
Data: Correct GO predictions, T , for the selected set of genes
Data: Key list representing parent classes for every GO class
parameter: Vector of L Noise Levels, NL

default: NL = [0, 0.1, 0.2...1]
parameter: Number of repetitions, K, within each NL

default: K = 1000
Result: K by L Matrix, scores with selected Evaluation Metric
begin

Define L as the length of NL ;
Define output as K by L matrix ;
Set Nneg = 4 (GO classes per gene in neg. set) ;
foreach l in [1, 2, .., L] do

p = NL[l], current noise level ;

#1. Create positive and negative data
Ppos = GeneratePosData(T, p) ;
Pneg = GenerateNegData(T,Nneg) ;

#2. Create artificial classifier scores to sets
foreach row in Ppos do

Select predictor score, s, from Normal(µ = 1, σ = 0.5);
Add s to the current row;

end
foreach row in Pneg do

Select predictor score, s, from Normal(µ = −1, σ = 0.5);
Add s to the current row;

end

3. Combine positive and negative datasets
P = Ppos ∪ Pneg ;

4. Run Evaluation Metric, EvM
Output[k, l] = EvM(P, T);

end

end
Algorithm 1: Artificial Dilution Series (ADS) pipeline. Code uses sub-
functions GeneratePosData and GenerateNegData, explained later.

1

Data: Correct GO predictions, T , for the selected set of genes
Data: Key list representing parent classes for every GO class
parameter: Noise proportion, p
output : Modified GO predictions, P
begin

Define NT as the size of T ;
P = T ;
thnoise = round(NT ∗ p), the size threshold for the Noise Set ;

Shifting step
Define Nshift, a random integer between 0 and NT ;
Select Pshift, a random subset of P of size Nshift;
foreach row in Pshift do

Replace GO class with one of its nearest parents;
end

Permutation step
Define NoiseSet = [] ;
Define Nerr = 0 ;
while thnoise > Nerr do

Select two random rows A and B from P \NoiseSet ;
Genes of these rows will be geneA and geneB ;
GO classes of these rows will be GOA and GOB ;
if IsNoiseClass(geneA,GOB) and IsNoiseClass(geneB,GOA) then

Swap GO classes between rows A and B in P ;
Add A and B to NoiseSet ;
Nerr = Nerr + 2 ;

end

end
return P ;

end
Algorithm 2: GeneratePosData: Generation of positive data with noise pro-
portion p in ADS pipeline. Code uses IsNoiseClass function, explained later.

2

Data: Correct GO predictions, T
parameter: Nneg, number of reported negative GO classes per gene
output : Negative GO predictions, Pneg

begin
Define genes(T), the set of unique gene names in T ;
Define Pneg = [] ;
foreach gene in genes(T) do

GOcount = 0 ;
while GOcount < Nneg do

pick random GO class, GOrand, from GO structure ;
if IsNoiseClass(GOrand, gene) then

Add (gene,GOrand) as item to Pneg ;
GOcount = GOcount + 1 ;

end

end

end
Return Pneg ;

end
Algorithm 3: GenerateNegData: Generation of negative data in ADS
pipeline. Code uses IsNoiseClass function, explained later.

3

Data: Correct GO predictions, T
Data: Key list representing all ancestor classes for every GO class
Data: Evaluated GO class, GOeval

Data: Evaluated gene, geneeval
parameter: Noise threshold, th

default: th = 0.1
output : TRUE or FALSE
begin

Get the set of ancestor classes, Aeval, for GOeval ;
Define Jmax = 0 ;
foreach row in T do

Let genetest be the gene of the current row ;
if genetest is geneeval then

Let GOtest be the GO class of the current row;
Get the set of ancestor classes, Atest, for GOtest ;
Calculate Jtest, Jaccard correlation between Atest and Aeval;
if Jtest > Jmax then

Jmax = Jtest
end

end

end
if Jmax < th then

Return TRUE ;
else

Return FALSE ;
end

end
Algorithm 4: IsNoiseClass. This algorithm tests if GO class qualifies as
noise. This is tested against the annotations of the selected gene

4

