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Active fluid theory for Tribolium tissue flow

Here, we introduce our minimal physical model to quantitatively describe the velocity of blastoderm
tissue movement during the onset of Tribolium gastrulation. For the theoretical description, we focus on
the one-dimensional tissue flows that have been experimentally quantified in the sagittal cross-section
of the embryo imaged in toto with multi-view light sheet microscopy. This cross section captures the
myosin distribution with the highest intensities occurring in the embryo at the posterior pole and along
the ventral mid-line. Importantly, blastoderm flows along this circumference of the embryo are virtually
exclusively parallel to the sagittal cross section.

1 Model

For the description of the blastoderm tissue, we consider a one-dimensional periodic domain of length L,
representing the circumference of the embryo in the sagittal cut. We describe the tissue as a thin-film,
active fluid, for which the stress σ is given by [1, 2]

σ = η∂xv + C(x). (1)

Here, η is an effective viscosity that describes the internal resistance of the tissue against compression
and shear. The local flow velocity v is measured with respect to the stationary reference frame provided
by the egg shell and C(x) ≥ 0 is a contractile active stress that is described in more detail in Section 1.3.
The force balance for the material is given by

∂xσ + fext = 0, (2)

where we neglect inertial effects, which is a valid assumption on the small length scales of a Tribolium
embryo. The term fext denotes external forces. From Eqs. (1) and (2), we then find the force balance
for the tissue

η∂2xv + ∂xC(x) = −fext. (3)

Before using this model to describe the experimental data, we discuss the external forces fext in more
detail.

1.1 Homogeneous friction: Absence of net tissue movement

The blastoderm tissue is in contact with surrounding material, such as the yolk on the basal side as well
as the vitelline envelope on the apical side. Therefore, frictional forces can occur that work against the
tissue motion. We can consider such an external friction force as

fext = −γv, (4)

where γ denotes the friction coefficient, which we first assume to be homogeneous. From integrating the
force balance in Eq. (2), we find ∫ L

0
∂xσ dx = −

∫ L

0
fext dx (5)

⇒ σ|L0 = γ

∫ L

0
v dx. (6)

Here, we take into account that γ is constant along the entire circumference of the embryo. Given
periodic boundary conditions on a closed circumference, we have σ(0) = σ(L) and therefore find σ|L0 = 0.
Assuming that γ is finite, we therefore find from Eq. (6) in the case of homogeneous friction a constraint
on the flow v in the form ∫ L

0
v dx = 0. (7)
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We define the integral on the right-hand side as the net movement of the tissue, which vanishes in the
case of homogeneous friction according to Eq. (7). In particular, Eq. (7) can only be fulfilled if (i) the
flow is vanishing everywhere v = 0, or (ii) the flow velocity along the domain changes its sign at least
twice (assuming that the flow field is continuous). The flow profile observed in the wild-type embryo is
unidirectional, i.e. it has the same sign across the whole domain (see Fig. 1e in the main text and movie
S2,3) and can, therefore, not fulfill the constraint of a vanishing net movement (Eq. (7)). This provides a
hint for potentially inhomogeneous external forces that break the symmetry and lead to a net movement
of the tissue in the wild-type embryo. Finally, we note that for the Tc.inflated RNAi phenotype (Fig.
3e in the main text), the flow profile of the tissue changes its sign twice and the integral over the flow
speeds (i.e. net movement) is indeed close to zero for all time points (see movie S13). This qualitative
argument shows that the removal of the attachment zone by knock-down of Tc.inflated leads to tissue
flows that are consistent with the assumption of homogeneous friction forces in the system.

1.2 Inhomogeneous friction: Occurrence of net tissue movement

In general, the friction described by γ can be inhomogeneous. Inspired by the experimental observations
presented in the main text (namely the presence of unidirectional blastoderm tissue flow and the apparent
lack of flow on the anterior ventral side of the embryo), we consider an inhomogeneity in the friction
that represents a local attachment region of width w of the tissue. This corresponds to a region with a
very large friction γa, in which the velocity v of the tissue essentially vanishes. In this case, Fa ≈ wγav
describes an attachment force that is required to hold the tissue locally in place against the contractile
stresses that are generated in the surrounding tissue. If the attachment region is small compared to the
overall domain, i.e. w � L, we can describe it as an effective contribution to the external force in the
form faext = Faδ(x). Here, we have placed the attachment region for convenience at x = 0, which is not
essential for the argument to hold. Furthermore, we assume for simplicity that the friction γ away from
the attachment region is approximately constant, such that the total external force is given by

fext = faext − γv. (8)

By integrating the force balance Eq. (2) for external forces given in Eq. (8), we find

Fa = γ

∫ L

0
v dx, (9)

which follows from Eq. (6) and σ|L0 = Fa. With Eq. (9), we can now relate the net movement of the

tissue, defined as
∫ L
0 v dx, to an attachment force Fa.

1.3 Active stress in the tissue

Following previously published theoretical models of tissue flow [2, 3], we assume that active contractile
stresses are predominantly generated by myosin motor proteins. We use the local fluorescence inten-
sity I(x) of the Tc.sqh::GFP construct as proxy for the magnitude of the active stress:

C(x) = C0I(x). (10)

Here, C0 is an effective parameter that emerges from the microscopic details of the active stress generation
in the tissue. The acquisition and preprocessing of the profiles I(x) is explained in detail in the Materials
& Methods section.

2 Fitting procedure

To compare the theoretical prediction of the outlined thin-film theory to the experimentally determined
flow profiles, we use Eq. (3) with fext = −γv+Faδ(x) and C(x) given in Eq. (10) to calculate flow fields v
and fit these solutions to the experimentally measured velocity profiles.
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To identify the independent fitting parameters, we first nondimensionalise Eq. (3). Using the domain
length L as characteristic length scale, we can write x = x̃L with x̃ ∈ [0, 1]. The non-dimensional form
of the force balance Eq. (3) is then given by

∂2x̃ṽ + ∂x̃I = α2ṽ + F̃aδ(x̃), (11)

where the ṽ = v/vc is the non-dimensional flow velocity and the fitting parameter vc = C0L/η is a
characteristic velocity that encodes the material properties of the system. The second fitting parameter
α = L (γ/η)1/2 characterises the friction. This parameter can also be interpreted as the ratio between

the tissue size L and a hydrodynamic screening length lh = (η/γ)1/2, i.e.

α =
L

lh
. (12)

The parameter lh describes the length scale over which flows that emerge from a local contractile stress
decay [1]. The non-dimensional attachment force is given by F̃a = Fa/C0.

To find solutions of Eq. (11), we note that due to the localisation of the attachment region, it suffices
to solve

∂2x̃ṽ + ∂x̃I = α2ṽ, (13)

while the attachment region only affects the boundary conditions. An infinite friction in the attachment
region leads to boundary conditions ṽ(0) = 0 and ṽ(1) = 0 (Sec. 2.1). In the absence of the attachment
region, we simply use periodic boundary conditions ṽ(0) = ṽ(1) and ∂x̃ṽ|x̃=0 = ∂x̃ṽ|x̃=1 (Sec. 2.2). To
determine the fitting parameters vc and α, solutions of Eq. (13) are fitted to experimentally measured flow
profiles of a single time point. This time point is always chosen right before the posterior pole invagination
begins so that different experiments can be compared to one another. At this time, blastoderm flows are
maximal and the geometry of the circumference is still approximately an ellipse.

To determine the fitting parameters vc and α in practice, we use the nonlinear least-square fitting
routine lsqnonlin implemented in Matlab [4]. Initial values for the least-square search are found as
follows. First, we fit the experimentally measured velocity profile to velocity profiles determined from
Eq. (13) keeping α = 0 fixed. From this, we find an initial guess v

(0)
c . In the next step, the latter is held

fixed and Eq. (13) is fitted to the experimental flow profile, yielding an initial guess for α(0). Finally, we
run lsqnonlin using v

(0)
c and α(0) as initial values to determine both fitting parameters, vc and α.

2.1 Wild-type embryos

Using the procedure just described, we find for the wild-type case vc = 0.4µm/s and α = 0.29. The
latter corresponds according to Eq. (12) to a hydrodynamic length of about three times the embryo’s
circumference, or about one and a half times the embryo length. This indicates that the hydrodynamic
screening is not relevant for the tissue flows, and it implies that external friction forces are small compared
to the viscous forces within the tissue. As a consequence, the relative attachment force F̃a = Fa/C0 given
by

F̃a = α2

∫ 1

0
ṽ dx̃ (14)

is also small, i.e. the required attachment force Fa is much smaller than the active forces in the tissue.
Using the fitting parameters determined for a single time-point, we can also predict flow velocities

accurately for a significant time interval preceding posterior pole invagination (as seen in SI video fitting
a V1).

2.2 Inflated RNAi phenotype

Under the assumption that there is no attachment region present in the Tc.inflated RNAi knock-down,
we use Eq. (13) with periodic boundary conditions to calculate flow fields from the measured myosin

—Draft 29.08.2018— 3 of 4



Muenster et al. Supporting Materials and Methods

distribution I(x). This effectively corresponds to solving Eq. (11) for Fa = 0 on the periodic circum-
ference of the embryo. We fit these solutions to the experimentally measured flow profiles using the
same procedure as described above. In this case, we find fitting parameters given by vc = 0.54µm/s and
α = 10−3. The small value of α indicates that the homogeneous friction in the textitTc.inflated RNAi
knock-down is reduced even further compared to the wild-type case.
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