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1 Motif representations

Position specific scoring matrices (PSSM) are used to represent sequence motifs. Transite inherits PSSMs
describing RBP binding sites from two sources (see section on motif databases in the main text). Motif
databases provide PSSMs in one of three types: Position frequency matrices (PFM), position probability
matrices (PPM), or position weight matrices (PWM). Internally, Transite algorithms work exclusively
with PWMs in order to make subsequent calculations more efficient.

The elements of a PFM represent absolute count of each nucleotide at each position. PPMs and
PWMs are derived from PFMs as follows:

PFM︷ ︸︸ ︷
A C G U

1 x1,1 x1,2 x1,3 x1,4
2 x2,1 x2,2 x2,3 x2,4
...

...
...

...
...

n xn,1 xn,2 xn,3 xn,4


f1 

PPM︷ ︸︸ ︷
A C G U

1 y1,1 y1,2 y1,3 y1,4
2 y2,1 y2,2 y2,3 y2,4
...

...
...

...
...

n yn,1 yn,2 yn,3 yn,4


f2 

PWM︷ ︸︸ ︷
A C G U

1 z1,1 z1,2 z1,3 z1,4
2 z2,1 z2,2 z2,3 z2,4
...

...
...

...
...

n zn,1 zn,2 zn,3 zn,4

 (1)

The conversion functions f1 (from PFM to PPM) and f2 (from PPM to PWM) are applied to each
element of the matrix. From the PFM, containing counts of each nucleotide j at each sequence position
i, a row normalizaton converts nucleotide counts at each position to nucleotide probabilities:

f1(x, i, j) =
xi,j∑
k xi,k

, (2)

where x is a PFM, and i and j are its indices. PPM elements are converted to PWM elements by taking
a log ratio of the actual element-wise probabilities against the probability of the average nucleotide at
the same position:

f2(y, i, j) = log2

yi,j
pj

(3)

where y is a PPM, and pj is the a priori probability of nucleotide j. In Transite, nucleotides are assumed
to be equiprobable (Pr(A) = Pr(C) = Pr(G) = Pr(U) = 0.25).

Laplace smoothing: Laplace smoothing (also known as additive smoothing) is applied to avoid zeros
in PFMs (and thereby zeros in PFMs and negative infinite values in PWMs). Zeros might occur if the
number of sequences on which the PSSM is based, is too small to contain at least one occurrence of each
nucleotide per position. In this case, pseudocounts are introduced [1]. Specifically, 0.25 was added to all
cells (i.e., raw counts) of PFMs which had at least one raw count of zero.

Scoring algorithm: A given k -mer from a candidate transcript sequence may be scored by comparison
to a PWM of length k. In order to calculate the score, the corresponding PWM weight for each nucleotide
at each position of the candidate k -mer is summed.

Under an assumption of position-wise independence of nucleotides in their contribution to RBP-
binding fitness, a random k -mer will have a score of zero, whereas positive and negative scores will
correspond to higher and lower than average fitness, respectively.

2 Monte Carlo sampling

Permutation tests are a means to determine the statistical significance of a test statistic with an unknown
null distribution. Since no assumptions are made about the underlying distribution of the statistic,
permutation tests belong to the group of non-parametric tests. The null distribution of the statistic is
obtained empirically by calculating all possible values of the statistic by rearrangement of the labels of
the observations (data points). Each unique ordering of the labels is called a permutation, hence the
name. Labels are categorical variables that subdivide the set of observations into groups, e.g., treatment
and control. In order to build the complete empirical sampling distribution of the test statistic T based
on n labeled observations, T needs to be calculated for n! permutations of the observation labels. The
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upper tail probability of the actual test statistic, i.e., the test statistic T calculated with the actual
observations x, here denoted T (x), is given as follows:

Pr(T (x)) =
∑

y:T (y)≥T (x)

Pr(y), (4)

where y are the permuted observations.
Since the number of permutations grows factorially with the number of observations, calculating

T for all permutations is infeasible even for small n. Therefore, instead of building the complete null
distribution, a sample of the distribution is picked randomly to determine an estimate of the probability
of T (x). This process is called Monte Carlo sampling. The estimate is determined by the empirical
cumulative distribution functions (lower-, upper- and two-tailed probability):

ˆPrL(T (x)) =

n∑
i=1

1 (T (yi) ≤ T (x)) + 1

n+ 1
(5)

ˆPrU (T (x)) =

n∑
i=1

1 (T (yi) ≥ T (x)) + 1

n+ 1
(6)

ˆPrT (T (x)) =

n∑
i=1

1 (|T (yi)| ≥ |T (x)|) + 1

n+ 1
, (7)

where 1 is the indicator function and n is the sample size, i.e., the number of performed permutations.
One is added to both the numerator and the denominator to avoid p-values of zero when the actual

test statistic is smaller than all of the test statistics of the permuted data [2].
A confidence interval around p̂, i.e., P̂ r(T (x)), can be calculated based on the cumulative probabilities

of the binomial distribution. This interval is referred to as Clopper-Pearson interval [3]. The exact
confidence limits cl and cu satisfy the following equations:

n∑
i=n1

(
n

i

)
cil(1− cl)n−i = α/2 (8)

n1∑
i=0

(
n

i

)
ciu(1− cu)n−i = α/2, (9)

where n1 is the number of cases where T (yi) ≥ T (x) (see equation 6). If n1 = 0, the lower confidence
limit is 0, whereas if n1 = n, the upper limit is 1.

Applications in Transite: Monte Carlo sampling is used to obtain an estimate of the significance of
local consistency scores (see section 6.1 for details) in SPMA spectrum classification. In this case, n, the
number of local consistency scores that are sampled from the null distribution is 10,000,000. In TSMA,
the null distribution of motif enrichment values (in matrix-based TSMA, n = 2,000,000) and k -mer
enrichment values (in k -mer-based TSMA, n = 50,000) is obtained by randomly sampling foreground
sets from the background set without replacement and recalculating motif and k -mer enrichment values,
respectively.

Early stopping: In order to significantly reduce the execution time of the Monte Carlo sampling
procedure without reducing the number of permutations (where they matter), the tests are implemented
with an early stopping mechanism. If the observed test statistic is deemed not significant after a certain
number of samples from the null distribution (in Transite, this decision is made after 5000 samples), the
null distribution sampling stops.

3 Combining enrichment of motif-associated k-mers

The overall enrichment of a motif for k -mer TSMA is calculated as the geometric mean of the enrichments
of associated k -mers:

ē = exp

(
1

n

n∑
i=1

log(ei)

)
, (10)
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where e is the vector of enrichment values of motif-associated k -mers. The sum of logarithms is used
instead of the product to avoid arithmetic underflow.

4 Methods for combining p-values

The following section describes methods to combine the significance (p-values) of enrichment values of
a set of k -mers that are associated with an RNA-binding protein. These methods are used to obtain a
single p-value for the overall significance of enriched or depleted RBP-associated k -mers.

In general, the methods of this section can be applied to combine the results of independent signif-
icance tests. They are commonly used in meta-analysis, where the goal is to systematically assess and
integrate findings of a number of studies about a common body of research.

The problem can be specified as follows: Given a vector of n p-values p1, ..., pn, find pc, the combined
p-value of the n significance tests. Most of the methods introduced here combine the p-values in order
to obtain a test statistic, which follows a known probability distribution. The general procedure can be
stated as:

T (h,C) =

n∑
i=1

h(pi) ∗ C (11)

The function T , which returns the test statistic t, takes two arguments. h is a function defined on the
interval [0, 1] that transforms the individual p-values, and C is a correction term.

4.1 Fisher’s method

Fisher’s method (1932) [4], also known as the inverse chi-square method is probably the most widely
used method for combining p-values. Fisher used the fact that if pi is uniformly distributed (which
p-values are under the null hypothesis), then −2 log pi follows a chi-square distribution with two degrees
of freedom. Therefore, if p-values are transformed as follows,

h(p) = −2 log p, (12)

and the correction term C is neutral, i.e., equals 1, the following statement can be made about the
sampling distribution of the test statistic Tf under the null hypothesis:

tf
H0∼ χ2

2n, (13)

where n is the number of p-values.

4.2 Stouffer’s method

Stouffer’s method [5], or the inverse normal method, uses a p-value transformation function h that leads
to a test statistic that follows the standard normal distribution by transforming each p-value to its
corresponding normal score. The correction term scales the sum of the normal scores by the root of the
number of p-values.

h(p) = Φ−1(1− p) (14)

C =
1√
n

(15)

ts
H0∼ N(0, 1), (16)

where Φ−1 is the inverse of the cumulative standard normal distribution function.
An extension of Stouffer’s method with weighted p-values is called Lipták’s method [6].

4.3 Mudholkar and George’s method

The logit method by Mudholkar and George [7] uses the following transformation:

h(p) = − ln(p/(1− p)) (17)
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When the sum of the transformed p-values is corrected in the following way:

C =

√
3(5n+ 4)

π2n(5n+ 2)
, (18)

the test statistic tm is approximately t-distributed:

tm
H0∼ t5n+4 (19)

4.4 Edgington’s method

Edgington’s method [8] is an additive procedure to combine p-values.

h(p) = p (20)

The sampling distribution of the test statistic te under the null hypothesis is given by combinatorics:

Pr(te) =

btec∑
r=0

(−1)r
(
n

r

)
(te − r)n

n!
(21)

4.5 Tippett’s method

In Tippett’s method [9] the smallest p-value is used as the test statistic tt and the combined significance
is calculated as follows:

Pr(tt) = 1− (1− tt)n (22)

5 Methods for adjusting p-values

When multiple statistical tests are performed in order to identify non-random events in a large pool of
events, it is imperative to adjust either the p-values themselves or the cutoff significance level α, which
is the probability of making a type I error (incorrectly rejecting the null hypothesis). Failure to do so
leads to alpha error accumulation, i.e., many false positives.

Without accounting for alpha error accumulation in the k -mer enrichment step, the enrichment values
of for example 204/4096 possible hexamers would be deemed significant between randomly chosen sets
of sequences (assuming α = 0.05). This is a direct consequence of the number of tests (4096 in this case)
and the accepted probability of making a wrong decision per test (α).

Transite supports several methods to adjust p-values in order to avoid the multiple testing problem,
all of which take a vector of p-values p ∈ [0, 1]n and return a vector of adjusted p-values q ∈ [0, 1]n.
The ith smallest or largest p-value is denoted by p(i), depending on whether the method belongs to the
step-down (ordered from lowest to highest) or step-up (highest to lowest) group. The methods can be
categorized according to the definition of type I error they control.

5.1 Familywise error rate controlling methods

The familywise error rate (FWER) is defined as

FWER = Pr(V > 0), (23)

where V is the number of false positives in n tests (i.e., “the family”).
Methods controlling the FWER guarantee that FWER ≤ α.

5.1.1 Holm’s method

The adjusted p-values [10] obtained by Holm’s method are defined as

q(i) = max
j≤i

(
min

(
(n− j + 1)p(j), 1

))
, (24)

where p(j) is the jth lowest p-value and thus characterizing Holm’s approach as a step-down method.
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5.1.2 Hochberg’s method

Hochberg’s method is the step-up version of Holm’s method (p(i) is highest p-value) and is uniformly
more powerful [11].

q(i) =

{
p(n) for i = n

min
(
q(i+1), (n− i+ 1)p(i)

)
otherwise

(25)

5.1.3 Bonferroni’s method

Bonferroni corrected p-values [12] are given by

qi = min(pi ∗ n, 1). (26)

It is the oldest and most conservative correction.

5.2 False discovery rate controlling methods

The false discovery rate (FDR) is defined as

FDR = E

(
V

V + S

)
, (27)

where V is the number of false positives and S the number of true positives in n tests.
Methods controlling the FDR are less conservative than the ones controlling the FWER.

5.2.1 Benjamini and Hochberg’s method

Similar to Hochberg’s method for controlling the familywise error rate, this method is defined as a step-up
adjustment [13]:

q(i) =

{
p(n) for i = n

min
(
q(i+1),

n
i p(i)

)
otherwise

(28)

Compared to the FWER controlling method, the multiplier is less conservative (n
i to n− i+ 1), leading

to smaller adjusted p-values. This method can be used if the components (i.e., p-values) of p are
independent and uniformly distributed.

5.2.2 Benjamini and Yekutieli’s method

If there are dependencies among the p-values or if independency cannot be guaranteed, Benjamini and
Yekateuli’s method [14] can be used instead:

q(i) =

{
γp(n) for i = n

min
(
q(i+1), γ

n
i p(i)

)
otherwise

(29)

where γ =
∑n

i=1
1
i .

6 Classification of spectrum plots

Two methods were developed to identify non-random spectrum plots, a local consistency score that
quantifies the changes between neighboring bins, and a method based on polynomial regression models.

6.1 Local consistency score

The local consistency score quantifies the local noise of the gradient in the spectrum by calculating the
deviance between the linear interpolation of the scores of two bins separated by one other, and the score
of the middle bin, for each position in the spectrum. The lower the score, the more consistent the trend
in the spectrum plot. Formally, the local consistency score xc is defined as

xc =
1

n

n−2∑
i=1

∣∣∣∣si + si+2

2
− si+1

∣∣∣∣. (30)
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Figure 1: Ordinary and orthogonal polynomials: (A) The ordinary polynomials of degrees 1 to
5 are highly correlated. Moreover, polynomials of high degree can lead to floating point underflow of
model coefficients. (B) Correlation between orthogonal polynomials is strongly reduced.

In order to obtain an estimate of the significance of a particular score x′c, Monte Carlo sampling is
performed by randomly permuting the coordinates of the scores vector s and recomputing xc. The
probability estimate p̂ is given by the lower tail version of the cumulative distribution function (see
equation 5), where T equals xc in the equation above.

6.2 Polynomial regression

An alternative approach to assess the consistency of a spectrum plot is via polynomial regression. In a
first step, polynomial regression models of various degrees are used to fit s, the vector of scores, as a
function of b, the vector of bin numbers. Then the model that reflects best the true nature of the data is
selected by means of the F-test. Finally, the adjusted R2 are calculated to indicate how well the model
fits the data. These statistics are used as scores to rank the spectrum plots.

In general, the polynomial regression equation is

yi = β0 + β1xi + β2x
2
i + · · ·+ βmx

m
i + εi, (31)

where m is the degree of the polynomial (usually m ≤ 5), and εi is the error term. The dependent
variable y is the vector of scores s and x to xm are the orthogonal polynomials of the vector of bin
numbers b.

Orthogonal polynomials are used in order to reduce the correlation between the different powers of b
and therefore avoid multicollinearity in the model. This is important, because correlated predictors lead
to unstable coefficients, i.e., the coefficients of a polynomial regression model of degree m can be greatly
different from a model of degree m+ 1.

The orthogonal polynomials of vector b are obtained by centering (subtracting the mean), QR de-
composition, and subsequent normalization [15].

Given the dependent variable y and the orthogonal polynomials of b x to xm, the model coefficients
β are chosen in a way to minimize the deviance between the actual and the predicted values. Ordinary
least squares is used as the estimation method for the model coefficients. After polynomial models of
various degrees have been fitted to the data, the F-test is used to select the model that best fits the
data. After a model has been selected, the adjusted R2 is calculated as an additional way to evaluate
the goodness of fit.

7 Transite analysis reports

Detailed information on the Transite analysis runs described in the main manuscript are available online:

• matrix-based Transcript Set Motif Analysis report on data set GSE7880
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• k -mer-based Transcript Set Motif Analysis report on data set GSE7880

• matrix-based Spectrum Motif Analysis report on data set GSE7880

• k -mer-based Spectrum Motif Analysis report on data set GSE7880
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