
Supplementary Information:  
 

Probabilistic Modeling of Alternative Splicing 

 

In order to develop a probabilistic model of alternative splicing, which we approximate 

by the probability 𝑝! of splicing to the second most abundant splicing state, we must first 

rigorously and mathematically describe 𝑝!. To do so, we consider the following data: for 

each transcriptome, we examine the data set {𝐷! = {(𝑛! , 𝑘!)}, where 𝑛!  is the total 

number of reads of any given splice site 𝑆!  and 𝑘!  is the number of observations 

supporting the minor state. The 𝑝! distribution is then a way of encoding this data such 

that  𝑝!(𝑆!) = 𝑛!/𝑘!. This distribution encodes the probability of alternative splicing 

events over each splice site in the data (Examples of such distributions are in Figure 3B 

and Supplementary Figure 5). Notice that for any splice site 𝑆!  and any given read of 

that particular splice site, there are two possibilities: Si is either spliced to its major or 

minor splicing state (hereafter referred to as primary and secondary reads respectively).  

 

Model M1: in which we model alternative splicing as a biased coin flip 

 

The first obvious, naive model to implement is thus that of a biased coin flip: heads, for 

example, would signal a primary read, tails would signal a secondary read. This model 

M1 has a single free parameter p, the binomial probability, that is, the probability of 

seeing a secondary read for any given read of a splice site.  

 

For an experiment with data {𝐷! = {(𝑛! , 𝑘!)}, the maximum likelihood estimate for p, 

𝑝 = !!!
!!!

.This is also trivially the posterior mode in a Bayesian framework, given a uniform 

prior distribution. Due to the large number of data points, choosing other non-

informative priors, such as the Jeffreys Prior 𝑃𝑟(𝑝) = !
!(!!!)

, does not alter the 

posterior mode. In Supplementary Figure 11A-C, we plot, for three representative 

experiments, the empirical probability distribution of  𝑝!, along with the distribution 

predicted by model M1 using the maximum likelihood estimate. The model M1 clearly 



does not perform well (see Supplementary Figure 11A-C). In particular, it consistently 

underpredicts 𝑃(𝑝!") by orders of magnitude across all transcriptomes for 𝑝!" > 0.1.  

 

 

Model M2: in which we allow the binomial probability to be drawn from a distribution 

 

Above, we saw that, for any given experiment, having a single binomial probability p of 

alternative splicing occurrence was unable to capture the subtleties of the observed 𝑝! 

distribution. For this reason, we next modeled alternative splicing by allowing 𝑝! to be 

drawn from a distribution P. That is, for each splice site with ni reads, we draw the 

probability of splicing pi from P and then generate the number of minority reads ki from 

the binomial distribution B(ni , pi) (note: if the generated ki>ni/2, we set ki:= ni-ki to 

ensure that we retrieve the number of minority reads). As a first attempt, we assume 

that  𝑝!" is distributed uniformly on the interval [0,1]. This model has no free parameters. 

In Supplementary Figure 11D-F, we plot, for three representative experiments, the 

empirical probability distribution of  𝑝!, along with the distribution predicted by model 

M2. We see that model M2 does not provide a good fit to the data as it generates, as 

expected, an approximately uniform distribution. 

 

Note that model M1 can thought of as having a distributed 𝑝!: it just so happens that in 

the case 𝑝! is delta-distributed, that is, it has no variance. On the other hand, the 

variance of the uniform distribution assumed by model M2 has maximal variance. For 

this reason, we are led to consider utilizing distributions with an intermediate variance. 

As discussed in the main text, the data motivates us to consider the random variable 

𝑝! to be distributed according to a power law (also see Figure 4A). 

 

Model M3: in which the binomial probability is distributed according to a power law 

 

We define the model M3 as follows: assuming a given exponent 𝛼, for each (𝑛! , 𝑘!) -pair 

we first generate a 𝑝! from the power law distribution 



 𝑃(𝑝!) =
!!!

!!"#
!! !!

𝑝!!!, for 𝑥!"# < 𝛼 < 1 . 

Note that the prefactor is a normalization term  and guarantees that this is a bonafide 

probability distribution. It is also a subtlety of power-law distributions that they require a 

lower bound 𝑝!"#in order for the integral to converge: in what follows, we used 

𝑝!"# = 10!! and decreasing 𝑝!"# from this did not change the results. Next, we use the 

generated p to generate a number of minority reads 𝑘! from the binomial distribution 

with binomial probability p, B(n,p). Thus, given the experimental data of (𝑛! , 𝑘!)-pairs, for 

a given exponent, we are able to simulate the model M3 distribution.  

 

It also follows that the probability of retrieving k minority reads, given n totals, can be 

described analytically: 

𝑃(𝑘|𝑛) =
𝑛! (1− 𝛼)

𝑘! (𝑛 − 𝑘)! (1− 𝑝!"#!!!)
(𝐵(𝑘 − 𝛼 + 1,𝑛 − 𝑘 + 1)− 𝐵(𝛼, 𝑘 − 𝛼 + 1,𝑛 − 𝑘 + 1), 

where  𝐵(𝑘 − 𝛼 + 1,𝑛 − 𝑘 + 1) and 𝐵(𝛼, 𝑘 − 𝛼 + 1,𝑛 − 𝑘 + 1) are the beta function and 

incomplete beta function respectively. 

 

We need to estimate the parameter 𝛼 for each transcriptome in light of the available 

data.  Bayesian inference provides a theoretical framework in which to perform such 

parameter estimation. Indeed, we are interested in the mode < 𝛼 > of the posterior 

distribution 𝑃(𝛼|𝐷), this being the value of 𝛼 that maximizes the probability of seeing the 

experimental data. Recall that the central equation of Bayesian inference is as follows: 

the posterior distribution 𝑃(𝛼|𝐷) = 𝑃(𝐷|𝛼)𝑃(𝛼), where 𝑃(𝐷|𝛼) is the likelihood (of 

seeing the data D, given 𝛼) and 𝑃(𝛼) is the prior distribution on 𝛼. Due to the size of the 

data sets in question, the posterior is dominated by the likelihood function 𝑃(𝐷|𝛼)and 

independent of the prior distribution (both the uniform prior 𝑃!(𝛼) = 1, for 0 < 𝛼 < 1, and 

the Jeffreys prior 𝑃!(𝛼) =
!

!!!
, for 𝑝!"# < 𝑝 < 1, yield the exact same results). Thus the 

results reported are independent of the prior chosen and rely on only the data and no 

prior assumptions. Performing a parameter sweep by varying 𝛼 allows us to calculate 

the posterior mode.  

 



We eventually performed the parameter sweep on the interval [1.01,1.99] divided into 

41 points (we did this as values > 2 consistently gave poor fits for representative data 

sets). 

 

1. We took 10% of the data set (we will refer to this 10% as D10) and performed 

what follows on it;  

2. Given data set D10, we simulate the model n = 5 times and bin the data into m = 

20 bins to retrieve a ‘simulated probability distribution’; we use this distribution to 

determine the likelihood function 𝑃(𝐷|𝛼)(the results were verified using n = 

10,15,20 and m = 5,10,15, 25); 

3. We retrieved the posterior mode  𝛼; 

4. We performed steps 1-3 k = 10 times to retrieve 10 values of 𝛼 and thus 10 

values of 𝛽 = 1/𝛼. We report < 𝛽 > +/- SEM. 

  



 

 

 
Supplementary Figure 1. Splicing state distribution decays exponentially. 
(A-D) Splice site count (Frequency) versus number of splicing states for 4 

transcriptomes are plotted in linear space. Red line indicates exponential fit, rate and 

transcriptome are given in inlets. 

(E) Histogram of decay rates over all transcriptomes. 

  



 
 

Supplementary Figure 2. Splicing state distributions. 
(A-K) Splice site count (Frequency, log10) versus number of splicing states for 12 

transcriptomes. For transcriptome information please refer to label in panel and 

Supplementary Table 1. 



(L) Splice site count (Frequency, log10) versus number of splicing states for K562 splice 

sites with at least 2500 observations.  

  



 
 

Supplementary Figure 3. Histogram of normalized entropies. 



(A-L) Normalized entropy histogram over all splice sites of 12 transcriptomes. The ratios 

in a 2-state system (i.e. minor and major splicing state) yielding the corresponding 

normalized entropy are plotted (top of panel), indicating non-linear behavior. For 

transcriptome information please refer to label in panel and Supplementary Table 1. 

  



 

 
Supplementary Figure 4. Correlation of observed and approximated entropy.  
(A-B) Pearson correlation coefficient between observed and approximated normalized 

entropy for all transcriptomes.  

(C) Frequency histogram of residual variances over all transcriptomes. 

 

  



 

 
Supplementary Figure 5. Alternative splicing probability distributions. 
(A-L) Log-density plot of alternative splicing probability for 12 transcriptomes. For 

transcriptome information please refer to label in panel and Supplementary Table 1. 

 

 

  



 

 

 
Supplementary Figure 6. 
(A-L) Comparison of Model M3 and data across 12 experiments. We plot the probability 

density function of the alternative splicing probability pas for both the the data and 

Model M3 (for all experiments) on log-linear axes after performing a kernel density 

estimation. 



 
Supplementary Figure 7. Random forest model approximates observed 
alternative splicing probabilities.  
Alternative splicing probability (𝑝! predicted) predicted by random forest model versus 

observed (𝑝! observed) for full (A) and reduced (B) K562 feature set. Predicted values 

were grouped (0.025 bin) and mean and standard deviation plotted. Mean squared error 

(MSE) and variance explained (𝑅!) values are given. 

 

  



 

 

 
Supplementary Figure 8. Species-specific random forest models identify a set of 
common features correlating with alternative splicing probabilities.  
(A) Feature importance ranks were determined for each transcriptome (see 

Supplementary Table1). Feature ranks were grouped and plotted with increasing mean 

value from top to bottom. Feature name is indicated (left). Data points are color coded 

by species (legend on the right). Summary statistics are visualized with boxplots. 

Vertical bars indicate median value, boxes represent interquartile range. 

(B) Alternative splicing probability (𝑝! predicted) predicted by Lasso regression model 

versus observed (𝑝! observed) for the reduced K562 feature set. Predicted values were 

grouped (0.025 bin) and mean and standard deviation plotted. Mean squared error 

(MSE) and variance explained (𝑅!) values are given. 

 

  



 

 
Supplementary Figure 9. Feature distributions for splice sites classified by 
alternative splicing probabilities.  

Splice sites were grouped into high (𝑝!> 0.1) and low (𝑝! ≤ 0.1) alternative splicing 

groups and compared with respect to correlated features, identified by machine learning 

algorithms. Mean feature values were determined for each transcriptome (see 

Supplementary Table 1) and data-points color coded by species (see legends). 

Summary statistics are visualized by boxplots. Horizontal lines indicate median values, 

boxes represent interquartile range.  

(A) Mean intron length is increased for splice sites with high alternative splicing 

probabilities: Mean intron lengths (log10, in nucleotides) of major and minor splicing 

states for low and high 𝑝! groups (left panel). Intron length ratios (log10, high/low) for 

major and minor splice sites (right panel).  



(B) Splice site distances are derived between major and minor splicing states are 

derived in the direction of transcription. Mean distances are visualized (in kb) for 5’SS 

and 3’SS grouped by low and high 𝑝! (left). Relative distances (in kb) between mean 

values in low and high groups are plotted (right). In agreement with co-transcriptional 

competition, splice sites with high alternative splicing probability have tightly spaced 

competing splicing partners. 

(C-D) Mean splice site rank of 5’SS (C) and 3’SS (D) were determined for major and 

minor splicing state grouped by low and high pas (left panels). Rank ratios (high/low) 

were determined and visualized (right panels). Note that high splicing rank correlates 

with low splicing site strength. 

  



 

 
Supplementary Figure 10. Number of exons per transcript.  
(A) Exon count distribution (log10) over all splice sites are visualized by violin plots for 

all transcriptomes analyzed here. Transcriptomes are labeled by a single letter, 

referenced in (B). 
(B) Mean number of exons per transcript for all transcriptomes analyzed here. Note that 

only expressed genes are considered, leading to transcriptome specific differences in 

identical species.  

  



 

 

 

 

 
Supplementary Figure 11. 
(A-C) Comparison of Model M1 and data for three representative experiments. We plot 

the probability density function of the alternative splicing probability pas for both the the 

data and Model M1 on log-linear axes after performing a kernel density estimation. 

(D-F) Comparison of Model M2 and data for three representative experiments. We plot 

the probability density function of the alternative splicing probability pas for both the the 

data and Model M2 on log-linear axes after performing a kernel density estimation. 

 

 

 

 

 

 

 

 

 


