ELECTRONIC SUPPLEMENTARY MATERIAL

Telomere length, individual quality and fitness in female European starlings (Sturnus vulgaris) during breeding Criscuolo, F. ${ }^{1}$, Fowler, M.F. ${ }^{1,3}$, Fuhrer, V.A. ${ }^{1}$, Zahn, S 1. and Williams T.D. ${ }^{2}$
${ }^{1}$ University of Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien, UMR 7178, 67000 Strasbourg, France
${ }^{2}$ Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, Canada, V5A1S6 ; 3 Present address : Springfield College, 263 Alden Street, Springfield, MA 01109-3797, USA.

Ratios have particular statistical properties. For instance, ratio's normal distribution highly depends on the coefficient of variation of the numerator and denominator variables, which is most case is assumed to be equal (Atchley, Gaskins \& Anderson 1976). Several solutions have been previously proposed to resolve this potential problem, among which replace the use of ratio by an analysis of covariance of both concerned variables (Packard \& Boardman 1988). Here we proposed to test the use of linear regression residuals between the amplification signals of the telomere sequence and the control gene to assess relative telomere length from qPCR amplification data.

As shown in the ESM figures, the residuals of Cq-Tel / Cq-RAG1 are following a normal distribution without any need of log-transformation. Positive residuals mean that Cq Tel are high for a given Cq RAG1 value: as high Cq values correspond to short telomeres (i.e. the sequence needs more time to be amplified), positive residuals characterized short telomeres, after controlling for the DNA quantity actually present in the well (i.e. the Cq-RAG1 value). Running the models with the residuals leads to the same results as those presented in the main text of the paper. The loss of telomere length in the LQ females even reaches significance at $P=0,050$ (see Table 3 below). In the light of these results, it appears to us that, depending on the significance and the r^{2} of the linear regression between the Cq values of the telomere sequence and of the control gene, using the residuals seems to us as robust as the usual way of dealing with qPCR amplification data. We do not state here that relying on the T / S ratio to evaluate qPCR output of telomere amplifications (Pfaffl 2001) is spurious. In fact, ratios may not conduct to false statistical conclusions, particularly when the coefficient of variation of the numerator is higher than the one from the numerator (Anderson \& Lydic 1977), which shall be generally the case with telomere qPCR. Rather, we suggest to further test residuals utilization when
analyzing telomere amplification results, to better assess within which limits of normal distribution and of coefficients of variation of raw qPCR data, residuals may be more appropriate to use than the T/S ratio.

1. $\mathrm{Q}-\mathrm{Q}$ plots of log-transformed telomere length (T/S ratio) and of $\mathrm{Cq}-\mathrm{Tel} / \mathrm{Cq}-\mathrm{RAG1}$ residuals.

2. Results of the linear regression between Cq Tel and Cq RAG1 values (number of cycles of qPCR amplification for each sequence) measured in adult female starlings. $R=0,474, r^{2}=0,225$. Residuals followed a normal distribution, Kolmogorov-Smirnov test, $z=0,544 ; P=0,929$.

Response variable: Residuals Cq Tel - Cq RAG1	Estimates	D.F	T	P
Intercept	-4.622 ± 4.503	1,53	$-1,026$	0,310
Cq - RAG1	0.764 ± 0.197	1,53	3.880	<0.001

3. Table 1. Results of a Mixed Model with residuals of Cq Tel-Cq RAG1 as a response variable (relative telomere length), with individual quality and breeding stages as fixed factors and female identity as random factor. $\mathrm{HQ}=$ High $\mathrm{Quality}, \mathrm{MQ}=$ Medium $\mathrm{Quality} \mathrm{LQ}=$, Low Quality. Post-hoc comparisons were done using Bonferroni corrections, among groups during the incubation and chick rearing stages, and within groups between incubation and chick rearing stages. Significant P values are indicated in bold. Residuals of each models followed a normal distribution (checked using Kolmogorov-Smirnov test and QQ plot).

Response variable: Residuals Cq Tel - Cq RAG1	Estimates	D.F	F
Intercept	0.042 ± 0.156	1,27	16.689
Individual Quality		2,27	10.791
MQ females vs. HQ females	-0.428 ± 0.301		0.005
MQ females vs. LQ females	-0.809 ± 0.258		0.310
HQ females vs. LQ females	-0.382 ± 0.365		0.005
Breeding stage (Chick rearing vs. Incubation)	$-0 ; 042 \pm 0.071$	1,27	1.922
Individual Quality x Breeding stage	1.524 ± 0.317	2,27	7.457
During Incubation			0.310
MQ females vs. HQ females	-0.714 ± 0.543		0.166
MQ females vs. LQ females	-0.204 ± 0.342		1.000
HQ females vs. LQ females	0.509 ± 0.603		1.000
During Chick rearing			1.000
MQ females vs. HQ females	-0.141 ± 0.222		1.000
MQ females vs. LQ females	-1.414 ± 0.390		$\mathbf{0 . 0 0 1}$
HQ females vs. LQ females	-1.272 ± 0.385		$\mathbf{0 . 0 1 2}$
Between Incubation \& Chick rearing			
Among HQ females	-0.443 ± 0.521		1.000
Among MQ females	-0.129 ± 0.234		1.000
Among LQ females	-1.338 ± 0.467		$\mathbf{0 . 0 5 0}$

4. Table 3. Results of General Linear Models (with a logistic distribution for return rate and $2^{\text {nd }}$ brood initiation) testing for relationships between residuals of Cq Tel - Cq RAG1 as a response variable (relative telomere length) of adult starling females and: (A) current effort of reproduction, (B) future prospects of reproduction during the same breeding season (2013, $2^{\text {nd }}$ brood), (C) future prospects of reproduction during the next breeding season (2014), (D) total reproduction success over 2013 and 2014. In B and C models, first brood size (in 2013 and 2014) and first year total fledging number (in 2013) were included as a covariates to control for the initial brood or first year breeding costs. Adult telomere length was measured during the chick rearing period of the first brood. Significant results are indicated in bold.

A. Current breeding effort (2013)				
Response variable: Brood size at day 17	Estimates	D.F	F	P
Intercept	3.642 ± 0.342	1,19	113.156	<0.001
Residuals Cq Tel - Cq RAG1	-1.052 ± 0.450	1,19	5.466	0.030
Response variable: chick provisioning rate	Estimates	D.F	F	P
Intercept	4.971 ± 0.551	1,17	9.021	<0.001
Residuals Cq Tel - Cq RAG1	-1.555 ± 0.715	1,17	2.176	0.044
$1^{\text {st }}$ brood size	0.161 ± 0.361	1, 17	0.446	0.661
B. Same year breeding prospects (2013)				
Response variable: Initiation of a $2^{\text {nd }}$ brood	Estimates	D.F	F	P
Intercept	0.595 ± 1.300	1,17	0.457	0.647
Residuals Cq Tel - Cq RAG1	-0.632 ± 0.793	1,17	-0.797	0.425
$1{ }^{\text {st }}$ brood size	-0.019 ± 0.335	1,17	-0.057	0.955
Response variable: $\mathbf{2}^{\text {nd }}$ brood size at fledging	Estimates	D.F	F	P
Intercept	0.105 ± 0.942	1, 17	0.111	0.913
Residuals Cq Tel - Cq RAG1	0.336 ± 0.562	1,17	0.597	0.559
$1^{\text {st }}$ brood size	0.149 ± 0.259	1,17	0.606	0.553
c. Next year breeding prospects (2014)				
Response variable: adult female return rate	Estimates	D.F	F	P
Intercept	-3.200 ± 1.494	1,17	-2.143	0.032
Residuals Cq Tel - Cq RAG1	0.281 ± 0.925	1, 17	0.304	0.761
$1{ }^{\text {st }}$ year fledging number	0.491 ± 0.299	1,17	1.642	0.101
Response variable: $2^{\text {nd }}$ year, $1^{\text {st }}$ brood size at				
Intercept	-0.529 ± 1.099	1,17	-0.481	0.637
Residuals Cq Tel - Cq RAG1	0.399 ± 0.737	1,17	0.541	0.596
$1{ }^{\text {st }}$ year fledging number	0.446 ± 0.231	1,17	1.931	0.071

Response variable: $\mathbf{2}^{\text {nd }}$ year, initiation of a $\mathbf{2}^{\text {nd }}$ brood	Estimates	D.F	F	P
Intercept	0.595 ± 1.300	1,17	0.457	0.647
Residuals Cq Tel - Cq RAG1	-0.631 ± 0.793	1,17	-0.797	0.425
$1^{\text {st }}$ year fledging number	-0.019 ± 0.335	1,17	-0.057	0.955
Response variable: $2^{\text {nd }}$ year, $2^{\text {nd }}$ brood size at fledging	Estimates	D.F	F	P
Intercept	0.505 ± 0.338	1, 17	1.492	0.156
Residuals Cq Tel - Cq RAG1	-0.315 ± 0.227	1,17	-1.386	0.186
$1^{\text {st }}$ year fledging number	-0.123 ± 0.078	1,17	-1.563	0.139
$2^{\text {nd }}$ year, $1^{\text {st }}$ brood fledging number	0.251 ± 0.076	1,17	3.301	0.005
Response variable: $2^{\text {nd }}$ year total fledging number	Estimates	D.F	F	P
Intercept	-0.157 ± 1.410	1,17	-0.111	0.913
Residuals Cq Tel - Cq RAG1	0.185 ± 0.949	1,17	0.195	0.848
$1^{\text {st }}$ year fledging number	0.436 ± 0.297	1,17	1.467	0.162
D. Total breeding success (2013 and 2014) Response variable: Total number of fledging over 2 years	Estimates	D.F	F	P
Intercept	5.769 ± 1.070	1,17	5.392	<0.001
Residuals Cq Tel - Cq RAG1	-1.071 ± 1.388	1,17	-0.771	0.451

References

Anderson, D.E. \& Lydic, R. (1977) On the Effect of Using Ratios in the Analysis of Variance. Biobehavioral Reviews 1, 225-229.

Atchley, W.R., Gaskins, C.T. \& Anderson, D. (1976) Statistical properties of ratios. I. Empirical results. Systematic Zoology 25, 137-148.

Packard, G.C. \& Boardman, T.J. (1988) The misuse of ratios, indices, and percentages in ecophysiological research. Physiological Zoology 61, 1-9.

Pfaffl, M.W. (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research 29, 2003-2007.

