	Cat. 1 bp2	EDD	L1678-ME model modification (blocked react Name 6-phosphogluconate dehydratase	Formula 6pgc_c≕2ddg6p_c + h2o_c	Subsystem Pentose Phosphate Pathway	Comments (When the reaction is turned on) Create a major effect of steep acetate overflow elevation in high growth. Comparing to the main glycolytic pathway, it is metabolicly less efficient bu proteomicly more efficient.
	bp1	ICL	Isocitrate lyase	icit_c→glx_c + succ_c	Anaplerotic Reactions	Bypass for the main TCA cycle pathways from turr isocitrate to succinate, when ICL is turned on, Isocitrate dehydrogenase(ICDHyr), 2-Oxogluterate dehydrogenase(AKGDH) and Succinyl-CoA synthetase (ATP-forming,SUCOAS) would reduce. Ref. (1) and (2) shows that this reaction is off in higher growth. Ref. (3) shows that this reaction is converging to being off when the dynamic of respiration using enzyme kinetics is simulated.
	2 bp1	ABTA	4-aminobutyrate transaminase	4abut_c + akg_c≓gluL_c + sucsal_c	Arginine and Proline Metabolism	Another backup pathway of succinate production,
						from 2-Oxoglutarate (akg). Respiration would be induced when it is on, since the flux through ETC(CYTBO3_4pp and ATPS4rpp) would increas As it requires the co-factor pyridoxal 5'-phosphate to get catalyzed(4), indicating that this reaction is regulated by the flux of other reactions(pyridoxal 5 phosphate(2-) production, etc.).
	3	GLYAT	Glycine C-acetyltransferase	accoa_c + gly_c≕2aobut_c + coa_c	Glycine and Serine Metabolism	A reaction that back up for the respiration. Reaction fluxes in TCA cycle would drop when this reaction turned on. It also requires pyridoxal 5'-phosphate for the regulation.
	4	NADTRHD	NAD transhydrogenase	nad_c + nadph_c≕nadh_c + nadp_c	Oxidative Phosphorylation	A reaction that would make the transition between NAD and NADP metabolically more efficient. A notable effect when this reaction is turned on is that the reaction fluxes through ETC is elevated. Moreover, fluxes are yielded from the glycolytic pathway(EMP pathway) to the pentose phosphate pathway(PPP pathway, NADP synthesis). Ref(1) a (2) shows that the experimental flux through PPP lower than the model's prediction, which indicates extra regulation constraints upon NAD vs. NADP, EMP vs. PPP is missing.
	5	ASPT	L-aspartase	asp_L_c→fum_c + nh4_c	Alanine and Aspartate Metabolism	
	6	IDOND	L-aspartase L-idonate 5-dehydrogenase	$\frac{\text{asp}_\text{L}_\text{c} + \text{h}_\text{c} + \text{h}_\text{c}}{5\text{dglcn}_\text{c} + \text{h}_\text{c} + \text{nadh}_\text{c}} = \frac{1}{3}$		Ref. (1) and (2) shows that this reaction is off in higher growth. Ref. Building up a futile cycle with the reaction ICOND with a combining effect of NAD/NADP switching through transhydrogenase. It requires zinc ion as cofactor (5).
	7 8	FADRx2 DAAD	FAD reductase D-Amino acid dehydrogenase	fad_c + h_c + nadph_c→fadh2_c + nadp_c alaD_c + fad_c + h2o_c≕fadh2_c + nh4_c	Cofactor and Prosthetic Group Biosynthesis + Alanine and Aspartate Metabolism	It requires FAD and FMN as cofactor. Inducing the glutamate synthesis from 2-Oxoglute
	9	FTHFD	Formyltetrahydrofolate deformylase	10fthf_c + h2o_c≕for_c + h_c + thf_c	Folate Metabolism	This reaction induce the respiration fluxes by degrading the purine synthesis substrate 10- Formyltetrahydrofolate to forlate, the forlate is the pumped to periplasm for transporting electron. There's enzyme regulations (purU) upon this reaction, which is activated by the methionine whi costs the most enzyme (6) to get synthesized, and the mean time, this reaction is inhibited by the glucogenic amino acid glycine (7).
	10	TRSARr	Tartronate semialdehyde reductase	2h3oppan_c + h_c + nadh_c≓glycR_c + na	ac Alternate Carbon Metabolism	It is the upstream of the reaction hydroxypyruvate reductase (NADPH), however, the corresponding gene (ghrA/ghrB) is more preferable in reducing glyoxylate than hydropyruvate (8).
	11	ALATA_L2	Alanine transaminase	ala_L_c + pydx5p_c≕pyam5p_c + pyr_c	Cofactor and Prosthetic Group Biosynthesis	The encoding genes, glyA and ItaE, has many oth roles, where this reaction might be regulated by enzyme saturation.
	<u>12</u> 13	FLDR22 FLDR21	Flavodoxin reductase (NADPH) Flavodoxin reductase (NADPH) (For flavodoxin1 monomer)	2.0 FLAVODOXIN2-MONOMER_mod_Oxidize 2.0 FLAVODOXIN1-MONOMER_mod_Oxidize	, , , , , , , , , , , , , , , , , , ,	The gene (fpr, fldA, fldB) requires FAD (9) or FMN (10) as cofactor. The effect of turning on this react is that it would reverse the direction of POR5 (Pyruvate synthase) from oxidizing pyruvate to reducing flavodoxin, where the gene (ydbK) requir [4Fe-4S] cluster as cofactor.
	14	PYAM5PO	Pyridoxamine 5'-phosphate oxidase	h2o_c + o2_c + pyam5p_c→h2o2_c + nh4_c	+ Cofactor and Prosthetic Group Biosynthesis	The gene (pdxH) requires FMN as cofactor. The model recording its keff=40 (1/s), however some study (11) shows that its kcat is 0.3 (1/s)
	<u>15</u> 16	VPAMTr NADPHQR2	Valine-pyruvate aminotransferase NADPH Quinone Reductase (Ubiquinone	3mob_c + ala_L_c≕pyr_c + val_L_c - h_c + nadph_c + q8_c≕nadp_c + q8h2_c	Valine, Leucine, and Isoleucine Metabolism Oxidative Phosphorylation	Trading off NADH quinone reductase (NADH16pp which has similar effect as NAD(P) transhydroger (NADTRHD), changing the NAD/NADP balance a make more carbon fluxes yielding to pentose phosphate pathway.
	17	CTECOAI7 AACPS31	3-cis-2-trans-enoyl-CoA isomerase	 hdcoa_c≕hdd2coa_c 1.0 EG50003-MONOMER_mod_pan4p + atp_	Membrane Lipid Metabolism	Acetyl-CoA metabolism Acetyl-CoA metabolism
		AACPS41 PUNP5		1.0 EG50003-MONOMER_mod_pan4p + atp_	c Cell Envelope Biosynthesis Nucleotide Salvage Pathway	Adenine metabolism
		R15BPK FACOAE161 NTD11	Ribose-1,5-bisphosphokinase Fatty-acid-CoA thioesterase (hexadecends) 5'-nucleotidase (IMP)	atp_c + r15bp_c→adp_c + prpp_c c h2o_c + hdcoa_c⇒coa_c + h_c + hdcea_c h2o_c + imp_c⇒ins_c + pi_c	Alternate Carbon Metabolism Cell Envelope Biosynthesis Nucleotide Salvage Pathway	Upstream of histidine production
		HXAND XPPT	Hypoxanthine dehydrogenase Xanthine phosphoribosyltransferase	$h2o_c + hxan_c + nad_c \rightleftharpoons h_c + nadh_c + xan_c \rightarrow ppp_c + xan_c \rightarrow ppi_c + xmp_c$	n Nucleotide Salvage Pathway Nucleotide Salvage Pathway	Adenine metabolism Guanine metabolism
	18 bp2	R1PK EAR160x1 EAR161x		atp_c + r1p_c≕adp_c + h_c + r15bp_c 1.0 EG50003-MONOMER_mod_pan4p_mod_ 1.0 EG50003-MONOMER_mod_pan4p_mod_	Alternate Carbon Metabolism tr Cell Envelope Biosynthesis tr Cell Envelope Biosynthesis	Acetyl-CoA to Hexadecanoate(palmitic acid)
		FACOAE120 FACOAE140 FACOAE141	Fatty-acid-CoA thioesterase (dodecanoa Fatty-acid-CoA thioesterase (tetradecano	t ddcacoa_c + h2o_c \rightarrow coa_c + ddca_c + h_c b h2o_c + tdcoa_c \rightleftharpoons coa_c + h_c + ttdca_c b h2o_c + tdecoa_c \rightleftharpoons coa_c + h_c + ttdca_c b h2o_c + tdecoa_c \rightleftharpoons coa_c + h_c + ttdcea_c	Cell Envelope Biosynthesis Cell Envelope Biosynthesis Cell Envelope Biosynthesis	
		AACPS11 AACPS21	Acyl-[acyl-carrier-protein] synthetase Acyl-[acyl-carrier-protein] synthetase (n-0	1.0 EG50003-MONOMER_mod_pan4p + atp_ 1.0 EG50003-MONOMER_mod_pan4p + atp_	c Cell Envelope Biosynthesis c Cell Envelope Biosynthesis	
		AACPS71 RNTR1c22 RNTR2c22	Ribonucleoside-triphosphate reductase (1.0 EG50003-MONOMER_mod_pan4p + atp_ 2.0 FLAVODOXIN2-MONOMER + atp_c + 2.0 2.0 FLAVODOXIN2-MONOMER + 2.29164978	hNucleotide Salvage Pathway	Adenine metabolism Guanine metabolism
		RNTR3c22 RNTR4c22 CTECOAI6	Ribonucleoside-triphosphate reductase (Ribonucleoside-triphosphate reductase (3-cis-2-trans-enoyl-CoA isomerase	2.0 FLAVODOXIN2-MONOMER + ctp_c + 2.0 2.0 FLAVODOXIN2-MONOMER + 2.0 h_c + ut tdecoa_c≕td2coa_c		Cytosine metabolism Uridine metabolism Acetyl-CoA metabolism
:	20 bp2	FACOAE80 FACOAE100	Fatty-acid-CoA thioesterase (octanoate) Fatty-acid-CoA thioesterase (decanoate)	$\frac{1}{h20_c + occoa_c \rightarrow coa_c + h_c + octa_c}$ dcacoa_c + h20_c $\rightarrow coa_c + dca_c + h_c$	Cell Envelope Biosynthesis Cell Envelope Biosynthesis	
		AACPS81 AACPS91 EAR120x1	Acyl-[acyl-carrier-protein] synthetase (n-0	1.0 EG50003-MONOMER_mod_pan4p + atp_ 1.0 EG50003-MONOMER_mod_pan4p + atp_ 1.0 EG50003-MONOMER_mod_pan4p_mod_	c Cell Envelope Biosynthesis	Acetyl- CoA metabolism Acetyl- CoA metabolism Acetyl- CoA metabolism
		EAR121x1 EAR140x1 EAR141x1	Enoyl-[acyl-carrier-protein] reductase (NA	A 1.0 EG50003-MONOMER_mod_pan4p_mod_ 1.0 EG50003-MONOMER_mod_pan4p_mod_ 1.0 EG50003-MONOMER_mod_pan4p_mod	tr Cell Envelope Biosynthesis	Acetyl- CoA metabolism
		RNTR2c21 RNTR3c21	Ribonucleoside-triphosphate reductase (Ribonucleoside-triphosphate reductase (2.0 FLAVODOXIN1-MONOMER + gtp_c + 2.0 2.0 FLAVODOXIN1-MONOMER + ctp_c + 2.0	hNucleotide Salvage Pathway hNucleotide Salvage Pathway	Guanine metabolism Cytosine metabolism
;	21 bp2	RNTR4c21 POR51 EAR40x1	Pyruvate synthase Enoyl-[acyl-carrier-protein] reductase (NA	U 2.0 FLAVODOXIN1-MONOMER + 2.0 h_c + ut 2.0 FLAVODOXIN1-MONOMER + accoa_c + ot 1.0 EG50003-MONOMER_mod_pan4p_mod_	b Cell Envelope Biosynthesis	Uridine metabolism Acetyl-CoA metabolism
		EAR60x1 EAR80x1 EAR100x1	Lnoyl-[acyl-carrier-protein] reductase (NA	1.0 EG50003-MONOMER_mod_pan4p_mod_ 1.0 EG50003-MONOMER_mod_pan4p_mod_ 1.0 EG50003-MONOMER_mod_pan4p_mod_	to Cell Envelope Biosynthesis	Acetyl-CoA metabolism Acetyl-CoA metabolism Acetyl-CoA metabolism
erence	Schicker A, Sauer U					

6.Meinnel, T., Y. Mechulam, and S. Blanquet. "Methionine as translation start signal: a review of the enzymes of the pathway in Escherichia coli." Biochimie 75.12 (1993): 1061-1075. 7.Nagy, Peter L., et al. "Formyltetrahydrofolate hydrolase, a regulatory enzyme that functions to balance pools of tetrahydrofolate and one-carbon tetrahydrofolate adducts in Escherichia coli." Journal of bacteriology 177.5 (1995): 1292-1298. 8. Hubbard, Brian K., et al. "Evolution of enzymatic activities in the enolase superfamily: characterization of the (D)-glucarate/galactarate catabolic pathway in Escherichia coli." Biochemistry 37.41 (1998): 14369-14375. 9. Bianchi, V., et al. "Escherichia coli ferredoxin NADP+ reductase: activation of E. coli anaerobic ribonucleotide reduction, cloning of the gene (fpr), and overexpression of the protein." Journal of bacteriology 175.6 (1993): 1590-1595. 10. Jarrett, Joseph T., et al. "The mechanism of adenosylmethionine-dependent activation of methionine synthase: a rapid kinetic analysis of intermediates in reductive methylation of cob (II) alamin enzyme." Biochemistry 37.36 (1998): 12649-12658. 11. Di Salvo, Martino, et al. "Expression, Purification, and Characterization of RecombinantEscherichia coliPyridoxine 5'-Phosphate Oxidase." Protein expression and purification 13.3 (1998): 349-356.

Table S4. Essential	exchanges	
Num.	ID	Exchanging component
1	EX_5mtr_e	5-Methylthio-D-ribose
2	EX_RNase_m16	Ribonuclease M16
3	EX_RNase_m23	Ribonuclease M23
4		Ribonuclease M5
5	EX_ac_e	Acetate
6	EX_co2_e	CO2
7	EX_cobalt2_e	Co2+
8	EX_cu2_e	Cu2+
9		Fe2+
10	EX_glcD_e	D-Glucose
11		H2O
12	EX_h_e	H+
13	EX_k_e	potassium
14	EX_meoh_e	Methanol
	EX_mg2_e	magnesium
16	EX_mn2_e	Mn2+
17	EX_mobd_e	Molybdate
18	EX_nh4_e	Ammonium
19	EX_o2_e	O2
20	EX_pi_e	Phosphate
21		selenite
22	EX_so4_e	Sulfate
23	EX_tl_c	thallium ion
24		Zinc

	Solution space variation		Reaction	Subovotom	Comme
lter.	1 GLCt2pp	D-glucose transport in via proton symport (periplasm)	$glc_D_p + h_p \rightleftharpoons glc_D_c + h_c$	Subsystem Transport, Inner Membrane	Commer The ener synthetas
		(penpiasin)			produced reaction. where yie ATP synt
	2 GLYCLTDy	Glycolate dehydrogenase (NADP)	glx_c + h_c + nadph_c → glyclt_c + nadp_c	Glyoxylate Metabolism	Absorbing At the me through C electric tr
	3 G3PD5	Glycerol-3-phosphate dehydrogenase (ubiquinone-8)	glyc3p_c + q8_c> dhap_c + q8h2_c	Oxidative Phosphorylation	A energe
	4 NADPHQR3	NADPH Quinone Reductase (Menaquinone-8)	h_c + mqn8_c + nadph_c> mql8_c + nadp_c	Oxidative Phosphorylation	Yielding t one proto the flux fr
	5 NADPHQR4	NADPH Quinone Reductase (2- Demethylmenaquinone-8)	2dmmq8_c + h_c + nadph_c> 2dmmql8_c + nadp_c	Oxidative Phosphorylation	Yielding t one proto the flux fr
	6 SERD_L	L-serine deaminase	ser_L_c \rightarrow nh4_c + pyr_c	Glycine and Serine Metabolism	Both read
	7 TRPAS2	Tryptophanase (L-tryptophan)	h2o_c + trpL_c <=> indole_c + nh4_c + pyr_c	Tyrosine, Tryptophan, and Phenylalanine Metabolism	through p productio showing t acetate p
	8 G3PD6	Glycerol-3-phosphate dehydrogenase (menaquinone-8)	glyc3p_c + mqn8_c> dhap_c + mql8_c	Oxidative Phosphorylation	A energe reductase producito
	9 G3PD7	Glycerol-3-phosphate dehydrogenase (demethylmenaquinone-8)	2dmmq8_c + glyc3p_c> 2dmmql8_c + dhap_c	Oxidative Phosphorylation	A energe reductase producito
	10 LALDO3	L-Lactaldehyde:NADP+ 1-oxidoreductase	h_c + mthgxl_c + nadph_c> laldL_c + nadp_c	Methylglyoxal Metabolism	Wasting a through p leveled u
	11 LSERDHr	L-serine dehydrogenase	nadp_c + serL_c <=> 2amsa_c + h_c + nadph_c	Glycine and Serine Metabolism	The flux t secreted.

nents (effects when the reaction is turned on)

nergetic efficiency of respiration gets reduced. Succinyl-CoA tase (ADP-forming) gets turned off. More protons get eed in the cytosol by CO2 through HCO3 equilibration n. Flux through pentose phosphate pathway gets induced yielding the glycolytic flux. Less ATP is synthesized through withase.

ning protons into the metabolites, causing an energy waste. meantime, instead of pumping protons, quinone are reduced of Glycolate oxidase, wasting the energy source within the transport chain.

getic wasteful alternative of the ETC reactions.

g the glycolytic flux to pentose phosphate pathway. Wasting oton. Fumarate reductase (FRD2) gets activated, yielding from acetate produciton to TCA cycle.

g the glycolytic flux to pentose phosphate pathway. Wasting oton. Fumarate reductase (FRD3) gets activated, yielding from acetate produciton to TCA cycle.

eactions are degrading amino acids to pyruvate. The flux h pyruvate kinase (PYK) is eliminated, where the PYK ATP tion is yielded to ATP synthase. More CO2 is also secreted, ig that the respiration got level up, delaying the onset of e production.

getic wasteful alternative of the ETC reactions. Fumarate ase (FRD2) gets activated, yielding the flux from acetate iton to TCA cycle.

getic wasteful alternative of the ETC reactions. Fumarate ase (FRD3) gets activated, yielding the flux from acetate iton to TCA cycle.

g a proton as an alternative of the ETC reactions. The flux h pyruvate kinase (PYK) is eliminated. CO2 secretion is I up.

x through pyruvate kinase (PYK) is eliminated. More CO2 is ed.

ID	(Above) Name	Reaction	Subsystem	Comments (effects when the reaction is turned on)	Secondary Comments
		Reaction	Subsystem		Secondary Comments
1 THD2pp	NAD(P) transhydrogenase (periplasm)	2.0 h_p + nadh_c + nadp_c> 2.0 h_c + nad_c + nadph_c	Oxidative Phosphorylation	A proton pump gradient against the ATP synthase (ATPS4rpp). Flux through pentose phosphate pathway is yielding to main glycolytic pathway.	
2 NADH5	NADH dehydrogenase (ubiquinone-8)	h_c + nadh_c + q8_c> nad_c + q8h2_c	Oxidative Phosphorylation	Trading off NADH dehydrogenase (NADH16pp, which pumps 3 protons to the periplasm), . Via NADH5, no proton get pumped to the periplasm.	
3 ALDD2y	Aldehyde dehydrogenase (acetaldehyde, NADP)	acald_c + h2o_c + nadp_c> ac_c + 2.0 h_c + nadph_c	Alternate Carbon Metabolism	With the inverse acetaldehyde dehydrogenase (acetylating, ACALD, accoa_c + h_c + nadh_c> acald_c + coa_c + nad_c), a futile cycle for acetaldehyde is created, with extra acetate production.	
4 POX	Pyruvate oxidase	h2o_c + pyr_c + q8_c> ac_c + co2_c + q8h2_c	Oxidative Phosphorylation	An acetate production reaction that alternates the proton pumping quinone reductase in electric transport chain. The flux through acetate kinase (ACKr) gets reduced.	
5 ME2	Malic enzyme (NADP)	malL_c + nadp_c> co2_c + nadph_c + pyr_c	Anaplerotic Reactions	Trading off malate dehydrogenase (MDH), the second last step of the TCA cycle, turning malate oxaloacetate, then to citrate. ME2 turns malate to pyruvate, emiting CO2, and feeding more pyruvate for aceate production.	
6 LDH_D2	D-lactate dehydrogenase	lacD_c + q8_c> pyr_c + q8h2_c	Oxidative Phosphorylation	Alternative for the proton pumping quinone reductase. Flux through pentose phosphate pathway and cytochrome oxidase get increased. ATP synthase flux also increases. Main glycolytic pathway fluxes are reduced.	
7 GLYCLTDx	Glycolate dehydrogenase (NAD)	glx_c + h_c + nadh_c> glyclt_c + nad_c	Glyoxylate Metabolism	Pentose phosphate pathway fluxes get induced, yielded from the main glycolytic pathway.	
8 NADH10	NADH dehydrogenase (menaquinone-8 & 0 protons)	h_c + mqn8_c + nadh_c> mql8_c + nad_c	Oxidative Phosphorylation	Introducing a futile cycle between fumarate and succinate in	
9 MDH3	Malate dehydrogenase (menaquinone 8 as acceptor)	malL_c + mqn8_c> mql8_c + oaa_c	Citric Acid Cycle	the TCA cycle, via fumarate reductase (FRD2) and succinate dehydrogenase (SUCDi), and consequently trading off NADH16pp as a poor proton pump alternatives.	
10 MDH2	Malate dehydrogenase (ubiquinone 8 as acceptor)	malL_c + q8_c> oaa_c + q8h2_c	Citric Acid Cycle		
11 CU2R	NADH:quinone oxidoreductase II	cu2_c + nadh_c> cu_c + h_c + nad_c	Oxidative Phosphorylation		
12 LDH_D	D-lactate dehydrogenase	lacD_c + nad_c <=> h_c + nadh_c + pyr_c	Pyruvate Metabolism		
13 MALt2_3pp	Malate transport via proton symport (3 H) (periplasm)	3.0 h_p + malL_p> 3.0 h_c + malL_c	Transport, Inner Membrane	Causing the pathway switch that malate dehydrogenase (MDH, malL_c + nad_c \rightleftharpoons h_c + nadh_c + oaa_c) shifting to malic	Introducing TCA intermediate metabolites, which reduce
14 SUCCt3pp	Succinate transport out via proton antiport (periplasm)	h_p + succ_c> h_c + succ_p	Transport, Inner Membrane	enzyme (ME1,mal_L_c + nad_c \rightleftharpoons co2_c + nadh_c + pyr_c), and pyruvate kinase (PYK, adp_c + h_c + pep_c \rightleftharpoons atp_c +	the TCA flux, yielding to the backup pathways
15 FE2t3pp	Iron (Fe+2) transport out via proton antiport (periplasm)	fe2_c + h_p> fe2_p + h_c	Inorganic Ion Transport and Metabolism	pyr_c) shifting to phosphoenolpyruvate carboxylase (PPC, $co2_c + h2o_c + pep_c \rightleftharpoons h_c + oaa_c + pi_c$), causing the	
16 ALDD2x	Aldehyde dehydrogenase (acetaldehyde, NAD)	acald_c + h2o_c + nad_c> ac_c + 2.0 h_c + nadh_c	Alternate Carbon Metabolism	overall effect of wasting 1 atp molecule.	
17 MALt2_2pp	Malate transport via proton symport (2 H) (periplasm)	2.0 h_p + malL_p> 2.0 h_c + malL_c	Transport, Inner Membrane		
18 GART	GAR transformylase-T	atp_c + for_c + gar_c> adp_c + fgam_c + h_c + pi_c	Purine and Pyrimidine Biosynthesis		
19 FTHFLi	Formate-tetrahydrofolate ligase	atp_c + for_c + thf_c> 10fthf_c + adp_c + pi_c	Folate Metabolism		
20 MG2tpp	Magnesium (+2) transport in via diffusion	mg2_p> mg2_c	Inorganic Ion Transport and Metabolism	Causing the pathway switch that malate dehydrogenase (MDH,	Lower energetic efficiencies, comparing to the Magnesi
21 MG2uabcpp	Magnesium (Mg+2) ABC transporter (ubtake, periplasm)	atp_c + h2o_c + mg2_p> adp_c + h_c + mg2_c + pi_c	Inorganic Ion Transport and Metabolism	$\begin{array}{c} \hline \\ mal_L_c + nad_c \rightleftharpoons h_c + nadh_c + oaa_c) \ shifting \ to \ malic \\ enzyme \ (ME1,mal_L_c + nad_c \rightleftharpoons co2_c + nadh_c + pyr_c), \end{array}$	(Mg+2) transport in/out via proton antiport (periplasm) (MG2t3_2pp, 2.0 h_c + mg2_p> mg2_c + 2.0 h_p).
22 FACOAE180	Fatty-acid-CoA thioesterase (octadecanoate)	h2o_c + stcoa_c> coa_c + h_c + ocdca_c	Cell Envelope Biosynthesis	and pyruvate kinase (PYK, adp_c + h_c + pep_c ⇒ atp_c + pyr_c) shifting to phosphoenolpyruvate carboxylase (PPC,	
23 AACPS51	Acyl-[acyl-carrier-protein] synthetase (n- C18:1)	$ACP_c + atp_c + ocdcea_c \rightarrow amp_c + octeACP_c + ppi_c$	Cell Envelope Biosynthesis	$co2_c + h2o_c + pep_c \Rightarrow h_c + oaa_c + pi_c)$, causing the overall effect of wasting 1 atp molecule.	
24 ADPT	Adenine phosphoribosyltransferase	ade_c + prpp_c> amp_c + ppi_c	Nucleotide Salvage Pathway		

Table S7. ALE ph	enotypes measurem	ents										
Strain		Growth	Rate (1/h)		Glucose uptake rate (mmol/gDW/h) Acetate production rate (mmol/gDW/h)			h)				
	Rate rep. 1	Rate rep 2	avg rep 1 and 2	std rep 1 and 2	Rate rep. 1	Rate rep 2	avg rep 1 and 2	std rep 1 and 2	Rate rep. 1	Rate rep 2	avg rep 1 and 2	std rep 1 and 2
3	1.106	1.015	1.016	0.001	12.007	12.55	12.278	0.384	7.76	7.708	7.734	0.037
4	0.943	0.953	0.948	0.008	11.677	11.639	11.658	0.027	7.485	7.522	7.504	0.026
6	1.008	1.021	1.014	0.009	12.91	12.629	12.77	0.199	10.329	9.763	10.046	0.4
7*	1.085	1.067	1.076	0.013	12.723	12.948	12.835	0.159	6.062	6.445	6.254	0.271
7A*	1.075	1.01	1.042	0.046	11.268	10.407	10.837	0.609	5.432	4.637	5.035	0.562
7B*	0.989	0.946	0.967	0.031	10.108	10.135	10.122	0.019	3.786	3.905	3.845	0.084
8	1.078	1.094	1.086	0.012	13.252	13.355	13.304	0.073	8.224	8.715	8.469	0.348
9	0.971	1.032	1.002	0.043	11.653	13.446	12.549	1.268	7.925	8.977	8.451	0.744
10	1.17	1.035	1.102	0.095	14.847	13.623	14.235	0.866	11.841	10.895	11.368	0.669

Table S8. MG1	55 WT phenotypes measurements.											
Strain No.	Growth Rate (1/h)	Growth F	Rate CI	Glucose UR (mmol/gDW/h)	Glucose UR CI		Acetate PR (mmol/gDW/h)	Acetate	PR CI	Biomass Yield (gDW/gGlc)	Biomass Yield Cl	Data taken from:
	0	0.69	0.02	8.5	9	1.42	3.91	1	1.14	0.44	0.07	Appl Environ Microbiol. 2015 Jan 1;81(1):17-30. doi: 10.1128/AEM.02246-14
	oix RA, et al. (2015) Use of adaptive la nviron Microbiol 81(1):17–30.	aboratory evolutior	n to discov	ver key mutations enabling rapid	growth of Escherichia of	coli K-	-12 MG1655 on glucose minimal					

Growth (1/hr)	Glucose uptake (mM/OD600/hr)	Acetate excretion rate (mmol/OD600/hr
0.88	5.58	1.88
0.81	4.94	0.7
0.75	4.31	0
0.71	3.9	0
0.68	3.94	0
0.58	3.25	0
0.97	5.4	2.52
0.94	4.97	2.37
0.91	5.48	2.38
0.88	5.11	1.94
0.87	5.15	1.5
0.81	4.69	1.16
0.78	4.46	0.03
0.74	4.21	0

Growth yield (gDW/g_glucose) = Growth (1/hr) / Glucose uptake (mM/OD600/hr) / 180.1559 (g/mol) / 2 (mM/OD600/(mmol/gDW)) * 1000 (mmol/mol) Cite from: Basan M, et al. (2015) Overflow metabolism in Escherichia coli results from efficient proteome allocation. Nature 528(7580):99–104.

Growth (1/hr)	Growth Yield (gDW/g_glucose)	Acetate concentration ((g_acetate/L) / (g_glucose/L))
0.047216035634744	0.229224178287206	0
0.0436525612472161	0.271268069169989	0
0.0579064587973274	0.282710340033762	0
0.0846325167037862	0.28585249599251	0
0.0962138084632517	0.318955073553403	0
0.114031180400891	0.323385300668152	0
0.0472160356347439	0.337504433064276	0
0.110467706013363	0.36097059282482	0
0.121158129175947	0.353310257756089	0
0.205790645879733	0.374831543557516	0
0.187973273942094	0.371675201793086	0
0.212026726057907	0.38182798292029	0
0.285968819599109	0.375977756656689	0
0.315367483296214	0.38102648489921	0
0.301113585746102	0.383596952888939	0
0.405345211581292	0.401902316542068	0.791068580542264
0.40890868596882	0.391705559417247	0
0.398218262806236	0.396181181110181	0
0.512249443207127	0.418929539103173	0.284822606499937
0.547884187082405	0.418872795880442	1.15051139829487
0.587082405345212	0.414988722284482	1.65944136297221
0.692204899777283	0.375330883917552	3.0208247627424
nout=0.7 (1/hr)		
ate excretion rate= Acetate co	ncentration / washout	

Cite from: Nanchen A, Schicker A, Sauer U (2006) Nonlinear dependency of intracellular fluxes on growth rate in miniaturized continuous cultures of Escherichia coli