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SUPPLEMENTAL TEXT 1	  

 2	  

Inference of gains and presence of genes on branches of the tree. 3	  

To estimate the probability that specific genes were gained or present on each branch of the tree, 4	  

we chose a simple heuristic, based on the joint probability of the states of the ancestor and 5	  

descendant nodes (Methods). We chose this approach because we are not concerned with any 6	  

gain, but rather with gains that are retained until the end of a branch. For example, any gain at all 7	  

is to be expected at some rate more or less without regard to genome content of the host, due to 8	  

phage infection or DNA in the environment. However, given that the vast majority of these gains 9	  

are followed closely by losses (Baltrus 2013), they are not as biologically interesting as genes 10	  

gained and retained adaptively, and they are also mostly unobserved. Additionally, our approach 11	  

allows us to consider the probability of steady presence across a branch. We considered the 12	  

average reconstruction at each node to compute the probability of gain or presence of genes on 13	  

branches, rather than summing across each possible reconstructed scenario in the stochastic 14	  

mapping procedure (for instance weighted by the likelihood of each possible scenario). While 15	  

using all possible mappings could, in principle, reduce the numerical error of our probability 16	  

estimates, it would entail an onerous and potentially intractable computation. Moreover, the 17	  

biological (Figure 2) and statistical (Figure 5, Supplemental Figure S9) validations we have 18	  

performed suggest that our results are robust.  19	  

Our method of inferring gains is also different from the probabilities of gains (or, 20	  

similarly, the expected number of gains) that are computed by the gainLoss software (Cohen and 21	  

Pupko 2010), using a previously-developed continuous-time Markov chain (CTMC) model to 22	  

count the number of gains on each branch (Minin and Suchard 2008).  These models solve the 23	  

problem of counting the number of one-way transitions between two states (say, presence and 24	  

absence) given transition rates, states at the start and end of the interval, and a set amount of time 25	  

in the interval. Thus, the CTMC implemented in gainLoss is capable of estimating the expected 26	  

number of gains of a given gene on a given branch, with knowledge of gain and loss rates. 27	  

However, this approach can lead to problematic cases in which a gene can be absent in ancestor 28	  

and descendant nodes, and yet, given a very long branch, is inferred to be gained on this branch. 29	  

While such scenarios may have statistical support, in practice they are very hard to interpret and 30	  

compare to other events that more obviously support a gain. Given the presence of Archaea in 31	  
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our phylogeny, which are a dramatically divergent outgroup, this was a cause for concern. 32	  

Indeed, the CTMC estimated that the median gene was gained more than twice along the long 33	  

branch connecting Archaea to Bacteria, with some genes gained more than 10 times on this 34	  

branch alone (data not shown). This result is almost certainly artefactual, but has the potential to 35	  

substantially skew the overall appraisal of gains for a given gene. For these reasons and those 36	  

stated above, we chose to ignore the gainLoss CTMC estimates in favor of the less sophisticated 37	  

but more interpretable gain/presence inference method described above and in Methods. 38	  

 39	  

Gain/loss ratio analysis. 40	  

A consistent feature of prokaryotic genome evolution is the predominance of DNA loss over 41	  

gain, or “deletional bias” (Mira et al. 2001; Kuo and Ochman 2009). One previous study, for 42	  

example, found that the gain to loss ratio in prokaryotes varied widely across genomes, ranging 43	  

approximately from 0.07 to 0.9, with most genomes exhibiting a ratio between 0.2 and 0.5. 44	  

Accordingly, a reliable ancestral reconstruction and gain/loss inferences should exhibit an excess 45	  

of gene losses relative to gene gains. The gainLoss program used in our study addresses this 46	  

problem in part by setting prior distributions on gain and loss rates based on the average 47	  

prevalence of genes in genomes at the tips of the tree, such that losses tend to dominate (Cohen 48	  

and Pupko 2010). For our data, the mean of the rate prior distribution was 0.36 for gains and 1.38 49	  

for losses, corresponding to a 0.26 ratio, which is in line with previous estimates. These rates 50	  

were then used in an iterative expectation-maximization model to infer ancestral genome 51	  

reconstructions on the tree while optimizing these rates and other parameters. Following 52	  

optimization, the corresponding rates for gains and losses were found to be 0.80 and 3.86, 53	  

corresponding to an even stronger deletional bias of 0.20. After ancestral reconstruction and 54	  

gain/loss inference by the heuristic outlined in Methods, we found that the mean number of gains 55	  

for a gene along the tree was 13.9, whereas the corresponding mean number for losses was 24.9, 56	  

suggesting a ratio of 0.56. The distribution of losses is also substantially right-shifted relative to 57	  

gains (Supplemental Figure S1). Furthermore, gain and loss counts were significantly correlated 58	  

(ρ = 0.75, p < 10-15; Pearson correlation test), indicating that frequently gained genes are also 59	  

frequently lost. Combined, these finding suggest that our model indeed strongly penalizes losses, 60	  

and that the actual gain to loss ratio reflects the expected excess of losses. 61	  

 62	  
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Simulation of gene gain/loss evolution. 63	  

Previous attempts to use the gainLoss software to make inferences about horizontal gene transfer 64	  

and detect coevolution used a parametric bootstrapping approach, simulating the evolution of 65	  

genes to obtain null expectations for testing hypotheses (Cohen et al. 2011, 2012). While the use 66	  

of exact parametric methods to estimate this null distribution is possible in principle (Maddison 67	  

1990), these methods rely upon a single binary reconstruction of ancestral states. Clearly, our 68	  

probabilistic reconstruction is unsuited for such an analysis. Again, one could in principle 69	  

enumerate all possible reconstructions, and estimate the null distribution exactly as a weighted 70	  

sum across each reconstructions, but developing this method for large trees lies outside the scope 71	  

of this paper.  72	  

In our simulations, we therefore followed the example of others with certain 73	  

modifications. The simulation procedure implemented in the gainLoss program was too memory-74	  

intensive to be feasible for a sufficiently large number of genes. Consequently, we took the gain 75	  

and loss rates inferred by gainLoss for the real genes and used their distribution to simulate the 76	  

evolution of genes using the function rTraitDisc() in the APE library. Briefly, we fit gamma 77	  

distributions to the rates of gain and the rates of loss across all genes, and used the resulting 78	  

parameters to define sampling distributions for gain and loss rates of simulated genes (see 79	  

Methods). We then used the approach described in Methods to infer the probability of gain on 80	  

each branch. We found that using these distributions inferred relatively few gains compared to 81	  

the gains of observed genes (compare Supplemental Figure S2A and Supplemental Figure S2C). 82	  

We speculated that the rate mixture model employed by gainLoss has difficulties 83	  

accommodating the upper tail of the distribution of gain rates (roughly, those genes gained >50 84	  

times in this tree), given that the vast majority of genes are gained relatively few times 85	  

(Supplemental Figure S2A). Consequently, we adjusted the shape parameters of the gain and loss 86	  

rate distributions heuristically to find values that gave distributions of simulated gains that 87	  

included genes that are gained sufficiently many times. We found that multiplying the shape 88	  

parameter of the gain rate by 3 and the shape parameter of the loss rate by 1.5 gave reasonably 89	  

wide distributions of gains among simulated genes (Supplemental Figure S2E). It is important to 90	  

note that the shape of the distribution from which rates are drawn does not affect the simulated 91	  

evolution of a given gene with single sampled gain and loss rates. Furthermore, because we are 92	  

not using the entire distribution of simulated genes but only those most appropriate to each gene 93	  
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as a null distribution, any differences in the distributions of gain counts between simulated and 94	  

real genes are unlikely to affect results. 95	  

 96	  

Robustness of gain events inference to analytic method. 97	  

To assess the robustness of our gain inference approach, we set out to compare the gain events 98	  

inferred by our stochastic mapping-based method to horizontally transferred genes inferred by a 99	  

reconciliation-based method (Jeong et al. 2015). While these two methods are likely to yield 100	  

somewhat different results, we wished to confirm that they still agree on a substantial fraction of 101	  

the inferred gain events (Ravenhall et al. 2015). To this end, we used a recently published 102	  

database of horizontally transferred genes inferred by a well-established sequence-based 103	  

reconciliation tool (Jeong et al. 2015). Since this database provides information on horizontally 104	  

transferred genes detected in extant species, we specifically examined whether the genomes of 105	  

extant species that are descendants of a branch on which a specific gene was inferred to be 106	  

gained by our method were indeed more likely to be identified as having acquired this gene by 107	  

HGT according to reconciliation. Notably, since data in the HGT database was not readily 108	  

accessible, we limited our comparison to a small number of key genes (including, for example, 109	  

rbsS, the RuBisCO small subunit discussed in our paper; and see Supplemental Table S1). 110	  

Indeed, we found that extant species that are descendants of the 8 rbsS gain events inferred by 111	  

our method were significantly more likely to have this gene identified as horizontally transferred 112	  

compared to other species (24 out of 31 vs. 30 out of 2441 for descendants vs. not descendants 113	  

respectively; odds ratio = 275.5, p < 10-32, Fisher’s exact test). Moreover, of the 8 rbsS gain 114	  

events, in 6 cases at least one descendant had this gene identified as horizontally transferred by 115	  

reconciliation, suggesting that the high odds-ratio above is not simply the outcome of just one or 116	  

two gain events with numerous descendants (and in fact, in these 6 cases all descendants had the 117	  

gene identified by reconciliation). This extremely strong association between gains inferred by 118	  

the two methods points to a high level of agreement between the two approaches. Analyzing 119	  

several additional genes with many associated PGCEs revealed overall high levels of agreement 120	  

between the two methods (Supplemental Table S1). One apparent exception was the kpsT gene, 121	  

which showed relatively low agreement between our method and reconciliation. Interestingly, 122	  

however, we found substantial evidence of acquisition of other components of the kps operon for 123	  

most kpsT gains predicted by stochastic mapping (in particular kpsM, which is immediately 124	  
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adjacent to kpsT in the kps operon). This operon has been gained by HGT in various pathogenic 125	  

E. coli (Schneider et al. 2004), as found also by stochastic mapping.    126	  

 127	  

Power of the PGCE detection method. 128	  

One of our observations is that there are weak relationships between the prevalence of a gene, 129	  

how often it is gained, and its in- and out-degrees in the PGCE network (Supplemental Figure 130	  

S5). Given that these values define the null distributions that we use to infer PGCEs, it was 131	  

possible that our analyses are less sensitive for certain values of these parameters. We considered 132	  

to what extent a lack of power was affecting our results with a simple power analysis. For genes i 133	  

and j, the maximum observable value Cij counting the gains of j in the presence of i is min(pi, gj), 134	  

representing respectively the prevalence of gene i and the number of gains of gene j. For a range 135	  

of values of these parameters (pi, gj), we compared this maximum potential observation to the 136	  

null distribution from parametric bootstrapping appropriate to these parameter values. This 137	  

represents the most extreme possible test statistic between the two genes for these parameter 138	  

values, so in each case the null hypothesis should be rejected if there is sufficient power. We 139	  

found that power varied substantially across various values of (pi, gj) (Supplemental Figure 140	  

S3A). Specifically, we were incapable of detecting associations for any combination involving 141	  

the most-prevalent genes or the least-gained genes. This is unsurprising, given that noise is 142	  

expected to be high for the former, and signal to be low for the latter. Considering our observed 143	  

distribution of p-values (Supplemental Figure S3B), we find the expected spike in frequency near 144	  

p = 0 (indicating true positive dependencies), but also an unexpected spike in frequency near p = 145	  

1, indicating that our parametric bootstrapping test is underpowered due to the sparsity of gains, 146	  

as suggested by power analysis (Supplemental Figure S3A). Consequently, there are likely to be 147	  

many more PGCEs than we detect in this study. Notably, if we relax our FDR threshold from 1% 148	  

to 5% in inferring PGCEs, we increase the raw number of edges in our network more than ten-149	  

fold (from 8,415 to 86,719). We chose to proceed with the more stringent threshold to focus on 150	  

the most confident PGCEs, but we use this example to highlight the very large potential for 151	  

PGCEs structuring genome evolution in prokaryotes.  152	  

 153	  

Processing and analysis of the PGCE network.  154	  
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After inferring a PGCE network, we post-processed this network to both ease further analysis 155	  

and to remove potentially spurious edges. First, we removed edges such that the network became 156	  

a directed acyclic graph (DAG). DAGs are relatively easy to analyze and interpret topologically. 157	  

We found only one cycle-inducing edge: an obviously spurious self-edge (for gene K07218). The 158	  

absence of non-spurious cycles may be initially surprising, but can be explained by the relatively 159	  

small number of genes with in-edges (less than one-third of genes in the network) and the anti-160	  

correlation of in-degree and out-degree across genes (Supplemental Figure S5E). To evaluate 161	  

whether the lack of cycles is attributable to degree distribution, we randomly rewired the DAG 162	  

five times while preserving degree distribution, and in each of these five cases the result was still 163	  

a DAG. This analysis indicates that this acyclic topology is a simple consequence of degree 164	  

distribution, rather than a biological property of specific PGCE relationships. Together, these 165	  

results indicate that few cycles are expected for a network with such properties. However, one 166	  

might still expect some number of true cycles from a biological point of view, even if the 167	  

network itself is biased against them. We believe that such cycles likely exist, but we do not 168	  

detect them because of our relatively low power, and the stringency of our threshold for 169	  

assigning edges (Supplemental Figure S3, see above section).  170	  

Next, we removed potentially spurious edges in the network that might have been 171	  

introduced by indirect transitive effects. For example, if gene A encourages the gain of gene B, 172	  

and gene B encourages the gain of gene C (AàBàC), we might also infer that there is a direct 173	  

AàC PGCE, even if such a PGCE does not actually exist. Consequently, we performed a 174	  

transitive reduction of our DAG to obtain a “minimal equivalent graph” (Hsu 1975), or a DAG 175	  

with all potentially indirect interactions (such as the AàC example above) removed. While 176	  

potentially removing true PGCEs, we thus enrich our PGCE network for the most confident 177	  

interactions. This procedure removed 186 potentially indirect PGCEs. It is this DAG, with all 178	  

cycles and indirect edges removed, that we used for all downstream analyses. 179	  

The degree distributions for this network indicated that a slight majority of genes (nodes) 180	  

are disconnected, and we omitted these genes from further analyses. Furthermore, the 181	  

distribution of in-degrees was more unequal than that of out-degrees across nodes (Supplemental 182	  

Figure S5A, S5B). The degree distributions showed weak relationships with the prevalence and 183	  

gain count of genes, but these do not appear to be primary determinants of network structure 184	  

(Supplemental Figure S5C, S5D).  185	  
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Dependencies among pathways. 186	  

The urtA-rbsL PGCE (Figure 3B) highlighted the potential importance of inter-pathway PGCE 187	  

dependencies. To understand the structure of such pathway-pathway dependencies, we tested for 188	  

associations between genetic pathways within the PGCE network, compared to a null 189	  

distribution of rewired networks. We detected 93 pathway-pathway dependencies (each p < 190	  

0.001, compared to the rewired null distribution), which we modeled as a directed network 191	  

among 65 pathways (Supplemental Figure S6). Unlike the PGCE network, the pathway-pathway 192	  

dependency network has many cycles. Related pathways showed many dependencies and 193	  

clustered with each other, most strikingly for the metabolism of aromatic compounds. 194	  

Consequently, we expect that PGCE dependencies, rather than only representing one-to-one 195	  

interactions between genes, also reflect functional relationships between whole genetic 196	  

pathways. 197	  

 198	  

Algorithms. 199	  

Feedback arc set (FAS) identification algorithm (Hausmann and Korte 1978; Hassin and 200	  

Rubinstein 1994). 201	  

1) Start with an empty DAG and an empty FAS;  202	  

2) Select a random edge E from our PGCE network, add it to the DAG;  203	  

3) If adding E to the graph adds a cycle, remove E again and add it to the FAS, else accept E 204	  

in the DAG;  205	  

4) If there are more edges that are neither in the DAG nor in the FAS, go to 2 206	  

Transitive reduction of a DAG algorithm (Hsu 1975). 207	  

1) Convert the network into an adjacency matrix representation;  208	  

2) Convert the adjacency matrix into a path matrix;  209	  

3) Remove all edges in the path matrix that can be explained by other paths, by iterating 210	  

over all groups of 3 nodes. 211	  

Topological sort with grouping algorithm (Knuth 1973). 212	  

We used the following procedure to perform a topological sort of a DAG:  213	  

(1) Initialize the rank count with “rank” = 1;  214	  

(2) Identify the set of nodes in the DAG with in-degree = 0 (these occupy the first position in 215	  

a sort);  216	  
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(3) Label these nodes with the current “rank” (1 in the first step);  217	  

(4) Remove these nodes and their edges from the DAG (some new nodes will now have in-218	  

degree = 0;  219	  

(5) if there are still nodes in the DAG, increment “rank” by 1 and go to step 2.  220	  

The resulting labeled groups constitute the ordered ranks of the topological sort.  221	  

 222	  

gainLoss program parameters 223	  

The following are the gainLoss parameters used to generate the principal data reported in the 224	  

paper. We omitted several parameters (e.g., paths to files) to reduce confusion, but the complete 225	  

parameter file can be found as Supplemental File S2. 226	  

_printPij_t 1 227	  

_printL_of_Pos 1 228	  

_calculateAncestralReconstruct 1 229	  

_printAncestralReconstructFullData 1 230	  

_printExpPerPosPerBranchMatrix 1 231	  

_printTree 1 232	  

_optimizationLevel      mid 233	  

_rateDistributionType GAMMA 234	  

_performOptimizationsBBL        1 235	  

_performOptimizations 1 236	  

_numberOfGainCategories 3       237	  

_numberOfLossCategories 3      238	  

_numberOfRateCategories 3 239	  

_maxNumOfIterationsManyStarts 3 240	  

_calculateRate4site     1                                                        241	  

_calculeGainLoss4site   1 242	  

_gainLossDist   1 243	  

_calculeGainLoss4site   1 244	  

_printLikelihoodLandscapeGainLoss       1 245	  

_printPij_t     1 246	  

 247	  
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SUPPLEMENTAL FILES  248	  

Supplemental File S1: Final PGCE dependency network (.xlsx file). 249	  

Supplemental File S2: Parameter file for principal gainLoss run (.txt file). 250	  

Supplemental File S3: Log file for principal gainLoss run (.txt file). 251	  

Supplemental File S4: Code and data for analysis (.zip archive).  252	  
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 253	  
Figure S1. Gene losses outnumber gene gains. Each of the 5801 genes in the ancestral 254	  
reconstruction is plotted according to its number of losses and gains. Dashed line indicates 255	  
expected values if gains and losses were equally frequent. “Gain” and “loss” counts represent the 256	  
expected number of branches experiencing gain and loss, respectively, for the gene in question. 257	  
PCC: Pearson correlation coefficient.  258	  
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 259	  
 260	  
Figure S2. Comparison of evolution of real genes with genes with simulated evolution 261	  
under various models. Distributions of total gains (A) and prevalence (B) estimated for  real 262	  
genes by the gainLoss program. gainLoss rate estimates lead to underestimation of gains (C) and 263	  
prevalence (D) in the tree: gene gain counts across 104 genes simulated according to gain/loss 264	  
rates directly estimated by gainLoss for empirical genes. Gene gain (E) and prevalence (F) 265	  
counts across genes simulated for use in null distributions. Red (gain) and blue (prevalence) line 266	  
plots indicate, for each value of gain count or prevalence, the absolute difference of the least 267	  
similar gene in its null distribution from that value (maximum deviance). For instance, in (E), a 268	  
gene with 40 gains will be compared to a null distribution of simulated genes with as few as 39 269	  
gains and as many as 41 gains (deviance of one). Relative to (A) and (B), parameters of the 270	  
underlying distributions of gain and loss rates were heuristically adjusted to provide acceptable 271	  
coverage of the gain/prevalence values observed for empirical genes in (E) and (F).   272	  
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 273	  
Figure S3. Some regions of the parameter space are underpowered to detect PGCEs. (A) 274	  
Power analysis of the parametric bootstrapping hypothesis test for detecting PGCEs. X and Y 275	  
axes represent, respectively, total prevalence and total gains for a hypothetical pair of genes with 276	  
a strong PGCE (maximum observable test statistic). Colors represent the (log10-scaled) 277	  
minimum possible p-value that can be attained for such a gene pair using the relevant null 278	  
distribution of simulated genes. Areas that are not white/pale yellow are underpowered for 279	  
detecting PGCEs. (B) The distribution of empirical p-values observed for testing hypotheses of 280	  
no PGCE in the evolution of pairs of genes, according to parametric bootstrapping. The spike at 281	  
p = 1.0 in (B) indicates that sparsity in the data detracts from power, as predicted in (A), even 282	  
after filtering pairs of genes with Cij <= 1. 283	  
  284	  
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 285	  
Figure S4. A global network of directional dependencies between prokaryotic genes 286	  
(PGCEs). Node size is scaled to total edge count for each node (and see also Supplemental 287	  
Figure S5). 288	  
  289	  
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 290	  
Figure S5. Topological characteristics of the PGCE network. (A) Out-degree distributions of 291	  
the final PGCE network (nodes with out-degree equal to zero are omitted). (B) In-degree 292	  
distributions of the final PGCE network (nodes with in-degree equal to zero are omitted). (C-E): 293	  
Prevalence and gain counts of genes only weakly affect their PGCEs. The degrees of each gene 294	  
(node) in the PGCE network are plotted against its prevalence (C) and counted gains (D) 295	  
throughout the tree, and the degrees are plotted against each other (E). Pearson correlations 296	  
between the plotted variables are indicated above each plot. PCC = Pearson correlation 297	  
coefficient, p-value is from a correlation test. 298	  
  299	  
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 300	  
Figure S6. A network of evolutionary dependencies between functional pathways. Overall 301	  
structure of the evolutionary pathway-pathway dependency network. Directed edges indicate that 302	  
the source pathway and the sink pathway are connected by more PGCEs between individual 303	  
genes in those pathways than expected from a rewired null distribution (p < 0.001). Colors 304	  
indicate selected pathway clusters of similar functions (green: aromatic compound secondary 305	  
metabolism; red: pathogenesis; purple: carbohydrate metabolism; yellow: DNA metabolism).  306	  
  307	  
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 308	  
Figure S7. Differences in gain counts do not explain differential sorting of genes in different 309	  
functional groups. (A): Variation in ranks of the sort across functional categories. (B): Total 310	  
branches in which gains have occurred (“gains in tree”) across genes in various functional 311	  
categories that are differentially ranked in a topological sort of the PGCE network. Note that the 312	  
categories with the highest average gain (Carbohydrate and Xenobiotics metabolism) are ranked 313	  
in the middle of the sort. See Table 1.  314	  
  315	  
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 316	  
Figure S8. Phylogenetic depth of gene gains in bacteria decreases with rank in the 317	  
topological sort. Phylogenetic depth of the gains of genes are weakly negatively correlated with 318	  
their ranks in the sort (Spearman’s r = -0.24, p < 10-15). For each rank, we plot the distribution of 319	  
the phylogenetic depths (distance of gain branch from root) of the average depth of confident 320	  
gains (Pr(gain) > 0.6)  of each gene in that rank. The mean of each distribution is plotted as a red 321	  
point. Branches leading to Archaea and archaeal genomes are omitted from the analysis. Boxplot 322	  
widths are scaled to the number of genes in each rank of the sort. The tree was converted to an 323	  
ultrametric tree for the purpose of this analysis (the root is separated from all tips by a total 324	  
branch length of 1.0).  325	  
  326	  
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 327	  
Figure S9. Performance of models for predicting the acquisition of genes between clades. 328	  
(A) Overlap of edges in PGCE networks inferred from different subsets of the data. See also 329	  
Supplemental Table S4. All overlaps are highly statistically significant (p < 10-15, 330	  
hypergeometric test). (B) Distribution of prediction scores for gene acquisition on each branch in 331	  
the test set clades. Branches with a gain (Pr(gain) > 0.5)) have a higher score than branches 332	  
without a gain (Pr(gain) < 0.5) for predictable genes (p < 10-15 for each, U-test). Predictable 333	  
genes are the affected genes in at least one PGCE, i.e. they have at least one in-edge in the 334	  
trained PGCE model. Violin plots show density of each distribution, with an inset boxplot (white 335	  
box is median of distribution). Each violin plot shows the distribution of prediction scores for 336	  
branches in one test set for one category (gene gained/gene not gained). (C) A precision/recall 337	  
plot of PGCE predictions. Notably, the precision by which any particular gain event is predicted 338	  
is relatively low due to the rarity of true gain events for any particular gene, yet, as demonstrated 339	  
in Figure 5B and in panel B here, ancestral genome content was overall very informative about 340	  
where along the tree such true gain events will actually occur.   341	  
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Table S1. Reconciliation analysis supports gene acquisitions inferred by stochastic mapping. 342	  
Gene (KEGG 

Orthology) 
Predicted 

gains1 
Supported 

gains2 
Descendants 
with HGT3 

Descendants 
w/o HGT4 

Not 
descendants 
with HGT5 

Not 
descendants 
w/o HGT6 

Odds 
ratio P-val 

rbsS (K01602) 8 6 24 7 30 2411 275.5 < 10-32 

napE (K02571) 4 3 4 2 102 2364 46.4 < 10-4 

parA (K12055) 10 8 21 4 570 1877 17.3 < 10-6 

sctD (K03200) 8 4 9 7 90 2366 33.8 < 10-11 

kpsT (K09689) 16 2 2 30 174 2266 0.87 1.00 
1: Number of branches where a gain event was inferred for this gene by our stochastic mapping-based approach. 343	  
2: Number of gain events predicted by our stochastic mapping-based approach for which at least one descendant had this gene identified as 344	  
horizontally transferred by reconciliation. 345	  
3: Number of genomes (out of 2472) that are descendants of a stochastic mapping-based gain event and have this gene identified as horizontally 346	  
transferred by reconciliation. 347	  
4: Number of genomes (out of 2472) that are descendants of a stochastic mapping-based gain event but do not have this gene identified as 348	  
horizontally transferred by reconciliation. 349	  
5: Number of genomes (out of 2472) that are not descendants of a stochastic mapping-based gain event but have this gene identified as 350	  
horizontally transferred by reconciliation. 351	  
6: Number of genomes (out of 2472) that are not descendants of a stochastic mapping-based gain event and do not have this gene identified as 352	  
horizontally transferred by reconciliation. 353	  
   354	  
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Table S2. Genes which influence the gain of rbsS, gene encoding the RuBisCO small chain. 357	  
KEGG 
Orthology (KO) Description 

K02584 Nif-specific regulatory protein 
K06139 pyrroloquinoline quinone biosynthesis protein E 
K06138 pyrroloquinoline quinone biosynthesis protein D 
K06137 pyrroloquinoline-quinone synthase [EC:1.3.3.11] 
K06136 pyrroloquinoline quinone biosynthesis protein B 
K09165 hypothetical protein 
K03809 Trp repressor binding protein 
K13483 xanthine dehydrogenase YagT iron-sulfur-binding subunit 
K13481 xanthine dehydrogenase small subunit [EC:1.17.1.4] 
K02448 nitric oxide reductase NorD protein 
K02597 nitrogen fixation protein NifZ 
K02596 nitrogen fixation protein NifX 
K02595 nitrogenase-stabilizing/protective protein 
K02593 nitrogen fixation protein NifT 
K02592 nitrogenase molybdenum-iron protein NifN 
K02022 HlyD family secretion protein 
K11811 arsenical resistance protein ArsH 
K08973 putative membrane protein 
K12511 tight adherence protein C 
K08995 putative membrane protein 
K07506 AraC family transcriptional regulator 

K10778 AraC family transcriptional regulator, regulatory protein of adaptative response / methylated-
DNA-[protein]-cysteine methyltransferase [EC:2.1.1.63] 

K07165 transmembrane sensor 
K07161 NA 

K00830 alanine-glyoxylate transaminase / serine-glyoxylate transaminase / serine-pyruvate 
transaminase [EC:2.6.1.44 2.6.1.45 2.6.1.51] 

K01266 D-aminopeptidase [EC:3.4.11.19] 
K05559 multicomponent K+:H+ antiporter subunit A 
K02278 prepilin peptidase CpaA [EC:3.4.23.43] 
K02279 pilus assembly protein CpaB 
K02276 cytochrome c oxidase subunit III [EC:1.9.3.1] 
K02274 cytochrome c oxidase subunit I [EC:1.9.3.1] 
K02275 cytochrome c oxidase subunit II [EC:1.9.3.1] 
K02305 nitric oxide reductase subunit C 
K13924 two-component system, chemotaxis family, CheB/CheR fusion protein [EC:2.1.1.80 3.1.1.61] 
K13926 ribosome-dependent ATPase 
K09924 hypothetical protein 
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K10764 O-succinylhomoserine sulfhydrylase [EC:2.5.1.-] 
K07157 NA 
K03188 urease accessory protein 
K01067 acetyl-CoA hydrolase [EC:3.1.2.1] 
K01797 NA 
K00824 D-alanine transaminase [EC:2.6.1.21] 
K00685 arginine-tRNA-protein transferase [EC:2.3.2.8] 
K09796 hypothetical protein 
K11177 xanthine dehydrogenase YagR molybdenum-binding subunit [EC:1.17.1.4] 
K11178 xanthine dehydrogenase YagS FAD-binding subunit [EC:1.17.1.4] 
K00329 NADH dehydrogenase [EC:1.6.5.3] 
K09008 hypothetical protein 
K09005 hypothetical protein 
K05563 multicomponent K+:H+ antiporter subunit F 
K01800 maleylacetoacetate isomerase [EC:5.2.1.2] 
K00253 isovaleryl-CoA dehydrogenase [EC:1.3.8.4] 
K02258 cytochrome c oxidase assembly protein subunit 11 
K11962 urea transport system ATP-binding protein 
K11963 urea transport system ATP-binding protein 
K11960 urea transport system permease protein 
K11961 urea transport system permease protein 
K05973 poly(3-hydroxybutyrate) depolymerase [EC:3.1.1.75] 
K07102 NA 
K00023 acetoacetyl-CoA reductase [EC:1.1.1.36] 
K15866 2-(1,2-epoxy-1,2-dihydrophenyl)acetyl-CoA isomerase [EC:5.3.3.18] 
K04561 nitric oxide reductase subunit B [EC:1.7.2.5] 
K05564 multicomponent K+:H+ antiporter subunit G 
K05562 multicomponent K+:H+ antiporter subunit E 
K05561 multicomponent K+:H+ antiporter subunit D 
K05560 multicomponent K+:H+ antiporter subunit C 
K02533 tRNA/rRNA methyltransferase [EC:2.1.1.-] 
K15011 two-component system, sensor histidine kinase RegB [EC:2.7.13.3] 
K03200 type IV secretion system protein VirB5 
K07303 isoquinoline 1-oxidoreductase, beta subunit [EC:1.3.99.16] 
K07302 isoquinoline 1-oxidoreductase, alpha subunit [EC:1.3.99.16] 
K07234 uncharacterized protein involved in response to NO 
K00303 sarcosine oxidase, subunit beta [EC:1.5.3.1] 
K02651 pilus assembly protein Flp/PilA 
K01055 3-oxoadipate enol-lactonase [EC:3.1.1.24] 
K02502 ATP phosphoribosyltransferase regulatory subunit 
K03325 arsenite transporter, ACR3 family 
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K02225 cobalamin biosynthetic protein CobC 
K01991 polysaccharide export outer membrane protein 
K04748 nitric oxide reductase NorQ protein 
K00304 sarcosine oxidase, subunit delta [EC:1.5.3.1] 
K00305 sarcosine oxidase, subunit gamma [EC:1.5.3.1] 
K01429 urease subunit beta [EC:3.5.1.5] 
K05343 maltose alpha-D-glucosyltransferase/ alpha-amylase [EC:5.4.99.16 3.2.1.1] 
K06044 (1->4)-alpha-D-glucan 1-alpha-D-glucosylmutase [EC:5.4.99.15] 
K13766 methylglutaconyl-CoA hydratase [EC:4.2.1.18] 
K01430 urease subunit gamma [EC:3.5.1.5] 
K11959 urea transport system substrate-binding protein 
K15012 two-component system, response regulator RegA 
K00457 4-hydroxyphenylpyruvate dioxygenase [EC:1.13.11.27] 
K00104 glycolate oxidase [EC:1.1.3.15] 
K04756 alkyl hydroperoxide reductase subunit D 
K03519 carbon-monoxide dehydrogenase medium subunit [EC:1.2.99.2] 
K09983 hypothetical protein 
K06995 NA 
K00119 NA 
K00449 protocatechuate 3,4-dioxygenase, beta subunit [EC:1.13.11.3] 
K00114 alcohol dehydrogenase (cytochrome c) [EC:1.1.2.8] 
K05524 ferredoxin 
K02282 pilus assembly protein CpaE 
K02280 pilus assembly protein CpaC 
K03153 glycine oxidase [EC:1.4.3.19] 
K09959 hypothetical protein 
K00050 hydroxypyruvate reductase [EC:1.1.1.81] 
K08738 cytochrome c 
K07018 NA 
K00126 formate dehydrogenase, delta subunit [EC:1.2.1.2] 
K14161 protein ImuB 
K11902 type VI secretion system protein ImpA 

K07246 tartrate dehydrogenase/decarboxylase / D-malate dehydrogenase [EC:1.1.1.93 4.1.1.73 
1.1.1.83] 

K03198 type IV secretion system protein VirB3 
K11472 glycolate oxidase FAD binding subunit 
K11473 glycolate oxidase iron-sulfur subunit 
K11475 GntR family transcriptional regulator, vanillate catabolism transcriptional regulator 
K07649 two-component system, OmpR family, sensor histidine kinase TctE [EC:2.7.13.3] 
K07395 putative proteasome-type protease 
K07028 NA 
K02391 flagellar basal-body rod protein FlgF 
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K01601 ribulose-bisphosphate carboxylase large chain [EC:4.1.1.39] 
K03821 polyhydroxyalkanoate synthase [EC:2.3.1.-] 
K07168 CBS domain-containing membrane protein 
K06923 NA 
K00411 ubiquinol-cytochrome c reductase iron-sulfur subunit [EC:1.10.2.2] 
K01941 urea carboxylase [EC:6.3.4.6] 
K17226 sulfur-oxidizing protein SoxY 
K11897 type VI secretion system protein ImpF 

K10125 two-component system, NtrC family, C4-dicarboxylate transport sensor histidine kinase DctB 
[EC:2.7.13.3] 

K10126 two-component system, NtrC family, C4-dicarboxylate transport response regulator DctD 
K04090 indolepyruvate ferredoxin oxidoreductase [EC:1.2.7.8] 
  358	  
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Table S3. Enrichment analysis of genes influencing the gain of rbsS. 359	  
Annotation label p-value1 test set2 background set3 Enrichment4 
Nitric oxide reductase (Nor) complex 6.73*10-5 4 5 12.83018868 
Urea transport system (Urt) 8.62*10-7 5 5 16.03773585 
Purine degradation, xanthine=>urea 0.00042 4 7 9.164420485 
Photorespiration 8.49*10-5 5 9 8.909853249 
Type IV secretion system 0.0031 4 11 5.831903945 
1: from a hypergeometric test. 360	  
2: the number of genes with this annotation appearing in Supplemental Table S1 (out of 88 genes). 361	  
3: the number of genes with this annotation appearing in the set of all genes in the PGCE network (out of 2472 genes). 362	  
4: The ratio of the observed proportion of genes with this label to the expected proportion. 363	  
5: The annotation of these genes to the same pathway is not present in KEGG, so this enrichment is derived from our manual annotation. 364	  
 365	  
  366	  
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Table S4. Summary of nodes (genes) ranked by their order in a topological sort. 367	  
Rank Number of genes Total out-degree Total in-degree 

1 1593 7792 0 

2 498 357 2512 

3 118 73 2348 

4 46 6 2992 

5 5 0 376 
  368	  
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Table S5. Characteristics of PGCE network models inferred from data subsets. 369	  
Dataset1 # PGCEs ROC AUC2 Predictable / Total3 

All (predicting Firmicutes)c 8,228 0.80 667 / 3281 
Lacking Firmicutes 3,703 0.73 394 / 3281 
Lacking A/B-proteobacteria 1,726 0.68 204 / 3505 
1: The dataset used to train the PGCE model in question. Predictions are made concerning the test set (dataset lacking Firmicutes predicts 370	  
Firmicutes). 371	  
2: Area under the curve of the receiver operating characteristic curve; a random prediction is 0.5, a perfect prediction is 1.0. 372	  
3: The number of genes that are predictable using each dataset to train PGCE models, compared to the total number of genes that are actually 373	  
gained at least once (defined as Pr(gain) > 0.5) in the test set clade.  374	  
  375	  
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