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1 | PHENOTYPIC CHARACTERIZATION OF E. COLI STRAINS
Characterization of adaptive laboratory evolution (ALE) clones from LaCroix et al. (2015) was performed using clonal
isolate stocks which were inoculated into overnight cultures, and then passaged twice in late exponential phase
after approximately 5–6 generations in order to characterize cells which were physiologically adapted to the growth
conditions. Themedia used was identical to theM9minimal media with 4 g/L glucose as described (LaCroix et al., 2015)
and were fully oxygenated in flasks with approximately 15 mL working volume. Optical density measurements at a
600 nmwavelength were taken periodically with a spectrophotometer (Thermo Fisher Scientific,Waltham,MA) until
stationary phasewas reached, andwere correlated to dry weight. At each sample point, the cell culture was filtered
through a 0.22 umPVDFmembrane (MilliporeSigma, Burlington,MA), and the filtrate was collected. By-products and
substrates were quantified in the filtrate by high-performance liquid chromatography using a refractive-index detector
(Agilent Technologies, Santa Clara, CA) and an Aminex HPX-87H column (Bio-Rad Laboratories, Hercules, CA). Uptake
rates were calculated using the slope of a best linear fit of the concentration of an analyte over the dry cell weight,
multiplied by the growth rate over the same exponential growth region.

2 | PROTEOME CONSTRAINTS IN THE ME-MODEL
The specific growth rate µ is the number of replicated cell per time unit per cell. When the cell replicates, it needs to
replicate all cellular components proportionally, and this can be represented as a steady-state dilution rate qd i l ut i on of
each individual componentC (Molenaar et al., 2009).

qd i l ut i on,C = µ [C ] ,C ∈ cel l component s (1)
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In Eq. 1, [C ] is the concentration of the components in the original cell.

Beginning withMichaellis-Menten kinetics defined by the equation:

qr eact i on =
kcat [E ][S ]
KM + [S ] (2)

We can derive a bulk parameter kef f where:

kef f =
kcat [S ]
KM + [S ] (3)

qr eact i on = kef f [E ] (4)

TheME-model formulation is based on the inequality form of Eq. 4 (Lloyd et al., 2018; O’brien et al., 2013):

qr eact i on ≤ kef f ,E · [E ] = kef f ,E ·
qd i l ut i on,E

µ
(5)

3 | CONNECTION BETWEEN PROTEOME ALLOCATION MODEL AND ME-MODEL
The proteome allocation model presented by (Basan et al., 2015) defined proteome efficiency with the symbol ε as
the proportionality coefficient relating reaction rate through ametabolic pathway, qr , to the proteome fraction,φ. φ
represents the fraction of total cell proteome dedicated to catalyzing flux through the pathway.

qr = ε · φE (6)

Next, they assume that the size of the entire proteome is linearly dependent on the growth rate µwith the coefficient
γ. For a particular enzyme E , the dilution rate qd i l ut i on,E must provide enough enzyme to catalyze flux, thus:

φE ,r eact i on ≤
qd i l ut i on,E

γµ
(7)

Combining with Eq. 5, we have:

kef f ,E = εE /γ (8)
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Thus, a simple model assigning parameters from the coarse-grained proteome allocationmodel (Basan et al., 2015)
to theME-model can be built.

4 | SSME-MODEL PARAMETER DERIVATION
The SSME-model is derived from the course-grained proteome allocation model presented by (Basan et al., 2015)
(Fig. S1). Themodel contains three pathways, respiration (shown as "res"), fermentation ("fer"), and biomass synthesis
pathway ("bms"). The respirationpathway generates energy (ATP) to feed the synthesis of biomass andexcreteCO2. The
fermentation pathway generates energy and excrete acetate. The biomass pathway synthesizes biomass proportionally
to the growth rate µ with proportionality coefficient β .

According to (Basan et al., 2015), the coupling constraint on each pathway is based on proteome allocation which
can be explained in three steps (Fig.S1):

• The entire biomass (βµ) can be separated into proteomewith the coefficient α and other biomass with the coeffi-
cient 1 − α (including lipids, nucleotides, and other components). This is based on the assumption that the total
fraction of proteome in the cell is unchanged; data suggests the actual variation is within 5% (Mori et al., 2016).

• The proteome is separated into the proteins for the respiration, fermentation, and biomass pathways with the
coefficientφmax and the proteome for other pathways, 1 − φmax .

• The proteome is finally divided into the protein for each pathway with coefficients φr for respiration, φf for
fermentation, and 1 − φr − φf for biomass.

Fluxes through the respiration and fermentation pathways are notated as qE ,r and qE ,f . The total energy that is
created through these two pathwaysmust meet the energy demand for growth:

qE ,f + qE ,r = qE (µ) = σµ (9)

The flux of carbon substrate uptake is annotated as qC ,i n , and the fluxes that consuming substrate through the
respiration and fermentation pathways are qC ,f and qC ,r . The rest of the carbon substrate contributes directly to
biomass production, qC ,bms :

qC ,bms (µ) = qC ,i n − qC ,f − qC ,r = βµ (10)

The growth energy flux and biomass carbon flux could be considered as the demand reaction that their reaction
rates are:


qdemand ,ener g y = qE (µ) = σµ

qdemand ,bi omass = qC ,bms (µ) = βµ
(11)

The substrate uptake rate bound (SURB) is considered to be equivalent to themaximum value of the carbon input
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flux: qC ,i n ≤ SURB . For the respiration and fermentation pathways, the rates are normalized to the carbon flux of the
two pathways. The amount of energy that is created through either respiration or fermentation is proportional to the
carbon fluxwith coefficients er and ef :


qr = qC ,r = qE ,r /er

qf = qC ,f = qE ,f /ef
(12)

Assuming that the proteome possesses a fixed portion α (0 ≤ α ≤ 1) of the biomass content:


vdemand ,pr ot eome = α · vdemand ,bi omass (µ) = α · βµ

vdemand ,other bi omass = (1 − α) · βµ
(13)

The proteome is divided into the growth-dependent proteome µDP r o with the maximum fraction φmax (0 ≤
φmax ≤ 1) and growth-independent proteome µI P r o :


qdemand ,µDP r o = φmax · qdemand ,pr ot eome = φmax · α · βµ

qdemand ,µI P r o = (1 − φmax · α · βµ
(14)

The growth-dependent proteome is divided into three parts corresponding the respiration, fermentation, and
biomass pathways.

φf + φr + φBM = 1 (15)

Where the proteome part for the biomass would be divided into two parts, a fixed portion annotated byφ0 and a
portion whose amount is linearly related to the growth by coefficient b .

φBM = φ0 + bµ (16)

Therefore, the entire proteome demand is:

qdemand ,pr ot eome

= qdemand ,µDP r o + qdemand ,µI P r o

= (φf + φr + φ0 + bµ) · φmax · α · βµ + (1 − φmax · α · βµ

(17)

Thus, for the fixed portionφ0 of the growth dependent-proteome, the dilution rate is:
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qdemand ,pr ot eome0 = φ0 · φmax · α · βµ (18)

And, for the growth-independent proteome:

qdemand ,pr ot eome0 = (1 − φmax · α · βµ (19)

The portions of the proteome catalyzing respiration and fermentation pathways are proportional to the energy flux.


φr =

qE ,r
εr

=
er ·qr
εr

φf =
qE ,f
εf

=
ef ·qf
εf

(20)

The demand for cellular components required for growth is less than or equal to the dilution fluxes that represent
their production rate (in the sameway that Eq. 5 was derived).

qdemand ,E ≤ qd i l ut i on,E , (E ∈ cat al y t i c component s) (21)

Consequently, for the dilution rate of the proteome catalyzing the respiration pathway:

qd i l ut i on,pr ot eomer

≥ qdemand ,pr ot eome · φmax · φr

= α · βµ · φmax ·
er · qr
εr

(22)

And therefore:

qr ≤
εr

er · α · β · φmax
·
qd i l ut i on,pr ot eomer

µ

= kef f ,r ×
qd i l ut i on,pr ot eomer

µ

(23)

Equivalently for the fermentation pathway:

qf ≤
εf

ef · α · β · φmax
·
qd i l ut i on,pr ot eomef

µ

= kef f ,f ×
qd i l ut i on,pr ot eomef

µ

(24)

And lastly for the biomass pathway:
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qd i l ut i on,pr ot eomebms

≥ qdemand ,pr ot eome · φmax · (bµ)
(25)

qdemand ,pr ot eome ≤
1

φmax · b
·
qd i l ut i on,pr ot eomebms

µ

= kef f ,pr ot eomebms ×
qd i l ut i on,pr ot eomebms

µ

(26)

These are equivalent to the inequalities in theME-model (Eq. 5), and thus were able to implement the SSME-Model
in COBRAme.

ademand ,ener g y = σµ +w (27)

qdemand ,LacZ

= qdemand ,pr ot eome · φZ

= α · βµ · φZ

(28)

qdemand ,pr ot eome0 = φ0 · (φmax − φZ ) (29)

5 | MATLAB AND COBRAME IMPLEMENTATION
This study provided the SSME-model implemented inMatlab (2017a) with the non-linear solver (“fmincon” function,
https://www.mathworks.com/help/optim/ug/fmincon.html), as a general example of howME-model is formulated and
simulated. Equivalently, the SSME-model is also implemented in Python(2.7/3.6) using the COBRAme framework
(https://github.com/ahoiching/SSME-model). SSME-model in both Matlab and COBRAme is available on a github
repository (https://github.com/ahoiching/SSME-model).

The genome-scaleME-model iJL1678-ME is gained from Lloyd et al. (2018), which is available on the ecolime github
repository (https://github.com/SBRG/ECOLIme). Due the complexity of themodel, we used amore robust and efficient
solver Qminos (Yang et al., 2016;Ma et al., 2017) for the non-linear optimization.

6 | SOLUTION SPACE OF THE ME-MODEL
The COBRAme framework (Lloyd et al., 2018) was used for simulations of the E. coliME-model iJL1678-ME (Liu et al.,
2014) and the SSME-model. All fermentation product excretions except acetate were disabled in iJL1678-ME to
match the experimental observation that only acetate is excreted during aerobic growth in ALE-optimized strains and
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reported strains (Basan et al., 2015; Nanchen et al., 2006). Table S4 in Expanded view shows all the essential excretion
components (including acetate) that are not blocked. Additional modifications to theME-model are described below
(see "Experimental data fitting").

Solution spaces in two dimensions were generated using flux balance analysis (FBA). First, the independent variable
(a reaction flux) wasmaximized andminimized using FBA to establish the range of feasible values. Next, for intervals
across this range, the independent variable was fixed and the dependent variable wasmaximized andminimized using
FBA.

With this approach, wewere able to define the solution spaces for µ–Y , µ-qac , and qg l c -qac in theME-model. To
generate µ–Y and µ–qac solution spaces, the ME-model was optimized for the objectives ofYmax ,Ymin , qac,max , and
qac,min at each feasible µ. To determine the feasible range of µ, µ was to maximized with the carbon uptake (qg l c )
unbounded, and the range was thus between 0 (no growth) and µmax .Ymin was calculated byminimized qg l c at each
feasible µ, whileYmin was calculated bymaximizing qg l c .

The qg l c–qac solution space shows the feasible range of qac at each feasible qg l c when µ is fixed. According to the
µ–Y solution space, the feasible range of qg l c at each µ can be calculated to generate qg l c,min and qg l c,max . The acetate
overflow rate qac was thenmaximized andminimized across this range.

7 | EXPERIMENTAL DATA FITTING
The linear-threshold response of acetate overflow (qac ) upon growth (µ) is a key phenotype to reproduce in theME-
model. Due to the poor quantitative prediction of µ–Y and µ–qac from iJL1678-ME (Lloyd et al., 2018; O’brien et al.,
2013) with the default parameter set—the linear threshold response µ-qac is too steep compared to experimental
data—modification to themodel was required. Because the rate-yield tradeoff is determined by a tradeoff between
metabolic efficiency and proteome efficiency, the following parameters in iJL1678-MEweremodified: enzyme turnover
rates (kef f ) of the reactions within the TCA cycle, upper bound and lower bound constraints for certain target reactions
(described below), unmodeled protein fraction (UPF), non-growth-associated maintenance (NGAM), and growth-
associatedmaintenance (GAM).

The kef f modifications are based on protein abundance data (Basan et al., 2015), where the kef f of each reaction
in the TCA cycle is replaced by themeasured protein efficiencies. Themeasured protein efficiencies turned out to be
lower than the originally assigned TCA kef f s in iJL1678-ME.

The upper bound and lower bound constraints are used to block some reactions by setting both of them to
0 mmol gDW-1 h-1. In order to fit the linear-threshold response qac from experiments, two kinds of backup path-
ways ("bp") were identified. The first set of "bp" reactions (categorized as bp1) have direct negative correlations to
acetate overflow as a function of µ (Fig. S2B). These are alternative pathways whosemetabolic and proteomic efficien-
cies are in between the acetate production and TCA pathways. Fig. S2B shows that when a bp1 reaction is blocked, the
acetate production line becomesmore gradual. With an iteration process, each reaction can be blocked, then another
bp1 reaction becomes activates in the next simulation, this reaction can be blocked, and so forth. As a result, 17 steps of
bp1 iteration were employed tomatch the slope of themeasure acetate line (Basan et al., 2015) (Fig. S3F, Table S3 from
Expanded view).

Another set of "bp" reactions (categorized as bp2) have direct positive correlations with µ but are only activated in
near-optimal µ (Fig. S2C). Blocking bp2 reactions helps maintain the linearity of the acetate production response in the
ME-model. As a result, four steps of bp2 iteration were executed (Table S3 from Expanded view).

The rationale for blocking bp1 and bp2 reactions was carefully considered. On the computational side, blocking
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reactions enabled an accurate fit to experimental data (Fig. S3F). More importantly, for a given set of kef f s, the iteration
process generates aminimal set of reactions that must be blocked to fit the acetate line. For example, Table S3 shows
that ICL is the first bp1 reaction that is blocked. Even if the other 16 bp1 reactions are blocked, ICL prevents themodel
from achieving a good fit to the data.

Blocking these reactions is the most straightforward approach to constraining them, but a similar effects could
be achieved by: (A) adding other upper bound and lower bound except for zero, reflecting the possibility that those
reactions are restricted not to carry high fluxes, (B) lowering the kef f s, reflecting that those reactions might carry
higher protein costs, (C) changing the coefficients of themetabolites, making it less metabolic efficient, for example to
reflect the requirement of cofactors. Taking these approach needsmore thorough consideration based on biochemical
evidence.

By exploring the literature, wewere able to categorize and understand the relevance of some bp1 and bp2 (Fig. S3C-
E): (A) shortcuts within the TCA cycle, (B) alternative pathways of the glycolysis/electron transport chain, (C) lipid and
cell wall/envelope synthesis, or (D) catabolism of amino acids and nucleotides feeding for energy synthesis. Among
all those reactions, some reactions are measured to carry no flux in higher growth by chemostats glucose uptake
experiments, such as ED, ICL, and ASPT (Nanchen et al., 2006; Novak et al., 2006); some are likely to have low kef f
in higher growth, such as the reactions in the ETC or lipidmembrane synthesis, since the cells in fast growth has less
membrane availability, inducing the protein cost (Zhuang et al., 2011; Szenk et al., 2017); some of the reactions are
predicted to be blocked being caused by some autoregulationmechanism, requiring a cofactor with high protein cost,
such as FTHFD, requiringmethionine, the amino acid that cost themost protein to get synthesized (Meinnel et al., 1993;
Nagy et al., 1995), or in a simpler explanation, the kef f is too high in the originalME-model. Some other rationales of
the bp1 blockagewould be hard to be determined but could raise up an interesting topic in cellular regulations study.
For instance, the 4th bp1 reaction that is found, NAD transhydrogenase (NADTRHD), reducing NADwhile oxidizing
NADP, might need to be blocked to create a similar effect when the NAD/NADP balance is regulated. There are some
researches focusing on theNAD/NADP balance (Osterman, 2009; Auriol et al., 2011), but howwould this affect the
acetate overflow is not thoroughly studied yet. More details about the effect of each reaction to the overall metabolic
pathwaywhen it is turned on is recorded in Table S3 (Expanded view).

For the global parameters, unmodeled protein fraction (UPF) provides global effects to themodel as it shifts the
acetate overflow line in parallel left or right, whichmeans changing themaximum growthwhile maintaining the same
phenotype depending on growth.

The result of themodification process is shown in Fig. S3F. The original iJL1678-MEmodel predicts little acetate
production around µmax (0.81 h-1. After themodification of TCA kef f s, qac at µmax approximately matchesmeasured
data reported by Basan et al. (2015), but the µ–qac is still too steep. Bymodifying theUPF, the µmax increases to 1.03 h-1 .
By blocking the bp1 reactions step by step, the slope of µ–qac line becomesmore gradual andfinallyfits the experimental
data well. By blocking the bp2 reactions, qac,max becomes closer to themaximum acetate overflow in experiments.

The other global parameters, NGAMandGAM, weremanipulated to fit the level ofY to data. Specifically, NGAM
captures the positive µ–Y correlation at low µ andGAMvaries themaximum value ofY . The results of picking these
parameters are shown in Table S2, allowing us to fit 3 sets of experimental data (Fig. 2C–D in themain text).

8 | SOLUTION SPACE VARIATION
The SSME-model and ME-model share a common theoretical basis, so it is possible to gradually add content to the
SSME-model until it becomes equivalent to the genome-scale ME-model. We defined a method for modifying the
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solution spaces of the SSME-model andME-model to explorewhatmodel components are responsible for the difference
between the solution spaces generated by the SSME-model and the genome-scaleME-model. We aimed to determine
the reactions in the genome-scale model that could narrow the solution space if blocked and the reactions that could be
added to the SSME-model to expand the solution space.

The principal of this method is to find reactions whose addition or removal do not affect the linear-threshold
response of acetate production, which is also the growth-yield-maximized solution. Thus, we compared themetabolic
fluxes between the growth-yield-optimized solution and the acetate-maximized or -minimized solution, then blocked
the reaction that carried flux in themaximized or minimized solution but not in the growth-yield-optimized solution. As
shown in Fig. S5, this is an iteration process, a new target reaction appeared to be activated only when the preceding
reaction is blocked and a new solution is simulated.Reactions that are found in the iteration process are then categorized
as 4 kinds with different properties, and testified by addingmodel reactions in the SSME-model and see how the SSME-
model solution space expands (Fig. S6). As for the ALEmeasurements show no other fermentation products besides
acetate excreted (category (1) in Fig. S6D), the unnecessary exchange reactions are then blocked in themodel (Table
S4 shows the essential exchange reactions), where theME-model solution space got smaller (yellow solution space in
Fig. S4). The yellow solution spaces shown in Fig. S4 is the same as the solution spaces encompassing ALE data points in
themain text (Fig. 2).

9 | P/O RATIO MANIPULATION
To simulate themodification of the P/O ratio in theME-model, a pseudo-reaction for proton leakage was added to the
model that pumped one proton from the periplasm to the cytosol. For simulations in themanuscript, flux through this
reaction was fixed to 50 or 100mmol gDW-1 h-1.

10 | GND KNOCKOUT SIMULATION
To simulate∆gnd, themetabolic reaction phosphogluconate dehydrogenase (GND) in theME-model was blocked by
setting the upper and lower bounds to 0mmol gDW-1 h-1.
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TABLE S1 Comparison between the coarse-grained proteome allocationmodel (Basan et al., 2015) and
SSME-model

Basan’s Value SSME-model Value Comments
φ0 81% UPF 81% Same concept
σ 45.7(mM/OD) σ Energy

+ β Carbon substrate
–> Biomass

45.7 Energy
+ 28.5 Carbon substrate

–>1.0 Biomass

Incorporate
as

reaction
stoichiometry

in
SSME-model

β 28.5(mM/OD)

Sac 1/3 Carbon substrate
–>Sac Acetate
+ ef Energy

1.0 Carbon substrate
–>1/3 Acetate
+ 2.0 Energy

ef 2.0

SCO2 1/6 Carbon substrate–>
SCO2 CO2+ er Energy

1.0 Carbon substrate–>
1/6CO2+ 4.4 Energy

er 4.4
b 12.0% kef f ,bms = 1/b

8.33/3600
(mM/OD/sec) Incorporated as

kef f values
in SSME-model
where the

time unit is second
εf 750(mM/OD/hr) kef f ,f er = εf /ef

375/3600
(mM/OD/sec)

εr 390(mM/OD/hr) kef f ,r es = εr /er
88.6364/3600
(mM/OD/sec)

φ0, umodeled protein fraction (UPF)
σ(β ), energy (carbon) demand for growth
Sac (SCO2 , stoichiometry factor for acetate (CO2) from fermentation (respiration)
ef (er ), carbon efficiency, fermentation (respiration)
εf (εr ), proteome efficiency, fermentation (respiration)
b, proteomic sector for supporting biomass reaction
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TABLE S2 Global parameter selection

Model Scale Experiment UPF (%) GAM (mmol/gDW/hr) NGAM (mmol/gDW/hr)

Small scale

(Nanchen et al., 2006) 0.82 75 0

(Basan et al., 2015) 0.81 45.7 0

ALE 0.80 40 0

Genome scale

(Nanchen et al., 2006) 0.30 34.98 15

(Basan et al., 2015) 0.18 34.98 1

ALE 0.12 15 0
UPF, unmodeled protein fraction
(N)GAM, (non)growth associatedmaintenance for energy

Biomass

ATP

ATP

CO2

Acetate

Substrate

Others
(Lipids,etc.)

Proteome

Others

res, fer, bms 
pathways

fer

res

bms

res

fer

bms

F IGURE S1 Scheme of the coarse-grained proteome allocationmodel (Basan et al., 2015).
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Biomass

ATP

ATP

CO2

Acetate

Substrate

fer

res

bms

res

fer

bms

Unmodeled
Protein
Fraction

Metabolic pathway
Proteome allocation
(Gene expression)

ke�,res

ke�,bms

ke�,fer

Reducing ke�,res

Reducing UPF

res
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F IGURE S2 Modification ofME-model for fitting the experimental data, based on the guideline derived from
SSME-model. (A) Reduction of the enzyme efficiency for respiration (kef f ,r es ) causes amore gradual acetate line.
Reduction of UPF increases themodel-predictedmaximum µ, shifting the acetate line to higher µ. (B) Another approach
of gettingmore gradual acetate line is to block bp1 reactions. (C) Activation of bp2 reactions (such as the
Entner–Doudoroff pathway bypassing glycolysis) cause an inflection point and extension of the acetate line to higher µ.
(D)Workflow for theME-model modification process. In the genome-scaleME-model, some TCA cycle reactions
appeared as bp1 reactions, but, because they belong to themajor respiration pathway of the cell, we will decreased
their kef f s rather than blocking them entirely.
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F IGURE S3 Summary of themodifications to the genome-scaleME-model. (A) Compared to original iJL1678-ME,
UPF is halved to 18%. (B) For the enzyme efficiency parameter kef f , only the TCA kef f s aremodified. (C) The
subsystems of the 24 bp1 reactions. (D) The subsystems of 26 bp2 reactions. (E) bp1 and bp2 reactions on the pathway
map of central metabolism. (F) Acetate lines for the steps in the fitting process.
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A B

F IGURE S4 By blocking un-measured byproduct secretions in theME-model, the solution space was reduced from
the pink region to the yellow region.

D

X

A B C

F IGURE S5 µ–qac solution space variation in theME-model. Narrowing in the feasible range of alternative
suboptimal solutions by blocking some target reactions. The new solution space after the variation is shown as the
yellow in (A) and (B), with the original solution space in pink. (A) 24 target reactions (Table S6) that are blockedwhere
maximum qacs in high µ get lower, where the upper edge of the yellow region is below the upper edge of the pink region.
The activation of one of these 24 reactions thus corresponding to higher qac with lowerY . (B) 11 target reactions (Table
S5) corresponding to lower qac with lower Y, blocking those reactions will get theminimum qac (lower edge of the
yellow region) closed to theY -maximized qac solution. (C) Themethod of picking reactions to block: Looking for the
reactions that are not activated in the yield-maximized solution but activated at themaximal andminimal of the
µ–qacsolution space, where the principal is to keep theY -maximized solutions unchanged.
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F IGURE S6 Expansion of solution space from the SSME-model by addingmodel reactions. The expanded part of
the solution space is shown as yellow in (A)–(C), compared to the original SSME-model solution spaces are in blue. (A)
All added reactions ((1)-(4) in D) expand the solution space to include lower-Y solutions (B) Reactions (1) and (3) expand
the solution space to low-qac at high µ. (C) Reactions (2) and (4) expand the solution space to high-qac across all µ. (D)
Model reactions that are added in the SSME-model for expanding the original solution space, all those reactions are
guaranteed not be activated in the Y-maximized solutions so that the Y-optimal solution remains the same to fit data
fromBasan et al. (2015). Reaction (1) corresponds to the reactions that would generate products other than acetate
such as pyruvate excretion, lactate excretion, etc. Reaction (2) is representative to the reactions that would generate
other products, but at the same time generating acetate, such as pyruvate formate lyase (PFL), which produce formate
and acetyl-CoA (precursor of acetate) from pyruvate. Reaction (3) and (4) could both be referred from the futile cycle in
energy production and consumption, where (3) are the reactions that are less efficient than the optimal pathway, such
as the alternative reactions in ETCwhich are less efficient in transporting electrons, while (4) are the reactions that
would wastemore energy in the same growth comparing to the optimal state, such as the reactions that would cause
proton leakage


