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Text A1: details about the three purpose-built phylogenies3

used4

Pine Rockland community phylogeny5

The pine rockland community phylogeny was constructed from a combination of �eld and6

herbarium based collections and supplemented with pre-existing sequences from the Flora of7

Florida project at the University of Florida. The Floristic Inventory of South Florida (FISF), which8

includes a comprehensive list of pine rockland species (n = 592, Gann GD 2018), guided our9

sampling e�orts. Specimens were collected in fruit or �ower over the course of all seasons and10

across multiple pine rockalnd fragments in Miami Dade County from 2014 to 2016. We collected11

material from 331 new �eld collections, 17 herbarium collections at Fairchild Tropical Botanic12

Garden (FTBG; Miami, FL, USA) or the University of Florida (FLAS; Gainesville, FL, USA), and 5813

�eld-collected plants currently in cultivation at Fairchild Tropical Botanic Garden. For �eld and14

herbarium collections, we extracted total genomic DNA and ampli�ed three commonly used15

plastid barcodes (Kress et al. 2009): rbcL, matK, and psbA-trnH. Ampli�cation success was16

con�rmed with gel electrophoresis and Sanger sequencing was performed by Beckman Coulter17

Genomics (Cambridge, Massachusetts, USA), Genewiz (South Plain�eld, New Jersey, USA), or18

Euro�ns Genomics (Louisville, Kentucky, USA). In all, we were able to include 540 taxa in our19

community phylogeny, 90.88% of all vascular plants that occur on the FISF species list.20
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Both newly generated and pre-existing sequences were edited and assembled using Geneious R921

(Biomatters, Auckland, New Zealand), and resulting alignments were constructed using the22

MAFFT v1.3.5 (Katoh and Standley 2013) plugin in Geneious. We visually inspected individual23

alignments before concatenating all three loci into a �nal alignment. We used PartitionFinder24

v1.1.1 (Lanfear et al. 2012) and the Akaike information criterion (AIC) to determine the optimal25

model of evolution for each barcode as well as the best overall partitioning scheme, which were26

used for all down stream Maximum likelihood (ML) and Bayesian Inference (BI) analyses. We27

conducted all analyses on the HiPerGator 2.0 supercomputing cluster at the University of Florida.28

ML analysis was performed in RAxML v8.2.8 (Stamatakis 2014) with an ordinal level topological29

constraint, following the Angiosperm Phylogeny Group IV (APG IV et al. 2016) for �owering30

plants and the Pteridophyte Phylogeny Group (Schneider et al. 2016) for ferns and lycophytes. One31

thousand bootstrap replicates were used to determined clade support. We used a single lycophyte32

species (Selaginella eatonii) as the outgroup. Dating analysis was performed in BEAST 2.4.633

(Bouckaert et al. 2014). Our BEAST analysis included nine fossil constraints selected from previous34

molecular dating studies in addition to ordinal and superclade constraints sensu APG IV35

(Schuettpelz and Pryer 2009, Bell et al. 2010, Magallón et al. 2013, APG IV et al. 2016). The tree36

topology that resulted from our ML search was used as the starting tree for this analysis after it37

was calibrated to match the fossil constraints using the chronos function in the R package ape38

(Paradis et al. 2004). More details about all included analyses can be found in Trotta et al. (2018).39

Alpine community phylogeny40

For each of the species occurring in the Écrins National Park, France (n = 1,345), we used the41

PHLAWD pipeline (Smith et al. 2009) to retrieve sequence data for �ve gene regions (atpB, rbcL,42

matK, trnTLF, and ITS) from GenBank (release 209). Sites that were missing across >50% of the taxa43

in the output alignment were removed from each gene region using PHYUTILITY (Smith and44

Dunn 2008), and maximum likelihood (ML) inference implemented in RAxML (Stamatakis 2014)45

2



was used to estimate gene trees. Outlier taxa (i.e. those falling outside of clades de�ned by the APG46

III taxonomy) were identi�ed by visual inspection of each gene tree and were removed before47

concatenation into a �nal alignment using PHYUTILITY (Smith and Dunn 2008). The resulting48

super-matrix consisted of 79% (n = 1,065) of the species surveyed and was used to estimate a ML49

community phylogeny of the Écrins �ora in RAxML v8.0.4, under a GTR-CAT model of nucleotide50

evolution with simultaneous rapid bootstrap and ML search using 999 replicates, which is ideal for51

large nucleotide alignments (Stamatakis 2014). We used the ‘congrui�cation’ approach (Eastman et52

al. 2013) to map divergence times from a reference time-tree (Soltis et al. 2011, Zanne et al. 2014)53

with concordant nodes on the best ML estimate of tree topology in the R package geiger v2.0.654

(Pennell et al. 2014), and the phylogeny was scaled to time using treePL (Smith and O’Meara 2012).55

Further details can be found in Marx et al. (2017).56

Florida Flora phylogeny57

We constructed a phylogeny for the vascular �ora of Florida based on sequence data of two plastid58

genes commonly used in plant phylogenetics: rbcL and matK. We �rst leveraged existing published59

sequence data on GenBank. We obtained sequence data from GenBank for 463 species. We60

checked these sequences throughout the alignment and tree-building process and removed61

problematic sequences. The remaining species lacked published DNA sequence data. We thus62

collected fresh materials of these species and sequenced them and deposited voucher specimens at63

the University of Florida herbarium (FLAS). For rare and hard-to-access species, we sampled64

specimens from FLAS. We aligned sequences of rbcL and matK according to a reference65

protein-coding sequence using Pal2Nal (Suyama et al. 2006). We used PartitionFinder v1.1.1 and66

AIC (Lanfear et al. 2012) to determine the optimal model of evolution. We then ran RAxML v7.0367

(Stamatakis 2014) on the partitioned dataset. We used 100 bootstrap replicates to determine the68

internal support for the initial tree evaluation. We used three outgroup taxa using data from69

GenBank: Physcomitrella patens (Funariaceae), Syntrichia ruralis (Pottiaceae), and Mastigophora70
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woodsii (Mastigophoraceae). We examined all phylogenetic trees for issues including possible71

misidenti�cations of species, contaminants, and misplaced taxa. We used the best tree from72

RAxML as a starting tree in a Bayesian analysis using MrBayes v3.2.2 (Ronquist et al. 2012) for 10
6

73

generations with 20 independent runs. The top 10 trees were sampled based on likelihood score as74

representations of the posterior distribution of trees. We used the tree with the highest likelihood75

in this study. We dated the tree, producing a chronogram, using r8s (Sanderson 2003) and 1776

calibration points with a maximum age of 377 million years. More details about the phylogeny77

building process can be found in Allen et al. (in revision).78

Figures79
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Median correlation based on 100 simulations; dataset pine rockland

Figure A1: Median correlations of phylogenetic alpha diversity values based on 100 simulations of

the pine rockland dataset. Within each simulation, di�erent sites have di�erent species richness.

Results are similar to those in the main text, where species richness was the same across all sites

within each simulation to remove e�ects of species richness. Note that PD and MNTD (but not MPD)

are correlated with species richness, thus the high correlations between tree_random and other

phylogenies. Null models successfully removed these correlations (PD.Z and MNTD.Z).
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Figure A2: Median correlations of phylogenetic beta diversity values based on 100 simulations of

the pine rockland dataset. Within each simulation, di�erent sites have di�erent species richness.

Results are similar to those in the main text, where species richness was the same across all sites

within each simulation to remove e�ects of species richness. Note that Unif and MNTD_beta (but

not MPD_beta and PCD_beta) are correlated with species beta diversity, thus the high correlations

between tree_random and other phylogenies. Null models successfully removed these correlations

(MPD_beta_z and MNTD_beta_z).
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Dataset: Pine (540 sp)

Figure A3: Correlations among observed phylogenetic alpha diversity values calculated from

di�erent phylogenies for the pine rockland dataset are the same as correlations among their

corresponding standardized e�ect size (SES) calculated from di�erent phylogenies.
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Dataset: Alpine (1064 sp)

Figure A4: Correlations among observed phylogenetic alpha diversity values calculated from

di�erent phylogenies for the alpine dataset are the same as correlations among their corresponding

standardized e�ect size (SES) calculated from di�erent phylogenies.
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FigureA5: Correlations among observed phylogenetic alpha diversity values calculated from di�er-

ent phylogenies for the Florida �ora dataset are the same as correlations among their corresponding

standardized e�ect size (SES) calculated from di�erent phylogenies.
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Figure A6: Correlations among observed phylogenetic beta diversity (MPD_beta) values calculated

from di�erent phylogenies for all datasets are the same as correlations among their corresponding

standardized e�ect size (SES, MPD_beta_z) calculated from di�erent phylogenies.
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