
SUPPLEMENTARY INFORMATION

APPENDICES

Appendix 1. A 0-D model for simulating the mechanical response of an epithelial 

tissue to compressive strain 

Here,  we derive  a zero-dimensional  model  for  the  evolution  of  contour  length  l of  an

epithelial monolayer, which reproduces the experimentally observed dynamics.

A – Description of the model

Based on experimental observations, we assume that the behaviour of the monolayer can

be described by a simple rheological model consisting of three branches in parallel (Fig.

4a). The first branch consists of an active stress contribution σ a> 0 which models cellular

contractility observed in experiments (Fig. 3b) and brings the material to a tensile state at

zero strain. The second branch behaves as a solid with an elastic modulus E, denoting the

observed behaviour at long time-scales (Fig. 3d). The third branch behaves as a viscous

liquid with an elastic modulus  Y  and relaxation time  τ. The product  Yτ  corresponds to a

bulk viscosity η. Finally, in line with experimental measurements, we hypothesise that the

tissue is unable to sustain any compressive force and buckles when the stress σ  reaches

zero.  This  leads to  different  dynamic behaviours depending on tensile  or  compressive

stress (cases B1 and B2 below).



For simplicity, we chose to simplify the dynamics of the tissue by modelling its relaxation

with a single characteristic time τ, as our aim is to capture the effects of the buckling non-

linearity and tissue pre-tension on the epithelium dynamics. 

B – Constitutive behaviour

We have shown that epithelial tissues can buckle and adopt a contour length that is larger

than  the  device  plate-to-plate distance.  Thus,  we  define  two  different  strains  in  our

experiments relating to the epithelial tissue and the applied strain related to the device:

Tissue strain:  ε=
l−l0
l0

 where l is the contour length of the tissue.

Device strain: εd=
d−l0
l0

 where d is the plate-to-plate distance.

These two strains are defined with respect to a contour length l0 which is associated to the

initial monolayer length before the application of any compression and is equal to the initial

plate-to-plate distance. Such a choice implies that, as verified experimentally (Fig. 3b), the

initial stress on the coverslips is mainly of active origin.

The response of the material  to imposed stress or strain is governed by the following

equations:

B1 – Under tensile stress: 

 Stress σ>0:  
σ
E

=ε−εb+r ε1 with  r=
Y
E

,  εb=
−σ a
E

<0 and  ε1 the internal  strain in the

spring E which satisfies the equation:

ε̇1+
ε1
τ
= ε̇

 Strain: ε=εd



B2 –  Under compressive stress:

 Stress:  σ=0,  this  is  an  assumption  of  the  model  based  on  experimental

measurements.

 Strain:  ε=εb−rε1, where  ε1 satisfies the same equation as in B1. Note that in this

case l>d i.e. ε> εd.

C – Steady state behaviour

To begin with, we compute the stress versus device strain, and the tissue strain versus

device strain relation  σ (εd) and  ε (εd ) in steady state. This behaviour corresponds to the

compressions performed at 0.5 %.s-1  and below (see Fig. 1b (iii), Fig. 1e, Fig. 3d, Fig. 4b

and Fig. 5b). When the driving parameter  εd changes at a low rate, the viscous branch

does not contribute, and we obtain the following relation: σ /E=εd−εb, if σ>0. 

This relation is valid until the tissue reaches its buckling threshold for εd=εb. At this point,

the stress on the tissue vanishes. For εd<εb, the stress remains at zero (Fig. 5a). Similarly,

for the tissue strain, ε=εd as long as εd > εband plateaus at εb for εd≤ εb.

D – Response of the epithelium to a step of compressive strain

Next, starting from a tissue at its original length, we abruptly shorten it and determine the

transitory regime towards establishment of the steady-state stress computed above. The

step shortening occurs at t = 0 and changes the device strain from εd=0 to  εd=ε d
f . The



initial stress state is  σ a. We then distinguish three cases depending on the magnitude of

compressive  strain.  Fig.  S4c shows the evolution in  a  range of  magnitudes of  device

strain.

D1 – Case 1 (low device strain): εd
f >
εb
1+r

In this case, stress in the tissue is always positive and the tissue never buckles. The stress

relaxes exponentially. We have:

 Stress: 
σ (t )
E

=εd
f−εb+r εd

f e−t /τ

 Strain: ε (t )=εd
f

D2 – Case 2 (intermediate device strain): εb<εd
f <

εb
1+r

This case corresponds to the experiments shown in Fig. 1b(i) and Fig. 1c. Here, the tissue

reaches zero stress and buckles immediately  after  the step of  device strain.  After  the

flattening of the tissue (Phase 1), the tissue returns to a tensional stress state (Phase 2).

We thus split the dynamics into two phases: 

 Phase 1 - Stress: σ=0

              - Strain: ε (t )=εb(1− r
1+r

e
−t
τ (1+r ))

 Transition time: Phase 1 comes to an end when ε reaches εd
f  at time:

T=(1+r) τlog( εb r

(εb−εdf ) (1+r ))
 Phase 2 - Stress: 

σ (t )
E

=(εdf−εb)(1−e−( t−T ) / τ )

              - Strain: ε (t )=εd
f  



D3 – Case 3 (large device strain): εd
f <εb

This case corresponds to the experiments shown in Fig. 1b(ii) and Fig. 1d. In this case, the

tissue buckles immediately after strain application but cannot flatten sufficiently to restore 

positive stress. Thus we have:

 Stress: σ (t )=0

 Strain: ε (t )=εb(1− r
1+r

e
−t
τ (1+r ))

Note  that  ε converges to  the  value  εb for  large times indicating  that  the  tissue

remains longer than the coverslip-to-coverslip distance, forming a stable fold.

E – Response to cycles of compressive strain

To investigate the duration over which an epithelial  tissue can ’remember’ its previous

mechanical state, we apply a sequence of cycles of compressive strain. From the initial

state, the  device strain  is initially shortened to εd
f . This is followed, after a time T1 > T, by a

lengthening of −εd
f  back to the initial length which is maintained for a duration ∆1. This is

then followed by second cycle of  shortening back to  εd
f .  The magnitude of the step of

shortening εd
f  is chosen to be in D-Case 2 so that the contour length shows a relaxation

dynamic which is not instantaneous while still reaching a final shape of the tissue that is

flat.

In  general,  because the visco-elastic  branch could not  fully  relax during the period of

lengthening, immediately after the second shortening (occurring at t = T1 + ∆1), the value of

the tissue strain is:



ε=
εb+rαεd

f

1+r
 where α=e−∆1/ τ 

This leads to a second recovery with different dynamics that is of the form:

ε (t )=εb+
r (αεdf−εb)
1+r

e

−t−(T 1+∆1)
τ (1+r )

until ε reaches εd
f  after a duration of:

T α=(1+r ) τlog( r (εb−αεdf )
(εb−εdf )(1+r ))

F – Evolution of the transient buckling point with device strain and strain rate

We now consider the effect of the device strain rate on the buckling properties of the 

epithelium. This is in order to establish the phase diagram of Fig. S4a, defining the planar 

or buckled state of the tissue with respect to the device strain and strain rate imposed on 

tissue boundaries. 

For this, instead of assuming instantaneous shortening, we impose a ramp of deformation 

at constant strain rate:

εd (t )={−ε̇d t if t ≤−ε df / ε̇dεd
f if t ≥−εd

f / ε̇d

where έd is the (positive) device strain rate. We then ask what are the conditions such that 

buckling occurs during the shortening phase. Using the expression for εd (t ), starting from a

tensile state, we compute the time dependent stress: 

σ (t )
E

=− ε̇d t−εb+τr ε̇d (1−e−t / τ )

This stress monotonically decreases in time and we then ask if there is a value of time

ta∈ [0 ,−ε df / ε̇d ] in the interval of shortening such that σ  reaches zero.



An analytical result can be derived in two limiting cases. When τ ε̇d≪ 1 (i.e. device strain 

rate is very slow), we expect tato be much larger than τ. Thus 

0=−έ ta−εb

and ta≤−εd
f / ε̇d   leads to the buckling condition εd

f ≤ εb. 

This is indeed the condition we expect during quasi-static shortening. 

When, on the contrary, if τ ε̇d≫1, 

0=− έ ta−εb−r έ t
a

and the condition  ta≤−εd
f / έ  leads to the buckling condition εd

f <
εb
1+r

 which is the one 

derived in the previous section when considering a sudden shortening. The general case 

is shown in Fig. S4a.

Appendix 2. Determination of model parameters from experiments

The model contains 4 parameters, which we extract as follows:

 The pre-stress in the tissue σ a corresponds to the stress as measured before any

mechanical perturbation is applied to the tissue, i.e at zero strain (Fig. 3b). 

 The elasticity  E of the tissue was extracted from the slope of the linear phase in

slow compression experiments (Fig. 3d).



The two other parameters were extracted from stress relaxation experiments at low device

strains (εd ≤ 10%, n = 8, Fig. S4b). At these strains, the model predicts that the tissue does

not buckle and that the stress relaxation follows a single exponential (see Case 1, Part C,

Appendix 1). 

 The elastic constant Y  in the viscous branch is extracted from the peak value of the

stress σ i immediately after the fast step of device strain:

Y=
σi−σ a
εd

−E

Here, the elasticity E of each sample is extracted from the steady-state value of the

stress  σ f  in  the  plateau region  (from 100 to  300s,  (Fig.  S4b))  and through the

relation: 

E=
σ f−σ a
ε d

(We verified  that  the  value  of  E  obtained through this  method is  the  same on

average as the one we could extract from the slope of the first phase in the slow

strain rate experiments.)

 The time-scale  τ=Yη was  extracted  from the  characteristic  time-scale  of  stress

recovery.  An  exponential  fit  function  could  not  perfectly  capture  the  fast  stress

relaxation occurring at very short time-scales. Therefore, we defined τ as the half-

life of stress recovery (see Fig. S4b).

The average values of  these parameters  were  introduced in  the  equations derived in

Appendix 1 to perform the in silico experiments shown in Fig. 4 and S4.


