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Materials and Methods 

 

Animals. Animal procedures were approved by the Cold Spring Harbor Laboratory 

Animal Care and Use Committee and carried out in accordance with National Institutes 

of Health standards. For muMAPseq, experimental subjects were 8-week-old male 

C57BL/6J mice or BTBR T+ Itpr3tf/J mice from the Jackson Laboratory. For functional 

imaging, triple transgenic mice Emx-Cre; Ai93; LSL-tTA were generated. A small 

fraction of mice used for functional imaging also harbored a CamKII-tTA allele to 

enhance the expression of GCaMP6f. 

Sindbis virus barcode libraries. The Sindbis virus used in muMAPseq was made as 

described previously (1, 2). Briefly, based on a dual promoter pSinEGdsp construct, we 

inserted MAPP-nλ after the first subgenomic promoter, and GFP-BC(barcode)-4×boxB 

after the second subgenomic promoter. Sequences (5’)AAG TAA ACG CGT AAT GAT 

ACG GCG ACC ACC GAG ATC TAC ACT CTT TCC CTA CAC GAC GCT CTT 

CCG ATC TNN NNN NNN NNN NNN NNN NNN NNN NNN NNN NNN GTA CTG 

CGG CCG CTA CCT A(3’) were inserted between MluI and NotI sites which were 

between GFP and 4×boxB. In barcode library 1, the 32-nt BC ended with 2 purines, 

while in barcode library 2, the 32-nt BC ended with 2 pyrimidines. Sindbis virus was 

produced using the DH-BB(5’SIN;TE12ORF) helper plasmid (3). The viral barcode 

library diversity was determined by Illumina sequencing. ~ 2 × 106 barcodes were 

sequenced in the viral library 1, and ~8 × 106 barcodes were sequenced in the viral library 

2.  

Injections. For muMAPseq, Sindbis virus of barcode library 2 was injected into the right 

cortical hemispheres of experimental animals. Anesthesia was initially induced with 

isoflurane (4% mixed with oxygen, 0.5 L/min). Meloxican (2 mg/kg), dexamethasone (1 

mg/kg) and baytril (10 mg/kg) were then administered subcutanesouly. For Sindbis 

injections, the whole skull above the right cortical hemisphere was removed. More than 

100 injection pipette penetrations were made to cover the entire exposed brain, each 

spaced by 0.5 mm, both in the AP axis and ML axis. Nanoject III (Drummond Scientific) 

was used to inject Sindbis virus (2 × 1010 GC/mL), at 3-4 depths per penetration site 

(Supplementary Table 1). At each penetration site and depth, 23 nL virus was injected. 

The full injection surgery required about 8 hours, and constant isoflurane (1% mixed with 

oxygen, 0.5 L/min) was administered to maintain anesthesia. After injection, sterile 

Kwik-Cast (World Precision Instruments) was gently applied to cover the exposed brain 

region, and the skin was closed with sutures. Meloxican (2 mg/kg), dexamethasone (1 

mg/kg) and baytril (10 mg/kg) were then routinely administered to animals 

subcutaneously every 12 hours post surgery, and animal condition was inspected every 6 

– 12 hours. Similarly, we injected Sindbis virus of barcode library 1 into control animals. 

In control animals, instead of injecting the virus into the whole right cortex, we only 

made ~6 penetrations covering a small cortical area.  

For control experiments testing the soma calling strategy (Fig. 1E), the same muMAPseq 

protocol was followed, but Sindbis virus of barcode library 1 was injected into the 

secondary motor areas, and Sindbis virus of barcode library 2 into the primary motor 

areas.  
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For control experiments testing template switches (Fig. S3B,C), we followed the 

muMAPseq protocol above, but injected Sindbis virus of barcode library 2 into two 

separate animals.  

For AAV CAG-tdTomato tracing experiments (Fig. S6), we used coordinates AP = -4 

mm, ML = 0.5 mm, 1 mm and 1.5 mm, DV = 0.25 mm and 0.5 mm for retrosplenial 

cortex in C57BL/6J and coordinates AP = -4 mm, ML = 0.75 mm, 1 mm and 1.5 mm, 

DV = 0.25 mm and 0.5 mm for retrosplenial in BTBR. In BTBR, as two hemispheres 

began to separate at AP = -4 mm and there was no cerebral cortex at ML = 0.5 mm, we 

used ML = 0.75 mm instead. In each coordinate, 20 nL of AAV1 CAG-tdTomato AAV 

(2×1013 GC/mL Penn Vector Core) was injected.  

Cryosectioning and laser microdissection (LMD). In muMAPseq, 44 hours after 

Sindbis viral injection, the brain was harvested and fresh frozen at -80 °C. Olfactory 

bulbs and rostral spinal cord/caudal medulla were cut from the brain and collected 

separately. We then cut 300 μm coronal sections using a Leica CM 3050S cryostat at -12 

°C chamber temperature and -10 °C object temperature. Each slice was cut with a fresh 

part of a blade, and the platform and brushes were carefully cleaned between slices. Each 

slice was immediately mounted onto a steel-framed PEN (polyethylene naphthalate)-

membrane slide (Leica). After mounting on the slide, the slice was fixed in 75% ethanol 

at 4 °C for 3 min, washed in Milli-Q water (Millipore) briefly, stained in 0.5% toluidine 

blue (Sigma-Aldrich, MO) Milli-Q solution at room temperature for 30 sec, washed in 

Milli-Q water at room temperature for 3 times (15 sec each time), and fixed again in 75% 

ethanol at room temperature twice (2 min each time). The slide was then left in a vacuum 

desiccator for 30 min. Next, another fresh frame slide was used to sandwich the brain 

slice, and the two slides tightly taped to prevent the slice from falling. The sandwiched 

slice was stored in the vacuum desiccator at room temperature until LMD. If LMD was 

performed more than 1 week after cryosectioning, the sandwiched slices were stored at -

80 °C in a desiccated container. 

Cubelet dissection was performed with Leica LMD 7000. During LMD, cortical cubelets 

with ~1 mm arc length were dissected from each coronal slice, from the surface to the 

deepest layer above the white matter. Orbitofrontal cortical cubelets (in rostral slices), 

anterior cingulate cortical cubelets, and retrosplenial cortical cubelets were also collected 

separately. For subcortical areas including striatum, thalamus, amygdala, tectum and 

pons/medulla, tissue belonging to each brain area was pooled every 1-3 consecutive 

slices. About 12~21 cubelets were also collected from injection sites and contralateral 

homotopic areas of the injection sites in the barcode library 1 control animal, and 2 

cortical cubelets in the uninjected control animal. Pictures were taken before and after 

every cubelet was dissected. After dissecting every 4 cubelets, we transferred them into 

homogenizing tubes with homogenizing beads, and added 100 μL lysis solution 

(RNAqueous-Micro Total RNA Isolation Kit, Thermo Fisher) into each cubelet. The 

collected tissues were stored temporally on dry ice and then at -80 °C. 

Sequencing library preparation. After LMD, each cubelet was homogenized in lysis 

solution with a tissue lyser (Qiagen) at 20 Hz for 6 min. Then we extracted RNA 

molecules from each cubelet with RNAqueous-Micro Total RNA Isolation Kit (Thermo 



 3 

Fisher). We did not treat products with DNase I as DNA did not influence following 

experiments. The final product was eluted in 20 μL elution solution. 

After RNA extraction, we performed reverse transcription (RT) with barcoded RT 

primers using SuperScript IV (Thermo Fisher). Barcoded RT primers were in the form of 

(5’)CTT GGC ACC CGA GAA TTC CAX XXX XXX XXX XXZ ZZZ ZZZ ZTG TAC 

AGC TAG CGG TGG TCG(3’), where Z8 is one of 288 CSIs (cubelet-specific 

identifiers) and X12 is the UMI (unique molecular identifier). 1 μL of 1 × 10-9 μg/μL 

spike-in RNAs were also added. The sequence of spike-in RNAs were (5’)GUC AUG 

AUC AUA AUA CGA CUC ACU AUA GGG GAC GAG CUG UAC AAG UAA ACG 

CGU AAU GAU ACG GCG ACC ACC GAG AUC UAC ACU CUU UCC CUA CAC 

GAC GCU CUU CCG AUC UNN NNN NNN NNN NNN NNN NNN NNN NAU CAG 

UCA UCG GAG CGG CCG CUA CCU AAU UGC CGU CGU GAG GUA CGA CCA 

CCG CUA GCU GUA CA(3’). 

We then cleaned up RT products with 1.8×SPRI select beads (Beckman Coulter), 

synthesized double-stranded cDNA with previously described methods (3), cleaned up 

2nd strand synthesis products again with 1.8× SPRI select beads, and treated the eluted ds 

cDNA with Exonuclease I (New England Biolabs) (incubated the mix at 37°C for 1 hr 

and inactivated the enzyme at 80°C for 20 min). As cDNA molecules from different 

cubelets were already CSI-barcoded after RT, we pooled every 12 RT products for 1st 

bead purification and 2nd strand synthesis, and pooled all the products for 2nd bead 

purification and Exonuclease I treatment. 

We next amplified the cDNA library by nested PCR using primers (5’)GGA CGA GCT 

G(3’) and (5’) CAA GCA GAA GAC GGC ATA CGA GAT CGT GAT GTG ACT GGA 

GTT CCT TGG CAC CCG AGA ATT CCA(3’) for the first PCR and primers (5’)AAT 

GAT ACG GCG ACC ACC GA(3’) and (5’) CAA GCA GAA GAC GGC ATA 

CGA(3’) for the second PCR in Accuprime Pfx Supermix (Thermo Fisher). First PCR 

was performed for 5 cycles in 720 μL; after Exonuclease I treatment (incubated the mix 

at 37°C for 30 min and inactivated the enzyme at 80°C for 20 min), ¼ of the first PCR 

products were used for second PCR. Second PCR was performed for 5-10 cycles in 12 

mL. Standard Accuprime protocol was used for PCR except that the extension time in 

each cycle was set to 2 min to reduce incomplete elongation and template switches. 

Nested PCR products were then purified and eluted in 600 μL with a Wizard SV Gel and 

PCR Clean-Up System (Promega), and further concentrated with Ampure XP beads 

(Beckman Coulter) in 25 μL Milli-Q H2O. After running in a 2% agarose gel, the 230 bp 

band was cut out and cleaned up with the Qiagen MinElute Gel Extraction Kit (Qiagen). 

We sequenced the library on an Illumina Nextseq500 high output run at paired end 36 

using the SBS3T sequencing primer for paired end 1 and the Illumina small RNA 

sequencing primer 2 for paired end 2. 

Most of the molecular experiments were performed according to the reagent 

manufacturer’s protocol unless otherwise stated. 
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Sequencing. We sequenced the pooled libraries prepared as above on an Illumina 

Nextseq500 high output run at paired end 36 using the SBS3T sequencing primer for 

paired end 1 and the Illumina small RNA sequencing primer 2 for paired end 2. 

Confocal imaging. In AAV tracing experiments, brains were harvested 14 days after 

viral injection, fixed in 4% paraformaldehyde, washed in phosphate-buffered saline, and 

cut into 100 μm slices with a vibrotome (LeicaVT1000S, Leica). Slices were then 

mounted onto slides in Fluoroshield (Sigma-Aldrich), and imaged in a Laser Scanning 

Microscope 710 system (Leica). 

Wide-field calcium imaging and behavior. For Fig. 3 and Fig. S5, imaging and 

behavior are as described in ref (4). To preprocess widefield data, we used SVD to 

compute the 500 highest dimensions accounting for more than 88 % of the variance in the 

data. The original data matrix M (of size pixels × frames) was decomposed as  

𝑀 = 𝑈𝑆𝑉 

, which returns ‘spatial components’ U (of size pixels × components), ‘temporal 

components’ V (of size components × frames) and singular values S (of size components 

× components) to scale components to match the original data. Further analysis methods 

are described in Supplementary Note 5.10. 

Image processing. Wholebrain toolbox (http://www.wholebrainsoftware.org) was used 

to register Toluidine Blue-stained coronal slices into Allen Reference Atlas semi-

automatically. Using Matlab, we determined the coordinates of each cubelet by 

processing pictures taken before and after each cubelet was dissected. Combining image 

registration results and cubelet coordinates, we mapped each cubelet into one or multiple 

brain areas. 

MuMAPseq data analysis. The details on muMAPseq analysis, including 

bioinformatics, statistics and computational methods are in Supplementary Note 5. 

MuMAPseq data visualization. MuMAPseq data were visualized in a 3D brain in Fig 

2A. To reconstruct the cubelet-to-cubelet connection pathways, the position in 

stereotactic coordinates for each registered cubelet source node was used to query Allen 

Mouse Brain Connectivity Atlas (5) for injection sites within 500 µm from each source 

node. Out of all the injection sites the injection with largest injection volume was used to 

download projection density volumes with 200 µm voxel resolution. 92 out of 99 cubelet 

source nodes could be mapped to a unique projection density volume. Next, we used A* 

search algorithm (6) implemented in C/C++ to find the optimal path between muMAPseq 

source and target cubelet nodes using binary projection density volume to represent graph 

nodes and blocked obstacles. The optimal path for 1677 out of 3015 non-zero connection 

could be determined (56%). The remaining either didn’t have a corresponding projection 

density volume, alternatively target and source cubelets were not connected in the 

projection density volume. Each projection path was then smoothed as a spline using a 

Generalized Additive Model (GAM) (7). Each path was rendered in 3D with a unique 

color given by the position of the path’s source cubelet. The color-coding of target 

http://www.wholebrainsoftware.org/
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cubelet locations was based on a red-green-blue (RGB) spatial color cube code where red 

represents medio-lateral, green represents anterior-posterior, and blue represents dorso-

ventral axis. 
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Supplementary Notes 

 

Supplementary Note 1: Potential MAPseq artifacts are minimal and MAPseq 

efficiency is high 

 

Below we discuss several classes of potential MAPseq artifacts. 

 

Degenerate and double barcode labeling. In MAPseq, barcodes drawn from a high-

diversity viral pool are used to uniquely label neurons. Ideally, every infected neuron 

would have a single, unique barcode. As discussed in detail in ref. (1), there are two 

potential deviations from this ideal scenario: (i) multiple neurons per barcode, and (ii) 

multiple barcodes per neuron. The former, multiple neurons per barcode, i.e. re-used 

barcodes, is problematic as it leads to incorrect results. Because the probability that two 

neurons are infected by the same barcode is determined by the diversity of the barcode 

library and the total number of infected cells, we generated a high diversity viral library 

with over 8×106 barcodes for muMAPseq (about 5×104 neurons). We also 

computationally inferred and calculated false positive projections caused by re-used 

barcodes (see details in Supplementary Note 2). The consistency between muMAPseq 

and Allen Connectivity Atlas (Fig. 2D,E) confirmed that the effects were minimum. The 

second scenario, multiple barcodes per neuron, has much less severe consequences. If a 

neuron expresses more than one barcode, muMAPseq will overestimate the number of 

traced neurons. However, the relative abundance of each projection type and the bulk 

connection strength remain unchanged. In practice, we also aimed to infect neurons at 

close to 1 barcode per neuron by using appropriate volume and titer of Sindbis viruses. 

 

Non-uniform barcode transport. In MAPseq, we interpret the number of barcodes from 

source cubelet X in target cubelet Y as a measure of the strength of projection from X to 

Y, analogous to GFP intensity. For this assumption to be valid, we must implicitly 

assume that barcode transport is uniform; in particular, we must assume that nearby and 

distal targets are equally filled. This assumption was rigorously validated in previous 

work (see Figure 2 in Ref (1)). 

 

Fibers of passage. Although the MAPseq carrier protein is derived from the synaptic 

protein neurexin (1), it does not exclusively target to presynaptic terminals. Thus 

MAPseq does not distinguish between synaptic connections (axon terminals) and fibers 

of passage. In this respect it is analogous to using GFP intensity in a conventional 

connectivity Atlas to measure the strength of the connection from the injection site to a 

target. To minimize potential confounds due to fibers of passage, we avoided white 

matter when dissecting cortical cubelets.  

 

MAPseq efficiency. The efficiency of MAPseq has also been quantified in (1). By 

injecting red retrobeads into the olfactory bulb, and infecting the locus coeruleus with 

GFP-barcode Sindbis viruses, 91.4±6% of all barcodes from cells that projected to the 

olfactory bulb as determined by bead labeling also appeared to project to the bulb by 

sequencing (Fig. S6 in (1)).  
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End-to-end assessment of artifacts. The agreement between muMAPseq and the Allen 

Atlas reported in Figure 2D,E also confirmed that potential MAPseq artifacts above were 

minimal, consistent with previous validations (1, 8, 9). 

 

 

 

Supplementary Note 2: Sources of errors and calculation of cubelet-to-cubelet 

connections in muMAPseq 

 

List of variables in Supplementary Notes 2 

 

𝑙1 Number of molecules in cubelet 1 

𝑙2 Number of molecules in cubelet 2 

𝑐 Template switching rate constant 

ℎ12 Number of cubelet 1-cubelet 2 hybrid 

molecules 

𝑁(𝑖) or 𝑁1(𝑖) Number of projection neurons (type 1 

neurons, Supplementary Note 2.2) residing 

in cubelet 𝑖 
𝑁3(𝑖) Number of type 3 neurons (Supplementary 

Note 2.2) residing in cubelet 𝑖 

𝑁𝑡 Total number of barcodes in the 

muMAPseq result (type 1-4, 

Supplementary note 2.2) 

𝑁𝑟𝑒 Total number of re-used barcodes  

𝑛(𝑖, 𝑗) Total number of molecules of 𝑗th neuron in 

𝑖th cubelet (soma molecules + all axon 

molecules) 

𝑛𝑠𝑜𝑚𝑎(𝑖, 𝑗) The number of soma molecules of 𝑗th 

neuron in 𝑖th cubelet 
𝑝(𝑖, 𝑗, 𝑘) The probability that molecules of 𝑗th 

neuron in 𝑖th cubelet were detected in 𝑘th 

cubelet due to template switching 

𝑚𝑘 Number of error molecules from neurons in 

experimental cubelets that were detected in 

𝑘th control cubelet due to template 

switching 

𝑏 Number of error molecules in each cubelet 

due to baseline contamination 

𝑃𝜃(𝑖, 𝑗, 𝑘) The probability that > 𝜃 error molecules of 

𝑗th neuron in 𝑖th cubelet were detected in 

𝑘th cubelet due to template switching 

𝑟𝑡𝑠(𝑖, 𝑘) The average probability that a false 

projection from a neuron in 𝑖th cubelet to 

𝑘th cubelet was detected due to template 
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switching 

𝑟𝑟𝑒(𝑖, 𝑘) The average probability that a false 

projection from a neuron in 𝑖th cubelet to 

𝑘th cubelet was detected due to re-used 

barcodes 

𝑟𝑏𝑎(𝑖, 𝑘) The average probability that a false 

projection from a neuron in 𝑖th cubelet to 

𝑘th cubelet was detected due to baseline 

contamination 

𝑣𝑖𝑘 p value (false positive probability) of 

cubelet 𝑖-to-cubelet 𝑘 projection 

𝑁𝑝𝑟𝑜(𝑖, 𝑘) Observed number of neurons in cubelet 𝑖 
that projected to cubelet 𝑘  

𝐶 Cubelet-to-cubelet connection matrix 

 

There are two major error sources that affected muMAPseq data: template switching and 

re-used barcodes. We have tried to reduce them both experimentally and 

computationally. The significance level of each cubelet-to-cubelet connection was also 

evaluated based on the false-positive error rate. 

 

The following terms are defined before further discussion. 1) Barcode: a barcode is a 

unique 32nt sequence delivered by the Sindbis virus. One barcode theoretically 

corresponds to a neuron. 2) Molecule: here a molecule is defined as a unique BC-CSI-

UMI (32nt + 8nt + 12nt) sequence. A molecule should correspond to a single RT product. 

Due to barcode amplification in a neuron, one barcode has multiple molecules. 3) 

Molecule copy: a molecule copy is defined as a final product after PCR. A large number 

of molecule copies are generated from one molecule during PCR. 4) Read: reads are the 

sequencing product. Not considering sequencing errors, all the reads constitute a subset 

of all the molecule copies. 

 

2.1 Template switching 

 

Template switching may occur when DNA templates share a common sequence during 

PCR (Fig. S3A). In muMAPseq, cDNA from all the cubelets was pooled together for 

PCR, and they all shared a common RT primer annealing sequence. Template switching 

is usually considered to be rare, and might be corrected by setting a read threshold for 

molecules (10). However, low sequencing depth disabled the use of read threshold to 

remove error molecules. Moreover, as molecules of a barcode in a soma usually 

outnumbered molecules in axons by ~100 fold, template switching molecules might 

constitute a large proportion in axon barcodes, albeit rare compared to total molecules. 

Thus, template switching had a significant influence in measuring projection strengths in 

muMAPseq. 

 

As DNA concentration is a major factor determining the template switching rate, we 

proposed we could reduce template switch molecules by increasing the PCR volume. To 

systematically evaluate template switching and test our hypothesis, we designed an 
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experiment to perform muMAPseq from two brains. We injected similar amount of 

barcoded viruses into two animals, collected cubelets, and performed RT from individual 

cubelets. Then single-strand DNA molecules were pooled (48 cubelets from each animal, 

96 in total) for second-strand synthesis, PCR and sequencing. Thus ‘inter-brain’ 

projection molecules reflected template switching. To measure the effect of DNA 

concentration on template switching, the same sample was separated to perform PCR 

either in 25 μL or in 2 mL. In the 25 μL PCR experiment, a large number of molecules 

that were detected in both brains (‘inter-brain’ molecules) as well as stripe-like patterns 

indicated a high template switching level (Fig. S3B, left). By increasing PCR volume to 2 

mL, ‘inter-brain’ molecules were dramatically decreased (Fig. S3B, right). The rate of 

template switching could be further reduced by raising the UMI threshold that was used 

to determine a real projection (Fig. S3C). In addition to the high reaction volume, we also 

set the PCR extension time in each cycle to 2min to reduce incompletely elongated 

products, another possible source of template switching. 

 

To reduce template switching, we chose to perform PCR in 12 mL systems for 

muMAPseq experiments LJ7, LJ9 and BTBR. While Sindbis viruses harboring barcode 

library 2 were used to label experimental animals, we also injected Sindbis viruses 

harboring barcode library 1 into a few brain areas in a separate animal. After RT and 

second-strand synthesis, DNA molecules in experimental animals (261 cubelets in LJ7, 

262 cubelets in LJ9 and 258 cubelets in BTBR) were mixed with DNA molecules in 

control animals (21 cubelets in LJ7 control, 12 cubelets in LJ9 control, and 12 cubelets in 

LJ10 BTBR) for PCR and sequencing, as an internal measurement for template 

switching. In LJ7, when we set UMI threshold to 1 (i.e. a projection was positive when its 

UMI count was greater than 1), 4794 out of 63107 barcodes were detected in the control 

brain (Fig. S3D). Similar numbers were also found in LJ9 and BTBR (data not shown). 

 

With PCR volume = 12mL and UMI threshold = 1, the probability that a barcode was 

detected in a non-projecting cubelet due to template switching on average was reasonably 

low (
4794

63107×21
< 1%). To further determine whether a bulk projection was significant, we 

determined the noise floor for each cubelet-to-cubelet projection by calculating the 

number of false projection neurons in a given source cubelet to a given target cubelet 

predicted by template switching. The calculation was as follows: 

 

Let 𝑙1 denote the number of molecules in cubelet 1, and 𝑙2 denote the number of 

molecules in cubelet 2. If we pool these molecules to perform PCR, we assume the 

number of hybrid molecules after PCR ℎ12 can be written as: 

ℎ12 = 2𝑐𝑙1𝑙2   (1) 
, where 𝑐 is called template switching rate constant, and should be dependent on PCR 

cycle numbers and PCR volume. As we pooled all the samples together for PCR, 𝑐 was a 

constant in one muMAPseq experiment.  

 

Similarly, in muMAPseq, let 𝑁(𝑖) denote the number of neurons in cubelet 𝑖, 𝑛(𝑖, 𝑗) 
denote the number of molecules (including both soma molecules and axon molecules) for 

the 𝑗th neuron in cubelet 𝑖, and 𝑛𝑠𝑜𝑚𝑎(𝑖, 𝑗) denote the number of soma molecules for the 
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jth neuron in cubelet i. The probability that the 𝑗th neuron in cubelet 𝑖 had a false positive 

molecule in cubelet 𝑘, 𝑝(𝑖, 𝑗, 𝑘) was: 

𝑝(𝑖, 𝑗, 𝑘) = 𝑐𝑛(𝑖, 𝑗) ∑ 𝑛𝑠𝑜𝑚𝑎(𝑘, 𝑙)

𝑁(𝑘)

𝑙=1

  (2) 

. 

As we performed PCR and sequencing by pooling molecules from two brains, we were 

able to estimate 𝑐 by counting ‘inter-brain’ molecules. If we considered template 

switching across two brains, then the number molecules that were from neurons residing 

in the experimental brain and found in the control brain cubelet 𝑘, 𝑚𝑘  was: 

𝑚𝑘 = 𝑐∑∑𝑛(𝑖, 𝑗)
𝑗 𝑖𝑛
𝑒𝑥𝑝.

𝑖

∑ 𝑛𝑠𝑜𝑚𝑎(𝑘, 𝑙)

𝑁(𝑘)

𝑙=1

  (3)  

, where 𝑗 visited all the cubelets in the experimental brain and 𝑖 visited all the neurons in 

each experimental brain cubelet.  

 

In the real experiment, there was an extra baseline contamination term (this term can also 

be inferred from molecules in additional control cubelets from a brain without viral 

injection), so Eq (3) was modified as: 

 

𝑚𝑘 = 𝑐∑∑𝑛(𝑖, 𝑗)
𝑗 𝑖𝑛
𝑒𝑥𝑝.

𝑖

∑ 𝑛𝑠𝑜𝑚𝑎(𝑘, 𝑙)

𝑁(𝑘)

𝑙=1

 + 𝑏   (4) 

, where 𝑏 was the baseline contamination constant. 

 

To estimate the constants 𝑐 and 𝑏, a linear regression model was used to fit Eq. (4) to the 

observed data set. As an example, in LJ7, we got: 

𝑐 = 1.12 × 10−11 

𝑏 = 3.90 × 103 
. 

With estimated 𝑐 and 𝑏, we could predict intra-brain template switching probability, 

𝑝(𝑖, 𝑗, 𝑘) with Eq. (2) when 𝑖 and 𝑘 were both from the experimental brain. However, as 

we further filtered the data by setting a UMI threshold 𝜃, a false-positive projection was 

detected only when at least (𝜃 + 1) template switching molecules from a given neuron to 

a given cubelet were seen. Let 𝑃𝜃(𝑖, 𝑗, 𝑘) denote the probability that the 𝑗th neuron in 

cubelet 𝑖 falsely projected to cubelet 𝑘 with UMI threshold = 𝜃, then according to 

Poisson distribution, we had 

𝑃𝜃(𝑖, 𝑗, 𝑘)  =  ∑ 𝑒−𝑝(𝑖,𝑗,𝑘)
𝑝(𝑖, 𝑗, 𝑘)𝑙

𝑙!

∞

𝑙=𝜃+1

     (5) 

. 

As an approximation, we only calculated the first three terms when 𝜃 = 1, as 𝑝(𝑖, 𝑗, 𝑘) 
was small enough and false projections with high UMI counts were extremely rare. We 

got: 
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𝑃1(𝑖, 𝑗, 𝑘)  ≈  𝑒
−𝑝(𝑖,𝑗,𝑘)

𝑝(𝑖, 𝑗, 𝑘)2

2!
+ 𝑒−𝑝(𝑖,𝑗,𝑘)

𝑝(𝑖, 𝑗, 𝑘)3

3!
+ 𝑒−𝑝(𝑖,𝑗,𝑘)

𝑝(𝑖, 𝑗, 𝑘)4

4!
   

≈  
𝑝(𝑖, 𝑗, 𝑘)2

2!
+
𝑝(𝑖, 𝑗, 𝑘)3

3!
+
𝑝(𝑖, 𝑗, 𝑘)4

4!
    (6)  

 

. With Eq. (6), we were able to calculate the probability that a given neuron in cubelet 𝑖 
falsely ‘projected’ to cubelet 𝑘. However, as cubelet 𝑖 consisted of 𝑁(𝑖) neurons, and 

each neuron had a different template switching probability, the total number of 𝑖-to-𝑘 

false-positive neurons caused by template switching obeyed a Poisson binomial 

distribution. Note it was neither a Poisson distribution nor a binomial distribution, but a 

distribution of the sum of Bernoulli trials with different probabilities.  

 

To calculate the rates of false positive connections, we sought to calculate the Poisson 

binomial cumulative probability distribution. In muMAPseq, there were over 30000 

possible cubelet-to-cubelet projections, and for each of these projections, there were 

500~1000 cells in the source cubelet (corresponding to 500~1000 Bernoulli trials). To 

our knowledge, there did not exist a fast and precise way to calculate the cumulative 

probability of the Poisson binomial distribution for each cubelet-to-cubelet projection. 

This was even difficult for a p value as small as 0.05/36018 ≈ 1.66 × 10−6 when 

multiple comparison correction was considered. Thus, we chose to use binomial 

distributions to approximate Poisson binomial distributions, assuming the probability of 

any given neuron in cubelet 𝑖 falsely projected to cubelet 𝑘, 𝑟𝑡𝑠(𝑖, 𝑘), was the mean 

probability over all the neurons in cubelet 𝑖: 

𝑟𝑡𝑠(𝑖, 𝑘) =
∑ 𝑃1(𝑖, 𝑗, 𝑘)
𝑁(𝑖)
𝑗=1

𝑁(𝑖)
   (7) 

. 𝑟𝑡𝑠(𝑖, 𝑘) was next used to calculate the net false positive probability for individual 

cubelet-to-cubelet connections (Supplementary Note 2.5). 

 

Note when the required p value was not too small (for example, p = 0.05, without 

multiple comparison), we used Monte-Carlo method (10000 trials each) to estimate the 

cumulative probability of the Poisson binomial distribution for each cubelet-to-cubelet 

projection.  

 

To summarize, template switching could be a detrimental error source when DNA 

concentration during PCR is high and sequencing depth is low. By using a large volume 

of the reaction system for PCR, setting a UMI threshold, and rejecting false positive 

projections, we have greatly reduced template switching errors to a very low level.  

 

2.2 Re-used barcodes 

 

To scale up MAPseq, it is crucial to use a barcode library whose diversity is high enough. 

Otherwise, the same barcode used in two cells would cause misinterpretation of the data 

(Fig. S3E). The rate of re-used barcodes was determined by barcode diversity and the 

total number of infected neurons. In muMAPseq, the diversity of the barcode library was 

no less than 8.26× 106, according to the viral library sequencing result. However, the 

total number of neurons expressing barcodes was much higher than the number of 
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recovered neurons (~50000) due to a large number of ‘non-projection’ neurons. For 

example, in LJ7, over 600000 ‘non-projection neurons’ were recovered. Some of these 

‘non-projection’ neurons might belong to local inhibitory or excitatory neurons, but a 

large number of them expressed RNA barcodes at very low levels. It was likely that due 

to variations of RNA expression levels, some projection neurons expressed very small 

amount of RNA barcodes, which couldn’t be efficiently trafficked to axon terminals. 

These low expressed barcodes were almost all in the right cortical cubelets (injection 

site), and usually fewer than 20 molecules were detected in somas, and no molecules 

above the UMI threshold (=1) were detected in axons. Although these ‘non-projection’ 

neurons were not included for data analysis, they might harbor re-used barcodes shared 

with other projection neurons, resulting in false projections (Fig. S3E). 

 

To solve this problem, an additional set of thresholds was used to reduce re-used barcode 

errors. For each barcode, we defined its firstmax and secondmax as the highest and 

second highest abundance among all the cubelets. If a barcode corresponded to one 

neuron, then its firstmax was the count of molecules in its soma, and its secondmax was 

the count of molecules in its strongest axon. If a barcode was used in two neurons, then 

firstmax and secondmax were the highest two of UMI counts in two somata and two 

strongest axons. As the molecules in somata statistically outnumbered molecules in 

axons, secondmax of a re-used barcode was likely to be the amount of molecules in one 

of the two somata. According to this, we reasoned that re-used barcodes might have 

distinct distribution in the (firstmax, secondmax) space from barcodes used only once. To 

quantify this, we simulated the barcode sampling process (details in Supplementary Note 

1.3, we modeled viral infection as a process where neurons randomly sampled barcodes 

from the barcode library), and calculated the number of re-used barcodes in the (firstmax, 

secondmax) space, given the observed joint distributions of (firstmax, secondmax) and 

the known barcode library. The ratio of simulated re-used barcodes to the total barcodes 

in the (firstmax, secondmax) space (Fig. S3F). Not surprisingly, a higher ratio of re-used 

barcode was present close the diagonal line in the (firstmax, secondmax) space.  

 

We next set a soma threshold (=250) and an axon threshold (=20) (Fig. S3F), and defined 

4 types of barcodes according to the thresholds: 

Type 1 barcode: firstmax > soma threshold AND secondmax > UMI threshold AND 

secondmax < axon threshold.  

Type 2 barcode: firstmax > soma threshold AND secondmax ≤ UMI threshold.  

Type 3 barcode: firstmax < axon threshold AND firstmax > UMI threshold. 

Type 4 barcode: secondmax > axon threshold. 

 

To reduce the effect of re-used barcodes, we only included type 1 barcode for projection 

pattern analysis. Based on simulation results, in LJ7, 8.77% of type 1 barcodes were re-

used barcodes (8.27% in LJ9 and 8.62% in BTBR). As there were 115 cubelets in the 

injection site of LJ7, if a source cubelet and a target cubelet were both in the injection site 

(right hemisphere), then the probability of a type 1 neuron in the source cubelet that 

falsely projected to the cubelet was on average 
8.77%

115
≈ 0.0763%, which was reasonably 

low. 
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To quantify the significance level for each cubelet-to-cubelet connection, we calculated 

𝑟𝑟𝑒(𝑖, 𝑘), the probability that a type 1 neuron in cubelet 𝑖 that falsely projected to cubelet 

𝑘 due to re-used barcodes. In LJ7, for example, because a re-used type 1 barcode could 

only occur when a type 1 or type 2 neuron in the source cubelet and a type 3 neuron in a 

target cubelet shared the same barcode, we could estimate 𝑟𝑟𝑒(𝑖, 𝑘) with: 

𝑟𝑟𝑒(𝑖, 𝑘) =
8.77% ∗ 𝑁3(𝑘)

∑ 𝑁3(𝑙)𝑙
   (8) 

, where 𝑁3(𝑘) represents the number of type 3 barcodes in cubelet 𝑘. 𝑟𝑟𝑒(𝑖, 𝑘) were next 

used to calculate the net false positive probability for each cubelet-to-cubelet connection 

(Supplementary Note 2.5). 

 

To conclude, with the current viral barcode diversity, the probability of re-used barcodes 

cannot be ignored. By setting thresholds for soma and axon identification, and rejecting 

false positive projections, we have removed most of errors due to re-used barcodes. 

However, as an ideal way to solve all these problems, a barcode library of much higher 

diversity should be made for high throughput muMAPseq in future.  

 

2.3 Simulating re-used barcodes 

The distribution of barcode abundance in the barcode library was not uniform, so 

barcodes with higher abundance in the library were more likely to be re-used multiple 

neurons. Moreover, as we did not sequence the full viral barcode library, we also found 

barcodes present in the muMAPseq result but absent in the viral library sequencing result. 

We set a viral barcode threshold (=4), and classified barcodes according to their 

abundance: high-abundance barcodes (present and over 4 counts in the library sequencing 

result), low-abundance barcodes (present but no-greater-than 4 counts in the library 

sequencing result), and non-sequenced barcodes (absent in the library sequencing result, 

but present in the muMAPseq result). To reduce the chance of re-used barcodes, we 

included low-abundance barcodes and non-sequenced barcodes for neuronal projection 

analysis. But for re-used barcodes simulation as follows, we only included low-

abundance barcodes as the re-used barcode chance in the non-sequenced barcodes should 

be lower than the chance in the low-abundance barcodes. 

 

To simulate re-used barcodes, we assumed 1) most of the observed barcodes were single-

cell barcodes (re-used barcodes were rare) and 2) the barcode expression level and 

projection patterns of an infected cell were independent of the barcode sequence itself. 

The simulation steps were: 

1. Estimate total number of re-used barcodes. We calculated the total amount of low-

abundance barcodes in the MAPseq results (including type 1-4 barcodes) 𝑁𝑡, and 

sampled 𝑁𝑡 barcodes from low-abundance barcodes in the barcode library sequencing 

result using the observed abundance distribution. We estimated the total number of re-

used barcodes, 𝑁𝑟𝑒 from the sampling simulation.  

2. Estimate the distribution of re-used barcodes in the (firstmax, secondmax) space. As 

most re-used barcodes were used twice, we randomly sampled firstmax and secondmax 

from the measured distributions for two neurons related to each re-used barcode, and 

calculated the new firstmax and secondmax for this barcode. By doing this 𝑁𝑟𝑒 times, we 

generated a distribution of re-used barcodes in the (firstmax, secondmax) space.  
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3. Given the simulated distribution of re-used barcodes, we calculated the ratio of re-used 

barcodes to the total number of barcodes in the muMAPseq result in the (firstmax, 

secondmax) space. (Fig. S3F). 

 

2.4 Calculating cubelet-to-cubelet connection strength 

Projection strength from a source cubelet to a target cubelet was defined as the total count 

of UMIs in the target cubelet from all the neurons residing in the source cubelet divided 

by total number of projection neurons in the source cubelet. Considering the projection 

from cubelet 𝑖 to cubelet 𝑗, let 𝑁(𝑖) denote number of projection neurons in cubelet 𝑖 and 

𝑈𝑀𝐼(𝑖, 𝑗, 𝑘) denote the UMI count in cubelet 𝑘 from 𝑗th neuron in cubelet 𝑖, then the 

UMI count in cubelet 𝑘 from an average neuron in cubelet 𝑖, 𝑈𝑀𝐼(𝑖,∗, 𝑘) could be written 

as: 

𝑈𝑀𝐼(𝑖,∗, 𝑘) =
∑ 𝑈𝑀𝐼(𝑖, 𝑗, 𝑘) 𝑁(𝑖)
𝑗=1

 𝑁(𝑖)
     (9) 

. However, noise caused by template switching, re-used barcodes, and baseline 

contaminations could also contribute to 𝑈𝑀𝐼(𝑖,∗, 𝑘). The noise level of the 𝑖-to-𝑘 

projection, 𝑁𝑜𝑖𝑠𝑒(𝑖, 𝑘) was calculated as: 

𝑁𝑜𝑖𝑠𝑒(𝑖, 𝑘) =  𝑈𝑀𝐼𝑡𝑠(𝑖,∗, 𝑘) + 𝑟𝑟𝑒(𝑖, 𝑘) ∗ 𝑈𝑀𝐼𝑡𝑦𝑝𝑒3(𝑘) + 𝑟𝑏𝑎(𝑖, 𝑘) ∗ 𝑈𝑀𝐼𝑏𝑎   (10), 

where 𝑈𝑀𝐼𝑡𝑠(𝑖,∗, 𝑘) is the expected UMI count in cubelet 𝑘 from an average neuron in 

cubelet 𝑖 due to template switching, 𝑈𝑀𝐼𝑡𝑦𝑝𝑒3(𝑘) is the average UMI count of type 3 

neurons in cubelet 𝑘 (after UMI thresholding), 𝑈𝑀𝐼𝑏𝑎 is the average UMI count of a 

barcode in cubelets from the uninjected control brain (baseline contamination, after UMI 

thresholding), and the 𝑟𝑏𝑎(𝑖, 𝑘) is the probability that a neuron in cubelet 𝑖 falsely 

projected to cubelet 𝑘 due to baseline contaminations, (estimated from non-injected 

control cubelets). These three terms corresponded to the template switching noise, re-

used barcode noise, and baseline contamination noise. Particularly, 𝑈𝑀𝐼𝑡𝑠(𝑖,∗, 𝑘) was 

calculated with: 

𝑈𝑀𝐼𝑡𝑠(𝑖,∗, 𝑘) = ∑ 𝑙𝑒−𝑝(𝑖,𝑗,𝑘)
𝑝(𝑖, 𝑗, 𝑘)𝑙

𝑙!

∞

𝑙=𝜃+1

≈  2𝑒−𝑝(𝑖,𝑗,𝑘)
𝑝(𝑖, 𝑗, 𝑘)2

2!
+ 3𝑒−𝑝(𝑖,𝑗,𝑘)

𝑝(𝑖, 𝑗, 𝑘)3

3!
+ 4𝑒−𝑝(𝑖,𝑗,𝑘)

𝑝(𝑖, 𝑗, 𝑘)4

4!

≈  
𝑝(𝑖, 𝑗, 𝑘)2

1!
+
𝑝(𝑖, 𝑗, 𝑘)3

2!
+
𝑝(𝑖, 𝑗, 𝑘)4

3!
    (11) 

. The projection strength from cubelet 𝑖 to cubelet 𝑗, 𝐶(𝑖, 𝑗) was then calculated with: 

𝐶(𝑖, 𝑘) = max {𝑈𝑀𝐼(𝑖,∗, 𝑘) − 𝑁𝑜𝑖𝑠𝑒(𝑖, 𝑘), 0}    (12) 
. In addition to calculate the projection strength, we also calculated p value for each 

cubelet-to-cubelet connection, as noted in Supplementary Note 2.5. 

 

 

2.5 Calculating p values 

 

In addition to removing the noise estimate from the projection strength, we also 

calculated the p value for each cubelet-to-cubelet projection. For a source cubelet 𝑖 and a 

target cubelet 𝑘, we calculated the probability that a neuron in cubelet 𝑖 falsely projected 
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to cubelet 𝑘 due to template switching, 𝑟𝑡𝑠(𝑖, 𝑘) (Supplementary Note 2.1), the 

probability that a neuron in cubelet 𝑖 falsely projected to cubelet 𝑘 due to re-used 

barcodes, 𝑟𝑟𝑒(𝑖, 𝑘) (Supplementary Note 2.2), and the probability that a neuron in cubelet 

𝑖 falsely projected to cubelet 𝑘 due to baseline contaminations, 𝑟𝑏𝑎(𝑖, 𝑘). Note that 

𝑟𝑡𝑠(𝑖, 𝑘), 𝑟𝑟𝑒(𝑖, 𝑘), and 𝑟𝑏𝑎(𝑖, 𝑘) were all very small, so the overall false-positive 

probability could be calculated additively. If there were 𝑁(𝑖) neurons in cubelet 𝑖, and 

𝑁𝑝𝑟𝑜(𝑖, 𝑘) neurons in cubelet 𝑖 were found to project to cubelet 𝑘, then the p value of 𝑖-

to-𝑘 connection, 𝑣𝑖𝑘 was calculated with: 

𝑣𝑖𝑘 = 1 − 𝑓 (𝑁𝑝𝑟𝑜(𝑖, 𝑘), 𝑁𝑖, 𝑟𝑡𝑠(𝑖, 𝑘) + 𝑟𝑟𝑒(𝑖, 𝑘) + 𝑟𝑏𝑎(𝑖, 𝑘))    (13) 

, where 𝑓 was the binomial cumulative distribution function: 

𝑓(𝑛, 𝑁, 𝑝) =  ∑(𝑁
𝑙
)

𝑛

𝑙=0

𝑝𝑙(1 − 𝑝)𝑁−𝑙  (14) 

. 

 

With p-values, we were able to determine whether a given cubelet-to-cubelet connection 

was significant. Volcano plots of ipsilateral connections and contralateral connections in 

LJ7 are shown in Fig. S3G. All the data in Fig. 2B; Fig. 4B; Fig. S4A show significant 

projections (Bonferroni correction for multiple comparison, p-value < 
0.05

𝑁
, N is total 

number of possible projections). 

 

Summary of error sources 

 

Error sources Effects Solutions 

Barcode base 

substitution 

Generate barcodes with 1 

or very few counts in 1 or 

very few cubelets 

Collapse barcodes with up to 3 

mismatches. 

Set UMI threshold. 

Set soma threshold. 

Barcode base 

insertion/deletion 

Generate barcodes with 1 

or very few counts in 1 or 

very few cubelets 

Set UMI threshold. 

Set soma threshold. 

 

CSI sequencing errors Generate barcodes in 

‘non-existing’ cubelets 

CSIs that did not match any of the 

288 used CSIs were excluded for 

further analysis 

UMI sequencing 

errors 

Cause overestimated 

barcode counts 

Not corrected (But errors should be 

rare and uniformly randomly 

distributed) 

Template switching False projections PCR with a large volume. 

Set UMI threshold. 

Calculate false-positive rates. 

Re-used barcodes False projections Use a high diversity barcode library. 

Exclude over-represented barcodes 

in the barcode library. 

Set axon/soma threshold. 

Calculate false-positive rates 
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Non-collected soma Strongest projections 

were detected as somas 

Set soma threshold. 

 

Supplementary Note 3: Comparing muMAPseq projectome with Allen Projectome, 

and comparing between muMAPseq mapped brains 

 

List of variables in Supplementary Notes 3 

 

𝐴𝑘 Brain area-to-brain area connection matrix, 

type 𝑘 (𝑘=1,2,3,4) 

𝐶𝑘 Cubelet-to-cubelet connection matrix, type 

𝑘 (𝑘=1,2,3,4) 

𝑃𝑘 Cubelet-to-brain area connection matrix, 

type 𝑘 (𝑘=1,2,3,4) 

𝑀 Cubelet-to-brain area mapping matrix 

𝑀𝑎 Cubelet-to-brain area mapping matrix, 

normalized to total size of each brain area 

𝑀𝑐 Cubelet-to-brain area mapping matrix, 

normalized to total size of each cubelet 

𝑆𝑎 Brain area size matrix, diagonal  

𝑆𝑐 Cubelet size matrix, diagonal 

 

 

With muMAPseq, we were able to map cubelet-to-cubelet connections from one 

individual brain. In order to compare between muMAPseq data and Allen data, we 

utilized brain registration results to infer cubelet-to-brain area connections and brain area-

to-brain area connections from cubelet-to-cubelet connections. Here we describe and 

discuss various models underlying connection inference. 

 

The following terms and variables are defined before further discussion: 

Considering the connection from cubelet 𝑖 to cubelet 𝑗, {𝐶}𝑖𝑗, we could quantify its 

strength by calculating the average counts of UMIs (molecules) in cubelet 𝑗 per neuron in 

cubelet 𝑖 (See Supplementary Note 2.4). This described the projection strength (axon 

volume) from an average neuron in cubelet 𝑖 to the whole cubelet 𝑗, and thus was called 

‘unit-to-total’ connection here. By considering the physical sizes of cubelet 𝑖 and cubelet 

𝑗, we could also define and calculate ‘unit-to-unit’ connection (connection from a neuron 

in cubelet 𝑖 to a unit area size in cubelet j), ‘total-to-unit’ connection (connection from 

the whole cubelet 𝑖 to a unit area size in cubelet j), and ‘total-to-total’ connection 

(connection from the whole cubelet 𝑖 to the whole cubelet j), as summarized in the table 

below (similar to Supplementary Fig.2 in (5)). 

 

Connection type Connection 

source 

Connection 

target 

Definition Formula 

Type 1, 𝐶1 Cubelet Cubelet Unit-to-unit 𝐶1 
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Type 2, 𝐶2 Cubelet Cubelet Unit-to-total 𝐶2 = 𝐶1𝑆𝑐 
Type 3, 𝐶3 Cubelet Cubelet Total-to-unit 𝐶3 = 𝑆𝑐𝐶1 

Type 4, 𝐶4 Cubelet Cubelet Total-to-total 𝐶4 = 𝑆𝑐𝐶1𝑆𝑐 
 

Here 𝑆𝑐 is a diagonal matrix, and its element {𝑆𝑐}𝑖𝑖 represents the physical size of cubelet 

𝑖. 
 

In conventional fluorescence tracing, projection strength is usually quantified as the 

normalized fluorescence intensity in the target area to the fluorescence intensity in the 

injection area (5). This was analogous to the type 2 connection, as defined above. 

Connections mentioned in this manuscript all referred to type 2 connections, unless 

otherwise stated. 

 

Similar to cubelet-to-cubelet connections, 𝐶𝑘 (𝑘=1,2,3,4), we also defined 4 types of 

brain area-to-brain area connections, 𝐴𝑘 (𝑘=1,2,3,4), and cubelet-to-brain area 

connections, 𝑃𝑘 (𝑘=1,2,3,4), as summarized below. 

 

Connection type Connection 

source 

Connection 

target 

Definition Formula 

Type 1, 𝐴1 Brain area Brain area Unit-to-unit 𝐴1 

Type 2, 𝐴2 Brain area Brain area Unit-to-total 𝐴2 = 𝐴1𝑆𝑎 

Type 3, 𝐴3 Brain area Brain area Total-to-unit 𝐴3 = 𝑆𝑎𝐴1 

Type 4, 𝐴4 Brain area Brain area Total-to-total 𝐴4 = 𝑆𝑐𝐴1𝑆𝑎 

 

Connection type Connection 

source 

Connection 

target 

Definition Formula 

Type 1, 𝑃1 Cubelet Brain area Unit-to-unit 𝑃1 

Type 2, 𝑃2 Cubelet Brain area Unit-to-total 𝑃2 = 𝑃1𝑆𝑎 

Type 3, 𝑃3 Cubelet Brain area Total-to-unit 𝑃3 = 𝑆𝑐𝑃1 

Type 4, 𝑃4 Cubelet Brain area Total-to-total 𝑃4 = 𝑆𝑐𝑃1𝑆𝑎 

 

Here 𝑆𝑎 is a diagonal matrix, and its element {𝑆𝑎}𝑖𝑖 represents the physical size of brain 

area 𝑖. 
 

We also calculated a cubelet-to-brain area mapping matrix, 𝑀, based on cubelet 

registration results. {𝑀}𝑖𝑗  represents the physical size of the intersection of cubelet 𝑖 and 

brain area 𝑗. The mapping matrix 𝑀 was also normalized to either the total size of each 

brain area or to the total size of each cubelet: 

𝑀𝑎 = 𝑀𝑆𝑎
−1     (15) 

𝑀𝑐 = 𝑆𝑐
−1𝑀   (16)  

. In 𝑀𝑎, the sum of each column is 1; in 𝑀𝑐, the sum of each row is 1. 

 

3.1 Inferring cubelet-to-brain area connections/brain area-to-brain area connections 

by weighted averaging (Fig. 2C-E; Fig. S4B-D; Fig. S8H). 
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While we have dissected the cortex into ~ 230 cubelets, there are ~ 70 brain cortical areas 

according to Allen atlas (2011 version). The size of a cortical area was much larger than a 

cubelet, and an area on average consisted of 10 cubelets. Thus we considered the cubelets 

as building blocks of brain connectivity and assumed connections between brain areas 

were weighted averages of cubelets contained (Fig. S4B,D). With such an assumption, 

we had: 

𝑃2 = 𝐶1𝑀    (17) 
𝐴3 = 𝑀𝑇𝑃1  (18) 

, where 𝑀𝑇 denotes the transpose of 𝑀. 

With Eq. (16) and (17), we got 

𝑃2 = 𝐶1𝑀 = 𝐶2𝑆𝑐
−1𝑀 = 𝐶2𝑀𝑐    (19) 

. With Eq. (15) and (18), we got 

𝐴2 = 𝑆𝑎
−1𝐴3 𝑆𝑎 = 𝑆𝑎

−1𝑀𝑇𝑃1𝑆𝑎 = (𝑀𝑆𝑎
−1)𝑇 𝑃1𝑆𝑎 = 𝑀𝑎

𝑇𝑃2   (20) 
. With Eq. (19) and (20), we got 

𝐴2 = 𝑀𝑎𝑃2 = 𝑀𝑎
𝑇𝐶2𝑀𝑐   (21)  

. We inferred cubelet-to-brain area connections with (19) in Fig. 2D,E; and inferred brain 

area-to-brain area connections with Eq. (21) in Fig. 2C, Fig. S8H. 

 

To reduce the variations brought by dissection and registration errors, we downsampled 

the cubelet-to-cubelet connection matrix for analyses here. If 𝛼0 and 𝛽0 were two 

cubelets, 𝛼1, 𝛼2…𝛼𝑚 were neighbors of 𝛼0, and 𝛽1, 𝛽2…𝛽𝑛 were neighbors of 𝛽0, then 

the projection strength from 𝛼0 to 𝛽0, 𝐶𝛼0−𝛽0 was downsampled as:  

𝐶𝛼0−𝛽0 = (0.9
0.1

𝑚
⋯

0.1

𝑚
  )

(

 

𝐶𝛼0−𝛽0 𝐶𝛼0−𝛽1 ⋯ 𝐶𝛼0−𝛽𝑛
𝐶𝛼1−𝛽0 𝐶𝛼1−𝛽1 ⋯ 𝐶𝛼1−𝛽𝑛
⋮ ⋮ ⋱ ⋮

𝐶𝛼𝑚−𝛽0 𝐶𝛼𝑚−𝛽1 ⋯ 𝐶𝛼𝑚−𝛽𝑛)

 

(

  
 

0.9
0.1

𝑛
⋮
0.1

𝑛 )

  
 

  (22). 

 

For the analysis in 3.1, all the non-significant cubelet-to-cubelet connections were set to 

0. As multiple comparison had a high false negative rate particularly for weak 

projections, p value = 0.05 (no multiple comparison) was used for the criterion of 

significance here. For comparison between cubelets and injections in the same source 

brain area (Fig. 2D,E), we require the cubelets reside primarily (>70%) in the brain area. 

 

 

3.2 Inferring brain area-to-brain area connections by constrained optimization (Fig. 

S4E-G). 

 

In contrast to assuming cubelets, which were smaller in size, were building blocks of 

brain connections, connections of brain areas could also be inferred assuming input and 

output of cells within each brain area were homogeneous (Fig. S4E) (5). With this 

assumption, we had: 

𝑃3 = 𝑀𝐴1   (23) 
𝐶2 = 𝑃1𝑀

𝑇   (24) 
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. The Eq. (23) and (24) corresponded to output homogeneity and input homogeneity, 

respectively. 

 

With Eq. (16) and (23), we got 

𝑃2 = 𝑆𝑐
−1𝑃3𝑆𝑎 = 𝑆𝑐

−1𝑀𝐴1𝑆𝑎 = 𝑀𝑐𝐴2   (25) 
. With Eq. (15) and (25), we got 

𝐶2 = 𝑃1𝑀
𝑇 = 𝑃2𝑆𝑎

−1𝑀𝑇 = 𝑃2𝑀𝑎
𝑇    (26) 

. With Eq. (25) and (26), we got 

𝐶2 = 𝑀𝑐𝐴2𝑀𝑎
𝑇   (27) 

. 

 

According to Eq. (27), we could estimate 𝐴2 (least-squares solution) with: 

𝐴2̃ = 𝑀𝑐
+𝐶2(𝑀𝑎

+)𝑇   (28) 
, where 𝐴2̃ is estimated 𝐴2, and 𝑀𝑐

+ (𝑀𝑎
+) is the pseudo-inverse matrix of 𝑀𝑐

  (𝑀𝑎
 ). 

However, this might result in negative connection values. Thus, we determined to 

estimate 𝐴2 with constrained optimization: 

𝐴2̃ = 𝑎𝑟𝑔𝑚𝑖𝑛𝐴2(‖𝐶2 −𝑀𝑐𝐴2𝑀𝑎
𝑇‖)  (29) 

, with the constraint  

𝐴2 ≥ 0   (30) 
. With Eq. (29) and formula (30), we inferred brain area-to-brain area connections in Fig. 

S4F,G. 

 

To reduce the variations brought by registration errors, downsampling was also 

performed here for the cubelet-to-cubelet connection matrix with Eq. (22). 

 

For the analysis in 3.2, all the non-significant cubelet-to-cubelet connections were set to 

0. As multiple comparison had a high false negative rate particularly for weak 

projections, p value = 0.05 (no multiple comparison) was used for the criterion of 

significance here. 

 

3.3 Discussions 

 

It remains a challenge to infer the underlying connections between brain areas from 

neural tracing experiments (11, 12). In the real scenario, neither cubelets nor brain areas 

were necessarily homogeneous, and thus we did not aim to develop a method to precisely 

quantify brain area-to-brain area connection patterns here. However, by inferring brain 

area connections with abovementioned assumptions, we argue that it provided a fair 

approach to validate muMAPseq and screen for long-range connection disruptions in 

neuropsychiatric disorders. 

 

In the ‘weighted averaging’ approach, we assumed that individual cubelets were 

homogeneous, and broke down brain areas into cubelets contained. Ideally this would be 

correct if the size of cubelets was small enough so that each cubelet was a homogeneous 

unit. However, with the current experiment protocol, inferring connections with this 

method was still an estimation. In the ‘constrained optimization’ approach, the 

assumption that input and output of all the regions within a brain area were homogeneous 
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was also imprecise. For example, the connections between primary visual cortex and 

higher visual areas are organized according to retinotopic maps (13). Moreover, our 

results also indicated the rank of 𝐶 was much higher than the total number of brain areas 

(data not shown), arguing against the brain area homogeneity assumption. Future work 

should be done to better define, quantify and calculate brain connections. 

  

Supplementary Note 4. Supplementary results and discussions 

 

4.1 Single cell projection data 

In principle, by determining soma locations of individual barcodes, we were able to 

reconstruct projection patterns at single cell resolution. As an example, Fig. S2A shows 

projection patterns of 712 cells in one source cubelet (cubelet #53 in PTLp); the cells are 

clustered with non-negative least squares-based sparse non-negative matrix factorization 

(cluster number is 10). Three of them are highlighted in dorsal views (Fig. S2B). In the 

current data, individual cells displayed a wide range of node degrees (i.e. numbers of 

projecting target; Fig. S2C). However, due to re-used barcodes (Supplementary Note 

2.2), template switching (Supplementary Note 2.1) and inadequate sequencing depth (Fig. 

S2D), further analyses regarding single cell projections were not performed with the 

current data. 

 

4.2 Comparing MAPseq data with functional imaging data 

To compare MAPseq data with functional imaging data, we trained animals with a 

perceptual decision making task (Fig. S5A; see details in methods) (4), and calculated the 

reciprocal connection strength, input correlation (Pearson correlation of input vectors), 

activity correlation, noise correlation and spontaneous correlation for each pair of 

cubelets (Supplementary Note 5.10). Activity correlations (Fig. 3C; Fig. S5B), noise 

correlations (Fig. S5F) and spontaneous correlations (Fig. S5D) were all strongly 

correlated with reciprocal connection strengths or input correlations. As the distance 

between cubelets had a large effect on the connection strength (Fig. 3B), input correlation 

(Fig. S6B) and activity correlation (data not shown), we further removed distance-

dependent components from connection strengths, input correlations, and activity 

correlations (Supplementary Note 5.10). The residual distance-independent components 

showed weaker, but still significant correlations (Fig. S5C). Moreover, similar results 

were found between connection strength/input correlation and noise/spontaneous 

correlation (Fig. S5E,G). The consistency between connection data and functional data 

not only validated MMAPseq as a functionally relevant measure of cortical connectivity, 

but also suggested that intracortical connections are highly related to cortical activity. 

 

4.3 Input/output correlation 

The input correlation (Pearson correlation of a pair of input vectors) and output 

correlation (Pearson correlation of a pair of output vectors) were calculated for each pair 

of cubelet. We found that both the input correlation and output correlation showed 

asymmetric distributions and no strongly negatively correlated input/output patterns were 

observed. This is consistent with sparseness of connections in the cortex. Furthermore, 

not surprisingly, both input correlation and output correlation decayed as the distance 
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between two cubelets increased (Fig. S8B,C,F,G), suggesting that proximal cubelets 

share more similar connection patterns than distal cubelets. 

 

4.4 Motif analysis 

The statistical properties of a connected network can be decomposed into a series of 

mathematical terms that quantify increasingly complex motifs in the network, analogous 

to a Taylor expansion. Specifically, considering a binary directed network G (represented 

by its adjacent matrix), we define its following properties with increasing statistical 

orders: 

1st order property: connection probability. Let 𝑓1,1(𝑮) denote the connection probability 

in network 𝑮. 

2nd order properties: probability of 2-node motifs. There are 3 possible 2-node motifs: 

non-connected 2-node motif, uni-connected 2-node motif, and bi-connected 2-node motif, 

so (3-1=2) degrees of freedom are needed to describe 2nd order properties. Let 𝑓2,1(𝑮), 
𝑓2,2(𝑮) and 1 − 𝑓2,1(𝑮) − 𝑓2,2(𝑮) denote the probabilities of 2-node motifs in 𝑮. 

3rd order properties: probability of 3-node motifs. There are 16 possible 3-node motif, so 

(16-1=15) degrees of freedom are needed to describe 3rd order properties. Let 𝑓3,1(𝑮) … 

𝑓3,15(𝑮) and 1 − ∑ 𝑓3,𝑖(𝑮)
15
𝑖=1  denote the probabilities of 3-node motifs in 𝑮. 

… 

nth order properties: probability of n-node motifs. Let 𝑀𝑛 denote the number of n-node 

motifs, then we need (𝑑𝑓𝑛 = 𝑀𝑛 − 1) degrees of freedom to describe nth order properties. 

Let 𝑓𝑛,1(𝑮) … 𝑓𝑛,𝑑𝑓𝑛(𝑮) and 1 − ∑ 𝑓𝑛,𝑖(𝑮)
𝑑𝑓𝑛
𝑖=1  denote the probabilities of n-node motifs in 

𝑮. 

Given nth order properties of G, we are able to infer the probability distribution of G, 

𝑃𝑛(𝑮), using the maximum entropy principle (14): 

𝑃𝑛(𝑮) =
1

ln𝑍𝑛
exp(−∑𝜇𝑛,𝑖𝑓𝑛,𝑖(𝑮)

𝑑𝑓𝑛

𝑖=1

 ) 

, where 

𝑍𝑛 =∑exp (−∑𝜇𝑛,𝑖𝑓𝑛,𝑖(𝑮)

𝑑𝑓𝑛

𝑖=1

) 

𝑮

   

𝜕𝑍𝑛
𝜕𝜇𝑛,𝑖

=< 𝑓𝑛,𝑖(𝑮) >   

. Here < 𝑓𝑛,𝑖(𝑮) > represents observed probability of a given n-node motif. 

 

Define 

𝐼𝑛 =

{
 

 
∑𝜇𝑛,𝑖𝑓𝑛,𝑖(𝑮)

𝑑𝑓𝑛

𝑖=1

− ∑ 𝜇𝑛−1,𝑖𝑓𝑛−1,𝑖(𝑮)

𝑑𝑓𝑛−1

𝑖=1

   (𝑛 > 1)

𝜇1,1𝑓1,1(𝑮)   (𝑛 = 1)

 

, then we get an expansion form of 𝑃𝑛(𝑮): 

𝑃𝑛(𝑮) =
1

ln 𝑍𝑛
exp(−(𝐼1 + 𝐼2 +⋯+ 𝐼𝑛−1 + 𝐼𝑛)) 
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. In the above formula, if we only take the first k terms and recalculate the partition 

function Z, we get 𝑃𝑘(𝑮), i.e., the probability distribution of G given only kth order 

statistical properties. Studying 𝑃𝑘(𝑮) with increasing k reveals the effect of higher order 

statistical properties on G. Particularly, the second and third terms represent the 

interactions between pairs and triplets of elements, respectively. 

 

We first studied 2-cubelet motifs in the C57BL/6J cortical network. Random networks, 

RNg were generated based on observed global first-order properties (< 𝑓1,1(𝑮) > ). In our 

C57BL/6J cortical network, the probability that a pair of cubelets x and y was 

reciprocally connected was greater than predicted by the null hypothesis (Fig. 4H; Fig. 

S9B-D).  Three-cubelet motifs were also highly non-random, with a tendency for densely 

connected motifs to be particularly overrepresented (Fig. 4I; Fig. S9B-D), compared to 

RNg, random networks generated based on observed global second-order properties (i.e. 

probabilities of 2-cubelet motifs, < 𝑓2,𝑖(𝑮) >, 𝑖 = 1,2). The most under-represented motif 

was a unidirectional cycle, similar to what has been reported at the cellular level (15). 

Consistent with 3-cubelet motif statistics, the observed clustering coefficient was high 

compared to random networks (Fig. S9G). Interestingly, the distribution of 3-cubelet 

motifs was strikingly similar to statistics of connections among single neurons in the rat 

visual cortex (16), suggesting that a common rule might govern the organization of neural 

circuits at both microscale (intra-neuron) and mesoscale (intra-area) levels. These 

analyses reveal that the network architecture was highly structured, deviating sharply 

from simple random connectivity. 

 

 

As the distances between cubelets may affect the probability of connections or motifs, we 

also considered random networks generated with the observed distance-dependent low-

order properties, RNdd. Comparing RNdd to observed networks (Supplementary Note 5.7), 

similar overrepresented/underrepresented motifs were found (Fig. S9A).  

 

4.5 Module analysis 

Previous analyses of the connectivity between cytoarchitecturally defined brain areas (11, 

17) revealed “modules”— regions of the brain within which connections are dense, and 

which may reflect functional units. Because the basic unit in muMAPseq is a cubelet, 

defined by dissection without regard to functionally defined regions, we wondered 

whether similar modules would emerge, or whether we could reveal structure within 

classical brain areas that were previously obscured by their labeling as one homogeneous 

area.  

To analyze modules of the ipsilateral cubelet-to-cubelet connection matrix, we utilized a 

community structure-finding algorithm (18). In the algorithm, a resolution parameter, γ 

can be tuned to get smaller/more or larger/fewer modules. To choose a proper γ, we 

undersampled from all the projection neurons, and used the algorithm to find modules. 

The optimal γ was chosen so that the Rand index (inconsistency) was low and the 

average number of modules was stable (Fig. S10A; Supplementary Note 5.6).  
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In the C57BL/6J mouse #LJ7, with the optimal γ=0.87, we recovered four major modules 

(Fig. 4J,K), of which module 1 belonged to visual-auditory areas, modules 2 and 3 

belonged to somatosensory/motor areas, and module 4 belonged to anterior 

cingulate/retrosplenial areas. Interestingly, the two modules belonging to 

somatosensory/motor areas were not clustered according to brain areas defined in the 

Allen atlas (i.e. SSp, SSs, MOp, MOm), but were clustered according to the represented 

body parts. Roughly, module 2 corresponded to somatosensory and somatomotor areas 

associated with sensation and movement of limbs, trunk and whiskers, whereas module 3 

corresponded to areas associated with mouth and nose. Interestingly, the modules 

obtained by this analysis of connectivity closely match those obtained by brain-wide 

calcium imaging and clustering, but not the partitioning based on cytoarchitecture(19). 

In addition to the connection matrix, we could perform a similar analysis on the input (or 

output) correlation (Pearson correlation between input to a pair of cubelets or between 

output from a pair of cubelets) matrix. The modular organization of these matrices was 

similar to that of the connections themselves (Fig. S10B,C), suggesting that inter-

connected modules tend to receive similar inputs and send similar outputs. 

As the distance between two cubelets strongly affected their connection strength (Fig. 

S8A), we asked whether the observed connection modules in the connection matrix were 

a result of simple distance dependence, or due to specific connection patterns between 

brain areas. To address this question, we generated a distance-dependent connection 

matrix (Mdd) with observed average connection strengths at various distances, and 

performed clustering analysis (Fig. S10D, middle; Fig. S10E, left). A distance-

independent connection matrix (Mdi) was also generated by subtracting the distance-

dependent connection matrix from the original connection matrix, and analyzed in a 

similar way (Fig. S10D, right; Fig. S10E, right). The original connection modules were 

more similar to the distance-independent connection modules, suggesting the cortical 

modules were not simply organized with a distance-dependent rule, but reflected specific 

connection patterns between certain brain areas. 

 

We also performed module analysis with various γ. With lower γ, we found fewer 

modules, which consisted of one or more modules that were determined with γ=0.83. 

However, we failed to detect fine modules from the connection network with higher γ, 

probably due to limited spatial resolution of dissected cubelets (300μm×1mm×1mm).  

 

Similar analysis was done in mouse LJ9 (Fig. S10G-I). With the optimal resolution 

parameter γ=0.8, five major modules were recovered: two somatosensory-somatomotor 

area modules (similar with the two modules in LJ7), a visual-auditory area module, an 

anterior cingulate area module, and a retrosplenial area module. The global modular 

organizations between LJ7 and LJ9 were similar, and the subtle differences may result 

from limited spatial resolution and cubelet dissection variations. 

 

 

4.6 Analysis of contralateral projections 

Commissural connections play important roles in regulating a variety of behaviors, and 

disruption of these projections might play a role in autism and other neurological 
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dysfunction (20, 21). However, the network properties of commissural projections are 

much less studied than their ipsilateral counterparts. We therefore examined the structure 

of commissural connections in our dataset. In the C57BL/6J mouse #LJ7, homotopic 

projections, i.e. projections from one area of cortex to the corresponding area in the other 

hemisphere (Fig. 4D, left), are the most likely to be positive (Fig. 4D, middle; Fig. S7A, 

blue; 47.2±0.2% of all possible homotopic projections are positive), and made up a 

substantial fraction of all commissural projections (36.1±2.1% of all non-zero 

commissural projections are homotopic), consistent with previous reports (18-21). The 

remaining projections were heterotopic projections from one area of cortex to a non-

corresponding area in the contralateral hemisphere, but not to its corresponding 

contralateral area. To understand the structure of these projections, we further divided 

heterotopic projections into those with projections to both the ipsi and contralateral 

versions of a target area (heterotopic ipsi+) and those that projected only to the 

contralateral version of one area, but not the ipsilateral one (heterotopic ipsi-; Fig. 4D, 

left). 73.1±7.2%of positive heterotopic projections were of the ipsi+ kind. Heterotopic 

ipsi- projections accordingly made up only 17.1%±3.9% of the all commissural 

projections. Our findings therefore support a largely symmetric model of the mouse 

cortex, where a given area in one hemisphere often directly projects to its corresponding 

area in the contralateral hemisphere, and moreover preferably projects to both ipsi- and 

contralateral versions of other target areas.  

 

Heterotopic ipsi+ commissural projections constituted a substantial fraction of total 

commissural projections and they represented bifurcated projections to two hemispheres. 

To further study these projections, we defined the source area S, the ipsilateral target area 

T, and the contralateral target area T’. Note T and T’ are homotopic, according to the 

definition. For all the positive heterotopic ipsi+ commissural projections, the correlation 

between S-T projection strength and S-T’ projection strength was weak (Fig. S7B). 

 

All the previous analysis of commissural projections was based on projections that have 

passed the significance test with multiple comparison. As commissural projections were 

usually weaker than association projections (Fig. 4E), the false negative rate for 

commissural projections might be higher. To examine how the false negative rate may 

affect results, we also did parallel analysis with projection data that have passed the 

significance test but without multiple comparison. Homotopic commissural projection 

was still the major commissural projection type, while the number of heterotopic ipsi+ 

commissural projection increased (Fig. S7C,D). For heterotopic ipsi+ projections, weak 

but significant correlation was observed between the association projection strength and 

the commissural projection strength (Fig. S7E). 

 

4.7 The BTBR brain 

In the BTBR brain, the connection strength and the input/output correlation between a 

pair of cubelets decreased as the distance increased (Fig. S8G), similar to what was 

observed in LJ7 and LJ9.  

 

By performing module analysis, we found modules in the connection matrix (Mc; Fig. 

S10L). Four major modules were found in the connection matrix at the optimal resolution 
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parameter γ=1.1 (Fig. S10J, left): three modules in the somatosensory-somatomotor area 

(roughly corresponding to orofaciophryngeal, upper limb, lower limb – whisker areas 

respectively), and one module in the anterior cingulate-retrosplenial-visual area. The 

differences in the somatosensory-somatomotor areas between the BTBR brain and 

C57BL/6J brains might be due to limited spatial resolution and cubelet dissection 

variations. The failure to get the visual-auditory area module might be explained by 

injection artifacts. Note that in the BTBR brain, probably due to lack of corpus callosum, 

the two cortical hemispheres are physically separated much more rostrally than a 

C57BL/6J mouse. Thus some cortical brain areas including the auditory cortex and part 

of the visual cortex are more lateralized and difficult to be targeted by viral injection 

from the dorsal surface. Actually, very few, if any, somata were found in these areas from 

the sequencing results. As cubelets with too few infected cells (less than 50) were 

excluded for analysis, not surprisingly the visual-auditory area was not recovered as a 

module, as seen in LJ7. We also performed module analysis with the input correlation 

matrix (Mic; Fig. S10J, middle) and the output correlation matrix (Moc; Fig. S10J, right), 

and the results were similar to modules in the connection matrix (Fig. S10K). 

 

Topological properties of the ipsilateral cubelet-to-cubelet connectivity network was also 

examined in the BTBR brain. All the results were very similar to C57BL/6J brains (Fig. 

S9E-G). Briefly, among all the 2-node motifs, bidirectional connections were 

overrepresented; the clustering coefficient was significantly higher than random networks 

generated with the same second-order properties; the distribution of 3-node motifs was 

highly non-random, and densely connected motifs were overrepresented. The results 

suggested that these topological properties of the ipsilateral connection network were not 

disrupted in the BTBR brain. 

 

Supplementary Note 5: Bioinformatics, statistics and computational methods 

 

5.1 Processing of raw sequencing data.  

Raw Illumina sequencing results consisted of two .fastq files: 32-nt BC sequences were 

in paired end 1, and 12-nt UMI and 8-nt CSI sequences were in paired end 2. The full 

BC-UMI-CSI sequences were merged and then de-multiplexed based on CSIs (cubelets). 

All the sequences with ambiguous bases (shown as N in the sequencing results) were 

removed. We then collapsed all the identical reads. As the current sequencing depth was 

too low and most of the sequences only had 1 read each, we didn’t set any threshold for 

read counts to remove errors (but see Supplementary Note 1). Unique sequences were 

next sorted into barcode library 1 (BC ended with 2 purines), barcode library 2 (BC 

ended with 2 pyrimidines), and spike-in (BC ended with ATCAGTCA). We then counted 

the number of unique UMIs for each BC-CSI, which represented the molecule count of a 

given barcode in a given cubelet.  

 

5.2 Substitution error correction.  

Base substitution is one of the major error sources. As the theoretical diversity of a 

random barcode of N30YY or N30RR is 430×22 ≈ 1018, an error barcode due to substitution 

should be very similar to one of the real barcodes, while any two real barcodes should be 

very different. To correct substitution errors, we first found all the barcode pairs with up 
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to 3 mismatches using the short read aligner bowtie (http://bowtie-

bio.sourceforge.net/index.shtml). We next collapsed all the barcodes into a large number 

of clusters, such that for any barcode (BC1) in a given cluster, there existed another 

barcode (BC2) in the same cluster with less than 3 mismatches. As a simple algorithm, 

mathematically it could cause very different barcodes to be collapsed into the same 

cluster; however, this did not happen in the real scenario due to the high theoretical 

diversity. The barcode with the highest UMI counts in each cluster was used to represent 

the cluster, and the summed UMI count of all the barcodes in the cluster was calculated 

as the corrected UMI count of the barcode. After substitution correction, we generated a 

barcode-cubelet matrix, where each element represented the molecule count of a given 

barcode in a given cubelet after collapsing. 

 

5.3 Reconstruction of single cell projections.  

5.3.1 Viral abundance thresholding. To reduce re-used barcode errors, barcodes whose 

counts were greater than 4 in the viral library sequencing result were excluded for 

analysis in the barcode-cubelet matrix. See full details in Supplementary Note 1.3.  

 

5.3.2 UMI thresholding. To remove noises, we set all the no-greater-than-1 (UMI 

threshold) elements in the matrix to 0.  

 

5.3.3 Soma/axon thresholding. After barcode abundance thresholding and UMI 

thresholding, we determined the soma location of each barcode using the ‘soma-max’ 

strategy. To exclude local dendritic innervations, for each barcode, the UMI counts of all 

the cubelets neighboring to the soma cubelet were set to 0. Firstmax and secondmax were 

then calculated as the highest and second highest UMI counts for each barcode. We chose 

soma threshold to be 250 and axon threshold to be 20, and only analyzed barcodes whose 

firstmax was greater than soma threshold and secondmax was between UMI threshold 

and axon threshold. See full details in Supplementary Note 1.2. 

 

5.3.4 Filter right cortical neurons. We remove the barcodes whose somas did not reside in 

the right cortical hemisphere. Cells not in the right cortex were extremely rare, and they 

were likely due to virus spread. 

 

With these steps, we were able to determine each cell’s location and its projection 

pattern. 

 

5.4 Calculating bulk projection patterns. 

To calculate bulk projection patterns, we pooled all the projection cells that resided in the 

same cubelets together, and calculated their average projection patterns. Projection 

strengths due to noise were evaluated and subtracted from the uncorrected projection 

strengths. P values were also calculated for each projection. See details in Supplementary 

Note 1. 

 

In the manuscript, ‘(non-)significant connections (no multiple comparison)’ refer to 

connections with p value (≥) < 0.05; ‘(non-)significant connections (multiple 

comparison)’ refer to connections with p value (≥) < 0.05/N, where N is total number of 
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possible connection (the number of right cortical cubelets times the number of all the 

cortical and subcortical cubelets). 

 

Some of the RT primers were found to be cross-contaminated at low levels post hoc. 

Thus, we didn’t analyze the projections between these contaminated cubelets. These 

projections include: LJ7, cubelet 97-to-cubelet 68, cubelet 21-to-cubelet 268; LJ9, 

cubelet 75-to-cubelet 13, cubelet 13-to-cubelet 75; LJ10, cubelet 60-to-cubelet 81, 

cubelet 81-to-cubelet 60. 

 

5.5 Distribution of connection strengths and distance-dependent connection 

properties 

To calculate distributions of connection strengths and distance-dependent connection 

properties, only significant non-zero (with Bonferroni multiple comparison correction) 

cubelet-to-cubelet connections were included. The distance between 2 cubelets was 

defined as the distance of their centroids. 

 

5.6 Analysis of modules. 

We utilized the Brain Connectivity Toolbox (https://sites.google.com/site/bctnet/) for 

module analysis in Matlab. modularity_dir.m was used to find modules in the 

connectivity matrix (directed graph), and modularity_und.m was used to find modules in 

the input/output correlation matrix (undirected graph). In input/output correlation matrix, 

negative values were set to 0 before clustering. A resolution parameter γ can be tuned to 

get smaller/more or larger/fewer modules. To determine the optimal γ, we undersampled 

half of the total projection neurons for 100 times, and performed clustering with various 

γ. For each γ, we calculated the average number of modules over 100 undersampling 

trials, and quantified the inconsistency of clustering that was defined as the mean of Rand 

indices between pairwise trials’ clustering results. The optimal γ was chosen so that the 

inconsistency was low and the average number of modules was stable (Fig. S8A). All the 

analyses were done with the optimal γ unless otherwise stated. 

To generate the distance-dependent connection matrix, we first calculated connection 

strengths and physical distances for all cubelet pairs. We next grouped cubelet pairs into 

bins according to the distances (50 μm each bin), and calculated the mean connection 

strength in each bin. Then in the distance-dependent connection matrix, each element was 

set to the mean connection strength of the bin it belonged to. To calculate the distance-

independent connection matrix, the distance-dependent connection matrix was subtracted 

from the original connection matrix. Negative values in the distance-independent 

connection matrix were set to 0 before clustering. The distance between 2 cubelets was 

defined as the distance of their centroids. 

 

Clustering results were compared with Rand indices (22).  

 

For module analysis, non-significant (with Bonferroni multiple comparison correction) 

cubelet-to-cubelet projections were set to 0. 

 

5.7 Analysis of motifs. 

https://sites.google.com/site/bctnet/
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clustering_coef_bd.m in the Brain Connectivity Toolbox was used to calculate the 

clustering coefficient. The connection matrix was binarized for this analysis. For 

comparison, we generated random connection networks based on distance-dependent 

connection probability rule: in the real network, we calculated the probability that cubelet 

𝑖 projected to cubelet 𝑗 if their distance was 𝑑 (in 50 μm bins); then the measured 

probabilities were used to generate 10000 random networks assuming each connection 

was independent.  

 

3 types of 2-node motifs and 16 types of 3-node motifs were counted in real cortical 

networks. Random networks were also simulated to calculate the relative abundance of 

each motif in real networks. The relative abundance was calculated with: 
𝐶𝑜𝑢𝑛𝑡𝑟𝑒𝑎𝑙(𝑚𝑜𝑡𝑖𝑓 𝑖) − 𝐶𝑜𝑢𝑛𝑡𝑟𝑎𝑛𝑑𝑜𝑚(𝑚𝑜𝑡𝑖𝑓 𝑖) 

𝐶𝑜𝑢𝑛𝑡𝑟𝑎𝑛𝑑𝑜𝑚(𝑚𝑜𝑡𝑖𝑓 𝑖) 
. 

 

Different models were used to generate random networks, and 10000 random networks 

were generated each: 

In 2-node motif comparison, RNg was generated based on a global connection probability 

rule: in the real network, we calculated the probability that cubelet 𝑖 projected to cubelet 

𝑗; then the measured probability was used to generate RNg assuming each connection was 

independent. 

In 2-node motif comparison, RNdd was generated based on a distance-dependent 

connection probability rule: in the real network, we calculated the probability that cubelet 

𝑖 projected to cubelet 𝑗 if their distance was 𝑑 (in 50 μm bins); then the measure 

probabilities were used to generate RNdd assuming each connection was independent.  

In 3-node motif comparison, RNg was generated based on a global 2-node motif 

probability rule: in the real network, we calculated the probability of each 2-node motif 

between cubelet 𝑖 and cubelet 𝑗, then the measured probability was used to generate RNg 

assuming each 2-node motif was independent. 

In 3-node motif comparison, RNdd was generated based on a distance-dependent 2-node 

motif probability rule: in the real network, we calculated the probability of each 2-node 

motif between cubelet 𝑖 and cubelet 𝑗 if their distance was 𝑑 (in 50 μm bins), then the 

measured probabilities was used to generate RNdd assuming each 2-node motif was 

independent. 

 

For all the analysis in 5.7, the distance between 2 cubelets was defined as the distance of 

their centroids. 

 

For motif analysis, non-significant (with Bonferroni multiple comparison correction) 

cubelet-to-cubelet projections were set to 0. 

 

5.8 Analysis of contralateral projections. 

As we dissected most cubelets symmetrically, we were able to find the contralateral 

homotopic cubelet for a given cubelet. Considering sectioning/dissection variations, we 

also generalized contralateral homotopic cubelets to include all the neighbor cubelets of 

the exact contralateral homotopic cubelet. Generalized contralateral homotopic cubelets 

were used for all the analysis regarding contralateral projections. 
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For contralateral projection analysis, non-significant cubelet-to-cubelet projections were 

set to 0. When calculating log values, zeroes were set to 1/10 of the smallest nonzero 

values. 

 

5.9 Node degree analysis 

In Fig. 4G, the normalized node degree is defined as the number of non-zero projection 

target cubelets divided by the total number of possible target cubelets in ipsilateral cortex. 

 

5.10 Analysis of function-connection relationship 

With the functional imaging data, we first performed singular-value decomposition with 

the activity matrix (pixel-by-time). The first 500 components were included for following 

analysis. To determine the activity of each cubelet, we calculated the mean activity over 

all pixels belong to the same cubelet. The activity correlation was calculated using 

activity data in all the time frames of all the trials. The spontaneous correlation was 

calculated using activity data from 0-1s of all the trials (note the initialization of each trial 

was at 2±0.2 s). To calculate the noise correlation, we grouped them into auditory-left-

correct (modality-choice-result), auditory-right-correct, visual-left-correct, visual-right-

correct, auditory-left-incorrect, auditory-right-incorrect, visual-left-incorrect, visual-right-

incorrect trial groups. The mean activity at a given time point over all the trials in the 

same group was subtracted from the original activity data belonging to the corresponding 

trial group to calculate noises. All the correlations were calculated as Pearson 

correlations.  

 

The down-sampled connection matrices (Supplementary Note 2.1) were used for the 

connection analysis. The reciprocal connection strength was calculated as the mean of 

logarithm of connection strengths in two directions. To compare function data with 

connection data, we only included cubelet pairs that satisfied 1) number of infected cells 

in both cubelets were greater than 50 in MAPseq, 2) both cubelets were well imaged 

(excluding non-surface areas like orbitofrontal cortex/anterior cingulate 

cortex/retrosplenial cortex, and lateral areas like insular cortex), 3) the two cubelets in a 

pair were not neighbors (neighbor connections were not analyzed in MAPseq). 

 

To remove distance-dependent components from activity correlations, spontaneous 

correlations, noise correlations, connection strengths, and input correlations, we grouped 

cubelets pairs into bins according to the distances (50 μm each bin), and calculated the 

mean value of each variable in each bin. The mean value of each variable was then 

subtracted from the original data in the corresponding bins to calculate distance-

independent components. The averaging and subtraction of connection strengths were 

performed in the logarithm form. The distance between 2 cubelets was defined as the 

distance of their centroids. 

 

For the analysis in 5.9, all the non-significant cubelet-to-cubelet connections were set to 

0. As multiple comparison had a high false negative rate particularly for weak 

projections, p value = 0.05 (no multiple comparison) was used for the criterion of 

significance here. 
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Supplementary Table 1. Sindbis viral injections 

Supplementary Table 2. Cubelet-to-cubelet projection strengths 

Supplementary Table 3. Cubelet registration result 

Supplementary Table 4. Inferred brain area-to-brain area connection strengths 

 

Supplementary Movie 1. Summary of muMAPseq results 
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