
Supplementary Materials 
Implied timescales 
We built our Markov state models using the discretization discovered by the khybrid 
clustering algorithm on SASA feature vectors (see Methods). We then verified our 
choice of kcenters stopping condition (2.6 nm2 for TEM-1 and 3.0 nm2 for CTX-M-9) 
and chose our lag times (4 ns for TEM-1 and 0.6 ns for CTX-M-9) using the implied 
timescales test. 
 

 
 
Figure S1: Implied timescales tests for TEM-1 (top left), CTX-M-9 (top right), CAP 
(bottom left), and eNP (bottom right). The implied timescales test is a test for 
Markovianity of an MSM. The model is fit with a variety of lag times (x-axis) and the 
slowest few motions’ speed is computed. In a good model, the timescales are 
relatively insensitive to lag time, and so typically a lag time will be chosen that 
minimizes the derivative of implied timescale with respect to lag time. (1, 2)  



Affinity clustering is stable to damping parameter changes 

 
Figure S2: Affinity clustering is stable across most values of the damping parameter in 
TEM-1. This figure is a parameter scan across the range of possible damping 
parameters for the clustering algorithm that assigns residues to exposons. In this 
figure, the y-axis represents choice of damping parameter, the x-axis represents the 
protein sequence. The color of at any position denotes the exposon to which a residue 
was assigned at that particular choice of damping parameter. Thus, the appearance of 
vertical bars is a consequence of the fact that residues generally do not change which 
exposon they are assigned to. Some residues are assigned to the same cluster for all 
damping parameter choices < 0.95.  



Time-resolved DTNB thiol labeling by stopped-flow 
To measure the labeling rate of any particular residue, we prepared the relevant 
cysteine mutant (see Methods) and ran triplicate DNTB labeling experiments both with 
and without protein. We subtracted the baseline absorbance of DTNB in buffer from 
the labeling trace and fit to a single exponential.  Each point in Fig 2b and e represents 
the results of such a procedure. A representative fit to the data for TEM-1 at 500 µM 
DTNB is shown below. 

 
Fig S3: A representative trace of absorbance over time for a sample of 9 µM TEM-1 
S243C mixed with 500 µM DTNB along with a single exponential fit (top) and the 
residuals to that same model (bottom). For the top figure, red is raw data and dashed 
black is the fit. For the bottom figure, red represents the raw residuals and black 
represents a Gaussian convolution of that data. 
 
Table S1. Parameters of Linderstrøm-Lang model of DTNB labeling. Error is the 
standard deviation from 100 trials of bootstrapping. 

 TEM-1 M182T S243C CTX-M-9 
𝑘int 6.83 ± 1.18 mM-1 s-1 71.5 ± 5.3 mM-1 s-1 
𝐾 1.10 x 10-2 ± 1.9 x 10-3 2.34 x 10-4 ± 7.8 x 10-5 
𝑘op N/A 1.22 x 10-2 ± 2.05 x 10-3 s-1 

𝑘cl N/A 51.3 ±  14.4 s-1 
𝐾 × 𝑘int 7.5 x 10-2 ± 1.5 x 10-3 mM-1 s-1 1.67 x 10-2 ± 5.70 x 10-3 mM-1 s-1 

  



Estimation of global unfolding rates of TEM-1 S243C and 
CTX-M-9   

  

 
Fig S4: Rates of unfolding of TEM-1 S243C (top) and CTX-M-9 (bottom) as a function 
of urea concentration. A linear fit is used to extrapolate to the rate of global unfolding 
of each protein to the rate in the absence of urea. The rate of unfolding for TEM-1 
S234C is 1.054 x 10-5 ± 1.371 x 10-5 s-1 whereas the rate of unfolding for CTX-M-9 is 
1.308 x 10-5 ± 2.274 x 10-5 s-1. Error is estimated using the standard deviation from 100 
rounds of bootstrapping. 
  



Protein stability measurements 

 
 
Fig S5: Circular dichroism as a function of urea concentration (solid circles) fit to a two-
state model (equation S1) of unfolding for TEM-1 S243C (left) and CTX-M-9 (right). 
Data were collected in triplicate. 
 

(1) CD	(Θ) = Θ12Θ345(∆7138913[;<=>])/AB	
C245(∆7138913[;<=>])/AB

 
 
where ΘD and ΘF are the Circular Dichroism signals at 222 nm for the unfolded and 
native states. ∆GDF	is the extrapolated free energy change in 0 M urea between the 
unfolded and native states, and mDF is a proportionality term related to the steepness 
of the linear fit of the unfolded to native state transition (3). 
 
Table S2. Equilibrium Fit Parameters. Errors are standard deviations. 

 DGun (kcal mol-1) mun (kcal mol-1 M-1) Cm (M) 
TEM-1 M182T S243C 5.0 ± 0.3 1.12 ± 0.07 4.5 ± 0.4  

CTX-M-9 5.5 ± 0.2  3.0 ± 0.1 1.83 ± 0.09  

 

  



Activity of labeled enzyme 

 
 
Figure S6: Activity of enzyme before (blue) and after (red) addition of covalent DTNB 
label for TEM-1 S243C (left) and CTX-M-9 (right). Blue points are unlabeled enzyme, 
red points are labeled enzyme. Points were taken in triplicate. Fits are to a Michaelis-
Menten model. 
 
Table S3. Parameters for Michaelis-Menten model of enzyme activity. Error is the 
standard deviation from 100 trials of bootstrapping. 
 kcat (s-1) KM (µM) 

TEM-1 M182T S243C 354 ± 13 88 ± 5 
Labeled TEM-1 M182T S243C 337 ± 9 22 ± 2 

CTX-M-9 254 ± 10 28 ± 3 
Labeled CTX-M-9 65 ± 8 114 ± 21 

  



Synthetic labeling of TEM-1 residues 

 
Figure S7: Synthetic labeling traces of various TEM-1 residues indicate the fraction of 
the population (y-axis) that is expected to be have been exposed to solvent after a 
particular amount of time (x-axis). The rank order here recapitulates the in vitro rates’ 
order reported in (4).   



Estimation of druggability of S243 pocket 
We used fpocket (5) to estimate the druggability of every frame associated with a 
microstate where S243 is classified as exposed. We then filtered pockets for S243 
gamma oxygen involvement and for the lack of involvement of the active site serine, 
S70. As noted in the main text, traditional pocket detection algorithms have a tendency 
to combine this pocket with the active site, as they often form a channel-like 
connection, despite being geometrically distinct. We expect the druggabilities noted 
here to be lower bound estimates for druggability, the druggability score was trained 
on crystal structures of ligands, which are typically adopt a more closed conformation 
created by contributions of induced fit, whereas in simulation these same pockets are 
often much more open (6). 

 
Figure S8: Druggability and equilibrium probabilities for pockets involving S243.  Top, a 
violin plot of the distribution of FPocket druggability score for both microstates with 
exposed S243. Bottom, the equilibrium probability of each of those states. These data 
suggest a minor population of a very-likely druggable conformation (state 1271, blue). 



𝑘obs is bounded above by 𝑘obs
(EX1) and 𝑘obs

(EX2). 
As defined in Methods of the main text, the observed labeling rates of the three 
regimes are defined as: 
 

𝑘obs =
𝑘op𝑘int[DTNB]

𝑘op + 𝑘cl + 𝑘int[DTNB]
 

 

𝑘obs
(EX2) =

𝑘op
𝑘cl

𝑘int[DTNB] = 𝐾𝑘int[DTNB] 

 
 
𝑘obs
(EX1) = 𝑘op 

 
We want to show that 𝑘obs < 	𝑘obs

(EX2) and 𝑘obs < 	𝑘obs
(EX1). 

 
Hypothesis I: 𝒌obs < 	𝒌obs

(EX2) 
 
𝑘obs < 	𝑘obs

(EX2) 
 

𝑘op𝑘int[DTNB]
𝑘op + 𝑘cl + 𝑘int[DTNB]

< 	
𝑘op
𝑘cl

𝑘int[DTNB] 

 
1

𝑘op + 𝑘cl + 𝑘int[DTNB]
< 	

1
𝑘cl

 

 
𝑘op + 𝑘cl + 𝑘int[DTNB] > 	𝑘cl 
 
𝑘op + 𝑘int[DTNB] > 	0, which is true, since each term is greater than zero individually. 
 
Hypothesis II: 𝑘obs < 	𝒌obs

(EX1) 
 
𝑘obs < 	𝑘obs

(EX1) 
 

𝑘op𝑘int[DTNB]
𝑘op + 𝑘cl + 𝑘int[DTNB]

< 	𝑘op 

 
𝑘int[DTNB]

𝑘op + 𝑘cl + 𝑘int[DTNB]
< 1 

 
𝑘int[DTNB] < 𝑘op + 𝑘cl + 𝑘int[DTNB] 



 
0 < 𝑘op + 𝑘cl, which is true, since each term is greater than zero individually. 
 
Thus, since  𝑘obs < 	𝑘obs

(EX2) and 𝑘obs < 	𝑘obs
(EX1) we can conclude that 𝑘obs <

	min	W𝑘obs
(EX2), 𝑘obs

(EX1)Y, i.e. that the EX1 and EX2 observed rates serve as strict upper 
bounds to the EXX observed rate. 
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