Data: Correct GO predictions, T, for the selected set of genes Data: Key list representing parent classes for every GO class parameter: Vector of L Noise Levels, NL default: NL = [0, 0.1, 0.2...1]**parameter:** Number of repetitions, K, within each NLdefault: K = 1000**Result:** K by L Matrix, scores with selected Evaluation Metric begin Define L as the length of NL; Define *output* as K by L matrix ; Set $N_{neg} = 4$ (GO classes per gene in neg. set); for each l in [1, 2, .., L] do p = NL[l], current noise level ; #1. Create positive and negative data $P_{pos} = GeneratePosData(T, p);$ $P_{neg} = GenerateNegData(T, N_{neg});$ #2. Create artificial classifier scores to sets for each row in P_{pos} do Select predictor score, s, from $Normal(\mu = 1, \sigma = 0.5)$; Add s to the current row; end foreach row in P_{neq} do Select predictor score, s, from $Normal(\mu = -1, \sigma = 0.5)$; Add s to the current row; \mathbf{end} # 3. Combine positive and negative datasets $P = P_{pos} \cup P_{neg} ;$ # 4. Run Evaluation Metric, EvM Output[k, l] = EvM(P, T);end end

Algorithm 1: Artificial Dilution Series (ADS) pipeline. Code uses subfunctions *GeneratePosData* and *GenerateNegData*, explained later. **Data:** Correct GO predictions, T, for the selected set of genes **Data:** Key list representing parent classes for every GO class **parameter:** Noise proportion, poutput : Modified GO predictions, Pbegin Define N_T as the size of T; P = T; $th_{noise} = round(N_T * p)$, the size threshold for the Noise Set; # Shifting step Define N_{shift} , a random integer between 0 and N_T ; Select P_{shift} , a random subset of P of size N_{shift} ; foreach row in P_{shift} do Replace GO class with one of its nearest parents; end # Permutation step Define NoiseSet = [];Define $N_{err} = 0$; while $th_{noise} > N_{err}$ do Select two random rows A and B from $P \setminus NoiseSet$; # Genes of these rows will be $gene_A$ and $gene_B$; # GO classes of these rows will be GO_A and GO_B ; if $IsNoiseClass(gene_A, GO_B)$ and $IsNoiseClass(gene_B, GO_A)$ then Swap GO classes between rows A and B in P; Add A and B to NoiseSet; $N_{err} = N_{err} + 2 ;$ \mathbf{end} end return ${\cal P}$;

end

Algorithm 2: GeneratePosData: Generation of positive data with noise proportion p in ADS pipeline. Code uses IsNoiseClass function, explained later.

Data: Correct GO predictions, T**parameter:** N_{neg} , number of reported negative GO classes per gene : Negative GO predictions, P_{neg} output begin Define genes(T), the set of unique gene names in T; Define $P_{neg} = []$; for each gene in genes(T) do $GO_{count} = 0$; while $GO_{count} < N_{neg}$ do pick random GO class, GO_{rand} , from GO structure ; **if** *IsNoiseClass(GO_{rand}, gene)* **then** Add $(gene, GO_{rand})$ as item to P_{neg} ; $GO_{count} = GO_{count} + 1$; \mathbf{end} \mathbf{end} \mathbf{end} Return P_{neg} ;

 \mathbf{end}

Algorithm 3: GenerateNegData: Generation of negative data in ADS pipeline. Code uses IsNoiseClass function, explained later.

Data: Correct GO predictions, TData: Key list representing all ancestor classes for every GO class Data: Evaluated GO class, GO_{eval} Data: Evaluated gene, gene_{eval} **parameter:** Noise threshold, thdefault: th = 0.1output : TRUE or FALSE begin Get the set of ancestor classes, A_{eval} , for GO_{eval} ; Define $J_{max} = 0$; for each row in T do Let $gene_{test}$ be the gene of the current row ; if $gene_{test}$ is $gene_{eval}$ then Let GO_{test} be the GO class of the current row; Get the set of ancestor classes, A_{test} , for GO_{test} ; Calculate J_{test} , Jaccard correlation between A_{test} and A_{eval} ; if $J_{test} > J_{max}$ then $| J_{max} = J_{test}$ end end $\quad \text{end} \quad$ if $J_{max} < th$ then Return TRUE; elseReturn FALSE ; end

 \mathbf{end}

Algorithm 4: IsNoiseClass. This algorithm tests if GO class qualifies as noise. This is tested against the annotations of the selected gene