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Supporting Fig. S1: Extracellular medium analysis of amino acid and TCA cycle metabolites,
intracellular AMP/ATP levels, and MSEA analysis of senescent HMEC intracellular metabolite pools
A) Extracellular metabolite secretion data for TCA cycle metabolites in proliferating and senescent HMEC.
Metabolite extracts from blank and conditioned media were analyzed by LC-MS. Secretion or uptake values
were normalized to integrated cell number. Secreted metabolites have positive values, and consumed
metabolites have negative values. * denotes p-value less than 0.05 by FDR-corrected Student’s t-test. See
Supporting Table S1 for all measured metabolites.

B) Same as in A for amino acids. * denotes p-value less than 0.05 by FDR-corrected Student’s t-test. See
Supporting Table S1 for all measured metabolites.

C) Intracellular pool sizes of AMP and ATP of proliferating and senescent HMEC. * denotes p-value less
than 0.05 by FDR-corrected Student’s t-test. See Supporting Table S2 for all measured metabolites.

D) Metabolite set enrichment analysis (MSEA) analysis for intracellular metabolites pool sizes of
proliferating and senescent HMEC. Metabolites were ranked based on log, fold change of
senescent/proliferating. Shown are the mountain plot of nucleoside mono/di/tri-phosphates (left), and table
of all tested metabolic pathways (right).
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Supporting Fig. S2: [U-"C]-labeled glucose isotopomer distributions are not altered in senescent
HMEC.

A-B) [U-"*C]-labeled glucose isotopomer distributions of citrate and fumarate. Proliferating and senescent
HMEC show similar labeling patterns for TCA cycle metabolites. See Supporting Table S3 for all measured
metabolite isotopomer distributions.
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Supporting Fig. S3: [1,2-"°C]-glucose and [U-'"*C]-glutamine stable isotope tracing

A) [1,2-"*C]-labeled glucose isotopomer distribution. The ratio of M1 to M2 lactate does not show a
significant change between proliferating and senescent HMEC.

B) Fractional contribution of [1,2-"*C]-glucose to purines and pyrimidines is downregulated in senescent
HMEC. Volcano plot represents log, fold change (senescent/proliferating) for fractional contribution of
[1,2-C]-glucose and FDR-corrected p-value.

C) Metabolic pathway map depicting the average log, fold change (senescent/proliferating) of fractional
contribution of [1,2-"*C]-glucose using the indicated color scale. Metabolites that were not measured are
shown as small grey colored shapes.

D) [U-"*C]-labeled glutamine isotopomer distributions for TCA cycle metabolites. The ratio of reductive to
oxidative TCA cycle is slightly decreased in senescent HMEC.

E) Fractional contribution of [U-"*C]-glutamine to pyrimidines is downregulated in senescent HMEC.
Volcano plot represents average log, fold change (senescent/proliferating) for fractional contribution of [U-
BC]-labeled glutamine and FDR-corrected combined Fisher’s combined p-value from two independent
experiments.

F) Metabolic pathway map depicting the average log, fold change (senescent/proliferating) of fractional
contribution of [U-"*C]-glutamine using the indicated color scale. Metabolites that were not measured or
had less than 3% fractional contribution are shown as small grey colored shapes.
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Supporting Fig. S4: RNA expression analysis confirms reduced nucleotide synthesis in senescent cells.
A-B) GSEA analysis of A) microarray data from senescent HMEC (1) and B) RNAseq data from senescent
IMRO90 cells (2). For HMEC microarray data, genes were compared across pairwise comparisons for stasis
and pre-stasis cell cultures. Genes were then ranked by their average rank from individual experiments. For
IMR90 RNAseq data, genes were ranked based on signal to noise ratio of senescent/non-senescent. Results
show significant suppression of genes in the purine (hsa00230) and pyrimidine (hsa00240) pathways in
senescent cells.

C) Western blotting with an RRM2 antibody (Sigma) targeting a distinct epitope from Figure 3E revealed
downregulation of RRM2 expression in senescent HMEC. Actin was used as an equal loading control.
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Supporting Fig. S5: Metabolite set enrichment analysis of hTERT immortalization.
MSEA analysis for fractional contribution of [U-'">C]-glucose in h\TERT immortalized HMEC. Metabolites
were ranked based on log, fold change of luciferase/hTERT.
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Supporting Fig. S6: Metabolite set enrichment analysis of triapine-induced senescence.
MSEA analysis for fractional contribution of [U-'">C]-glucose in triapine-induced senescence. Metabolites
were ranked based on log of triapine/DMSO.
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