Therefore, given

the cell-to-cluster assignments and the corresponding imputed methylation values, we can compute a

score that tells us how well the given imputed values match the bulk data (for each CpG site, we just

have to count the number of cells that are methylated and then divide by the number of cells and

multiply by D).

Having this bulk-based score function, we designed a simple stochastic local search algorithm that

starts from a given configuration (this is EpiclomalRegion’s best result), keeps the number of clusters

fixed, and randomly reassigns “uncertain cells” to one of their “candidate clusters”. The “uncertain

cells” and the “candidate clusters” are obtained as described in Section 2.4. Only the CpGs in the

regions that make the clusters different are considered. If the new score is better than before, we

always keep it, if it is not, we only keep it 20% of the times to help the algorithm escape local minima.

We repeat this strategy for 10 iterations and return the new cell-to-cluster assignments and imputed

methylation states that gives the best score.

2.4 Uncertainty true positive rate for clustering assignments

To compute the uncertainty true positive rate (TPR) for Epiclomal predictions, we proceed as follows.

First, we look at the Epiclomal’s predicted vector of epigenotypes (matrix G). For each epigenotype,

we go through all the regions and build a list of regions that differ between at least two epi-clones.

Then, we build a list of “uncertain cells”, that is, a list of cells that could belong to more than one

cluster because of one or more of the different regions is completely missing. For each of the “uncertain

cells” we also build a set of “candidate clusters”, that is, all the clusters that cell could belong to.

All the cells in the “uncertain cells” list should have a posterior clustering assignment probabilitie of

less than 1, roughly 1 divided by the number of possible clusters this cell could belong to (if a cell

could belong to one of 2 clusters the probability should be roughly 0.5; if it could belong to one of 3
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clusters the probability should be roughly 0.33). If this is the case, then the uncertainty with respect

to this cell was predicted well and it is considered a true positive. For example, if all the uncertain

cells were predicted with the approximate correct posterior probability, the uncertainty TPR is 1. If

all the uncertain cells were given a probability of 1, than the uncertainty TPR is 0. This is ad-hoc

way to estimate the uncertainty TPRs and may not be easily extended to more complicated or noisy

cases such as for real data, but it gives us a way to evaluate uncertainty for the simpler and more

controlled scenarios considered in our simulations.

2.5 Implementation

Epiclomal was implemented in Phyton 3. The remaining methods (data pre-processing, synthetic

data generator, non-probabilistic methods and evaluation measures) were implemented in R 3.3.2.

The computational framework consists of several pipelines run through the kronos workflow version

2.1.0 [12].
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3 Synthetic data generator

We generate synthetic data assuming the true cluster-specific methylation profiles differ only at certain

regions following a phylogenetic tree structure.

For a given set of parameters as described in Table 2 of the main text, we generate a simulated

data set of single-cell DNA methylation by doing as follows.

1. We start by generating the K vectors of true hidden methylation states according to the following

steps.

i. For a total number of loci M , we generate R regions with balanced sizes sampled from a

multinomial distribution of size M and equal probabilities 1/R;

ii. Each vector µ1r containing the probability of a given loci to be methylated in region r of

cluster k = 1 is generated from a Dirichlet distribution.

iii. Each entry of the vector of hidden states (methylated or unmethylated) for cluster k = 1,

G1, is generated by sampling from a Bernoulli distribution with probability of success and

failure given by the µ1r’s.

iv. We now generate the second vector of true methylation states, G2, by first setting G2 = G1

and then flipping the methylation states of a proportion of loci from a randomly picked

region r.

v. We generate Gk for k = 3, . . . ,K by first randomly picking an ancestor vector of mehylation

states Gk−1. We set Gk = Gk−1 and then flip the methylation states of a proportion of

loci from a randomly picked region r, obtaining Gk.

vi. If Gk is by chance equal to any previously generated vector we discard Gk and repeat Step

v again.

2. We now generate the true vector of cell clustering assignments Z by sampling each entry from a

multinomial distribution of size one and given cluster prevalence probabilities.

3. We finally generate the observed data for each cell n as follows.

i. If Zn = k, the vector of observed methylation states for cell n is obtained by sampling the

methylation state of each loci from a Bernouli distribution with probabilities of success and

failure depending on the true methylation state at that loci, Gkrl, as in Equation (1).

ii. To account for the presence of missing data we only keep a certain proportion of observations

by choosing at random a loci and then keeping a random number (normally distributed with

mean of 10 and standard deviation of 2) of observations to right and to the left of this site.

We repeat this step many times till we obtain the desired proportion of observed data, which
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is one minus the desired missing proportion. By doing this procedure we are simulating

sequencing reads that when aligned to the genome they cover multiple consecutive CpGs.

4 Results of non-probabilistic methods on patient SA501 data

The non-probabilistic clustering methods led to the following results on the SA501 data set with the 94

selected regions. EuclideanClust and HammingClust produced hierarchical clusterings (Supplementary

Figures 31 and 32, respectively), but failed to choose the optimal number of clusters due to the amount

of missing data. For both methods we can visually distinguish the two passage 2 clusters obtained

by EpiclomalRegion. There is a 1-cell cluster in both cases corresponding to the same passage 10

cell, which shows high similarity with most other cells; however, this is only due to the very high

amount of missing data for this cell. In addition, for cells from passages 7 and 10, we can visually

distinguish two to four clusters that do not match the results from EpiclomalRegion. DensityCut

found only two clusters (Supplementary Figure 33), essentially separating passage 2 from the later

passages.PearsonClust failed to produce even a hierarchical clustering as the Pearson correlation scores

for some pairs of cells could not be computed due to the large amount of missing data.

5 Supplementary Tables

Table 1: Breast cancer xenograft sc-WGBS data from three patients (SA501, SA535 and SA609). The

InHouse data presented in main text Figures 5 and 6 corresponds to cells from all plates except plate

px0837 (xenograft passage 2), summing 558 cells in total. The data presented in the main text Figure

7 corresponds to all SA501 plates, totalizing 244 cells.

Patient tumour ID Tumour type Plate ID Passage Number of cells

SA501 TNBC px0582 X10A 45

SA501 TNBC px0680 X10A 61

SA501 TNBC px0443 X7A 48

SA501 TNBC px0472 X7A 50

SA501 TNBC px0837 X2 40

SA532 ER+PR+Her2+ px0544 X6 68

SA532 ER+PR+Her2+ px0650 X6 71

SA609 TNBC px0738 X6 48

SA609 TNBC px0739 X6 52

SA609 TNBC px0740 X6 60

SA609 TNBC px0741 X6 55
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Table 2: An excel spreadsheet (SupplementaryTable2.xlsx) containing the raw coordinates of the 94

CpG Islands considered in Figure 7 of the main text.

Table 3: An excel spreadsheet (SupplementaryTable3.xlsx) containing the annotation of 94 regions

considered in Figure 7 of the main text.
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