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1 Description of the simulation algorithm

MOSim simulates multi-omic data sets with a flexible experimental design. To
illustrate how the algorithm works, we chose a design of two time-series A and
B with 4 time points each and with 3 replicates per time point and experimental
group, i.e. 24 samples in total for each omic data type. We will simulate data
for RNA-seq, DNase-seq, ChIP-seq, miRNA-seq, Methyl-seq and transcription
factors. MOSim takes RNA-seq as the central omic data type because the goal is
simulating the regulatory mechanisms driving gene expression. Thus, the first
omic to be simulated is gene expression (RNA-seq counts).

1.1 Gene expression simulation

Let x0 be the vector containing the seed counts for RNA-seq for all genes (the
STATegra default sample or a sample provided by the user), which has been pre-
viously adjusted to the specified sequencing depth. Genes are randomly classi-
fied into differentially expressed genes (DEGs) and non-differentially expressed
genes (nonDEGs), where the percentage of DEGs is decided by the user. Genes
in nonDEG class are labeled as “flat” for all the experimental groups. The
DEG class is divided into the following subclasses for each experimental group
(Figure S1): FL (flat), CI (continuous induction), CR (continuous repression),
TI (transitory induction) and TR (transitory repression). Again, the percentage
of DEGs in each subclass is determined by the user. Therefore, when having
two experimental groups as in this example, DEG genes can be labeled with
the different combinations of profiles (in groups A-B): FL-FL, FL-TR, TI-CR,
and so on. Next we describe the steps followed to simulate the gene expression
matrix.

In the case of designs not considering time series, users can also choose the
percentage of up and down regulated genes and the algorithm will select them
randomly. The definition of up or down regualations takes the first experimen-
tal group as the reference. When more than two experimental grups are to be
simulated, a gene is considered to be up (or down) regulated if presenting an
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Figure S1: Time profiles representation.

increase (or decrease) in expression in at least one of the conditions with re-
gard to the first one. MOSim increases (or decreases) the expression in the seed
sample to simulate the change for up (or down) regulated genes in any of the
experimental conditions as described below for flat genes in time course designs.

1.1.1 Seed count data for each condition A and B

We duplicate x0 as many times as the number of experimental groups, two in
this case: x0,A and x0,B. The values for these two vectors are the same, with
an only exception: values for genes belonging to FL subclass in DEG class are
modified so there is a change in expression between both groups. For a gene g
in this subclass, x0,B

g is replaced by a random integer between x0,A
g + 10 + P80

and x0,A
g + 10 + P99 if the gene is up-regulated in condition B, where P80 and

P99 are the 80th and 99th percentile of x0,A after removing values equal to 0,
respectively. If the gene is down-regulated in condition B, the range is set to
x0,A
g − 10− P99 and x0,A

g − 10− P80. In both cases, the values are restricted to

be within the limits min {x0,A} and max {x0,A}.
When adjusting x0,A and x0,B to the user specified depth, the value of every

gene g in non-DE group is modified to be the same for all groups, so it is set to
the mean value (x0,A

g + x0,B
g )/2.
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1.1.2 Auxiliary random vector r

For the next step, which is generating the time series, we need to create an
auxiliary vector r that will be used to assure that a changing profile is different
enough from a flat profile. Initially, r is randomly generated by sampling from
x0, and both of them have the same length. Let P30 be the 30th percentile of
x0 excluding zero values. For each gene g that is non-flat in all experimental
groups, if max {x0

g, rg} < P30, rg is swapped with other value rj , being gene j
randomly chosen from genes in nonDEG class whose expression is above P30, so
the original data distribution is preserved. When there are not enough values
to swap, the remaining ones are taken from a normal distribution of mean P30

and standard deviation 1.
We also need to assure that the variation across time for DEG is neither too

low or too great so we modify rg again to force that the difference between x0
g

and rg meets some minimum and maximum restrictions. Let d be the differ-
ence between x0

g and rg in absolute number, and P90 the 90th percentile of x0

excluding zero values. For each gene g in DEG excluding FL-FL subclass, rg is
modified according to the following scenarios:

• When d is greater than P90 and rg is greater than x0
g then rg = rg−(d−P90)

• When d is greater than P90 and rg is lower than x0
g then rg = rg+(d−P90)

• When d is lower than P30 and rg is greater than x0
g then rg = rg+(P30−d)

• When d is lower than P30 and rg is lower than x0
g then rg = rg− (P30−d)

1.1.3 Generating the time series for each group

Let us take group A as an example on how to generate the time series (the
procedure will be analogous for group B). Let xt,A be the vector for time t
(t = t1, t2, t3, t4). For a gene g with FL profile in group A, for all time points,
we define xt,Ag = (xt,Ag + rg)/2 + N(0, 0.3). The only exception is for genes in

DEG with FL subclass in both groups, for which xt,Ag = xt,Ag +N(0, 0.3). For a
gene g in the remaining classes the time points are generated as follows:

1. Transform t = t1, t2, t3, t4 into t∗ = 0, 1, 2, 3, and define T = max {t∗}, i.e.
T = 3 in this case.

2. Let f(t∗) be a function of t∗ that takes values in the interval [0, 1] for
induction profiles and in [−1, 0] for repression profiles and that is defined
as follows:

(a) f(t∗) = a1 + b1t, for CI profile

(b) f(t∗) = −a1 − b1t, for CR profile

(c) f(t∗) = a2 + b2t+ c2t
2, for TI profile

(d) f(t∗) = −a2 − b2t− c2t2, for TR profile
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For continuous profiles, we need f(0) = 0 , so a1 = 0. Since we also
need the maximum (or minimum) value of f(t∗) to be 1 (or -1), b1 = 1/T
necessarily. For transitory profiles, we randomly select the time point
tmax (or tmin) where the maximum (or minimum) is to be reached from
the interval [T ∗0.25, T ∗0.75], so the maximum (or minimum) is within the
central 50% of the time line. Hence, f ′(tmax) (or f ′(tmin)) must be 0, and
we need f(tmax) (or f(tmin)) to be 1 (or -1). We also need the minimum
(or maximum) f(t∗) value to be 0. To meet all these requirements, the
coefficients must take the following values:

• If tmax ≥ T/2 : a2 = 0; b2 = 2/tmax; and c2 = −1/t2max.

• If tmax < T/2 : a2 = 1 + c2t
2
max = 1 − t2max/(T − tmax)2; b2 =

−2c2tmax = 2tmax/(T − tmax)2; and c2 = −1/(T − tmax)2.

3. We define Mg = max(x0
g, rg) and mg = min {x0

g, rg}, and then we ran-

domly choose integers pRg and pIg from the intervals [(Mg +mg)/2;Mg] and
[mg; (Mg +mg)/2], respectively.

4. The final expression values for each time point are:

(a) xt,Ag = pRg + (pRg −mg) ∗ f(t∗) +N(0, 0.3), for CR and TR classes

(b) xt,Ag = pIg + (Mg − pIg) ∗ f(t∗) +N(0, 0.3), for CI and TI classes

1.1.4 Simulating replicates.

The replicates for each gene, time point and condition are generated from a
negative binomial (NB) distribution with mean µ and variance σ2.

Let xt,Gg be the count value of a gene g in group G (A or B) and at time t. The

NB mean is set to µg = max {0.1, xt,Gg }. To model the dependence between the
NB mean and variance, we analyzed several data sets from different omics and
experiments, and observed a linear relationship between log-transformed values
of means and variances (R2 > 0.95 for all models): σ2

g = 10a ∗ (µg + 1)b− 1. To

assure a minimum variance we really used σ2
g = max {0.03; 10a ∗ (µg + 1)b − 1}.

A regression model was applied to estimate coefficients a and b and these esti-
mations were used as default values for each omic that can be changed by users
to increase or decrease the default variability.

Once the mean and variance for the NB are set, the replicates are randomly
generated from this distribution, and the generated counts are adjusted to the
desired sequencing depth.

Due to the NB variability, the average of the replicates xt,Gg can be very

different from the original means xt,Gg provided, and this can lead to a great
variation across time for genes that are supposed to be constant (FL class). To
avoid it, we generate a new value zt,Gg per time point and group for each gene g

in FL class from the following normal distribution N(xt,Gg , 0.025 ∗ xt,Gg ). Let d

be the difference between xt,Gg and zt,Gg . The value for each replicate i obtained

from the NB distribution (xi,t,Gg ) is replaced by xi,t,Gg − d . As this is done for
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Figure S2: PCA score plot for simulated gene expression data.

each time point, we force the final values of FL genes to be around a similar
value for all the time points.

Figure S2 shows a Principal Component Analysis (PCA) score plot on the
gene expression data simulated to illustrate how the two time series, time points
and replicates behave.

1.2 Simulation of regulatory omics (except methylation
and transcription factors)

The other omics supported by the algorithm act as gene expression regulators.
This is why an association list linking each omic feature to the corresponding
RNA-seq gene identifier is needed. The procedures to simulate methylation
data or to obtain TF regulations are different, and will be explained in the next
section.

Let y0 be the vector containing the seed counts for a given regulatory omic
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(STATegra default sample or sample provided by the user). All feature IDs
must be included in the association list (default list from STATegra project or
provided by the user).

MOSim considers three types of regulation: activation (A), repression (R) and
no regulation or no effect (NE). The steps followed by the algorithm to generate
each omic data type and the regulation of each DEG are described next.

1.2.1 Selection of regulators with regulatory effect

Users can choose the percentage of regulators with effect for each omic (other-
wise the default values are applied). According to this percentage, the algorithm
randomly selects numE regulators from the regulators in the association list.
The rest of associations corresponding to regulators in the association list with
no effect are labeled as NE.

1.2.2 Initial assignation of regulation type to each association

For regulators with effect, we randomly assign a type of effect (A or R) to each
of the regulated genes given by the association list according to the probabilities
set by the user. The only exception is that the associations regulator-nonDE
gene are flagged with NE tag.

1.2.3 Adjusting the initially assigned regulation type

Adjusting the initially assigned regulation type is sometimes necessary when the
regulator regulates more than one DEG. In that case, we analyze the different
classes of DEGs in both experimental groups (FL-FL, TR-FL, CI-CR, etc.),
select the one with the highest percentage of genes affected by the regulator
(no matter if A or R), and name it as ”majority class”. Genes in the remaining
classes are all labeled with NE, except if they have an equal or opposite temporal
profile to the previously selected class in any of the experimental groups, and
are not FL. We name them as “equal” or “opposite” class, respectively.

We assign the most frequent effect (R or A) to all genes in the ”majority
class” and for the two experimental groups. In case of ties, we randomly choose
R or A by using the initial probabilities. We assign the same or opposite effect
to genes in equal or opposite classes in the corresponding experimental groups,
and NE effect to the rest of groups.

1.2.4 Assigning profiles to regulators

The profile of a regulator depends on the profile of the genes it regulates and
on the type of the effect of the regulator. A regulator with an activator effect
for a given experimental group will have the same profile than the genes in its
“majority” class for that group, or the unique regulated gene when correspond-
ing. A regulator with a repressor effect will have the opposite profile to the
genes in its “majority” class, or the unique regulated gene when corresponding.
The opposite profile to FL is FL, to CI is CR (and vice versa), and to TI is TR
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Figure S3: Gene expression and DNase-seq temporal profiles for a random gene.

(and vice versa). If the regulator has NE effect on all its regulated genes, the
regulator profile is set to FL.

Regulators of FL-FL genes in DEG class are also assigned a FL-FL profile
with different average value for each experimental group. The up-regulated
condition will be the same for both the gene and the regulator when the effect
is activation. If the effect is repression, the up(down)-regulated condition/s for
the gene will be the down(up)-regulated condition/s for the regulator. The new
values are generated using the same procedure described for gene expression.

1.2.5 Generating time series and replicates for each group.

Once the profiles have been assigned to each regulator, the time series and
replicates generation follows the same procedure described for gene expression.
Figure S3 shows an example of a DEG (in black) and the regulation given by
the chromatin accessibility of the associated genomic region (in green). In this
case, the gene has a continuous repression profile in the first condition and a
transitory induction profile in the second condition. The DNase-seq region acts
as activator in both conditions and hence has the same type of profile than the
gene. A miRNA regulation is illustrated in Figure S4, where the miRNA has a
repressor effect and therefore has an opposite temporal profile to the gene.

1.3 Generation of TF expression data

As TFs are genes, their expression is not simulated from scratch but taken
from the simulated gene expression data. The TF-target gene association table
must be provided (it is available in the package if STATegra default data are
used), and MOSim classifies as TFs all the genes included in the column “TF” of
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Figure S4: Gene expression and miRNA-seq temporal profiles for a random
gene.

such table. Users decide the percentage of DE TFs so, during gene expression
simulation, DE genes are selected in such a way that they meet the requirement
of the number of DE TFs.

All the associations of non-DE TFs with genes are flagged with NE tag. For
each DE TF, we search for the target genes in the association table. If the target
gene is DE and the TF and gene have the same profile in a given condition, that
condition is labeled with A. If TF and gene have opposite profiles, the condition
is labeled with R. NE label is applied in the rest of cases.

1.4 Simulation of methylation data

Unlike the rest of omics, Methyl-seq simulation does not require a vector con-
taining the seed methylation values for every CpG site. MOSim just needs the
chromosomal position of the CpG sites to be simulated and their association to
genes. Again, both files can be taken from STATegra default data or provided
by the user.

The algorithm used to simulate bisulfite sequencing methylation data was
adapted from the WGBSSuite tool described in Rackham et al. (2015). The
original simulation procedure can be divided in 4 major steps: simulation of CpG
locations, simulation of methylation status for each CpG site, simulation of read
coverage per site and, finally, simulation of methylated/un-methylated/transit
read counts using a binomial (or truncated negative binomial) distribution.

In the first step, WGBSSuite simulates CpG locations for a single chro-
mosome assuming 4 possible situations: CpG islands -or regions with a high
frequency of CpG sites-, CpG deserts and transition states between them in
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both directions. As commented before, MOSim does not simulate CpG locations
but take them from the provided sample so this step can be skipped. Moreover,
MOSim allows for the simulation of CpG sites in different chromosomes.

In the second step, the methylation status of CpG sites is modeled based on
the distance between them. Nearby sites, like those belonging to a CpG island,
desert or transition states, are forced to keep the same methylation status, and
hence are considered as blocks. MOSim takes into account such blocks when
calculating the simulation settings. All CpG sites in the same block will share
hence the same profile and regulatory effect. The profile for each CpG block is
determined as in the rest of regulatory omics, and depends on the profile of the
regulated gene and on the type of effect (activation or repression).

Once the initial methylation values are generated for each experimental
group, the procedure described in the previous sections is applied with some
adjustments to consider blocks, and to take into account that methylation val-
ues vary from 0 to 1. The original WGBSSuite algorithm only contemplates
the possibility of simulating 2 groups so it had to be adapted to cover other
experimental designs. The probability of success in the binomial distribution
used to generate the counts in each group is modulated in order to mimic the
changes between two conditions. The WGBSSuite algorithm was adapted to
simulate the temporal profiles. The replicates are obtained from the binomial
distribution, instead of the negative binomial distribution applied for the rest
of omics.

The generated data can be returned as β values (proportion of methy-
lated/unmethylated reads) or as M values, with Mi = log2(γi/1 − γi) where
γi = min {max {βi, threshold}, 1− threshold} for every CpG site i, with thresh-
old taking the value 0.01.
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