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S1. Proof of Theorem 1 (Reversibility)

Here, we present a proof by construction of Theorem 1 (Section 2.5). QrevPoMo with
entries qi j

x y is defined in Appendix A. For 0≤ i ≤ N note the tautologies

qi j
x y = q(N−i) (N− j)

y x . (S1)

During the construction of p, it is convenient to work with a stationary measure λ =
(λs)s∈APoMo

which fulfills stationarity but is not normalized; i.e.,
∑

s∈APoMo
λs 6= 1 and λ= cp,

where c is a normalization constant. Like before, λx and λi
x y are the elements of λ corre-

sponding to boundary states and polymorphic states, respectively (Section 2.5). A sufficient
condition of reversibility of an irreducible Markov process (i.e., if all states are connected)
with a finite number of states is the existence of such a stationary measure λ that fulfills de-
tailed balance λrqrs = λsqsr (r, s ∈APoMo; e.g., Norris 1998, p. 125). QrevPoMo is irreducible
because we can reach every state irrespective of the starting state. The conditions of detailed
balance lead to

�4
2

�

equations for the boundary states

λxµx y = λ
N−1
x y qN−1. (S2)

For changes within polymorphic states we get (N − 2)
�4

2

�

conditions

λi
x yqi = λi+1

x y qi+1 (1≤ i ≤ N − 2), (S3)

which can be rewritten in the recursive form

λi+1
x y = λ

i
x y

qi

qi+1
(1≤ i ≤ N − 2). (S4)

Together with Eq. (S2) and realizing that λ1
x y = λ

N−1
y x , as well as q1 = qN−1, this leads to

λi
x y =

λyµy x

q1

q1 · · ·qi−1

q2 · · ·qi
= λyπx mx y

1
qi

(1≤ i ≤ N − 1). (S5)

We only need to determine λy so that it conforms to the boundary conditions because
the πx and mx y are model parameters and qi = i(N − i)/N . If i = N we find with Eq. (S2)
and (S5)

λy

λx
=
πy

πx
. (S6)
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Note, that to arrive at this equation we required reversibility of the associated mutation
model. A possible solution to this set of

�4
2

�

equations is λy = πy , which is the one considered
here. However, other solutions might be obtained by scaling by a common factor. In brief,

λx = πx , (S7)

λi
x y = πxπy mx y/q

i . (S8)

is a solution to the detailed balance conditions and revPoMo is reversible. �
The conditions of detailed balance hold for any reversible DNA mutation model that is

nested within the GTR model (e.g., the HKY model of Hasegawa et al. 1985). It is important
that the reversibility of revPoMo is not a mere consequence of the reversibility of general
birth-death processes with a finite number of states (e.g., Norris, 1998). The situation in
revPoMo is more complicated because there are

�4
2

�

= 6 connections between the boundary
states. If the total rate of traversal along an arbitrarily chosen circular path depends on its
direction, the process ceases to be reversible. This is also known as the Kolmogorov crite-
rion (Kelly, 1979, p. 21). We want to emphasize, that only the symmetry of the coefficients
qi = qN−i as well as qi,i+1 = qi,i−1 = qi was used and not their functional form per se. This
prevents, at least in this setting, a treatment with unequal frequency bin sizes. For example,
smaller bins close to the boundaries would be a very appealing idea (cf. one-step process,
Malaspinas et al., 2012).

Finally, we calculate the normalization constant c. Let F and P be the sets of boundary
and polymorphic states in APoMo, respectively. Then, c−1 =

∑

s∈F λs +
∑

s∈P λs. For the
boundary, we easily find

∑

s∈F
λs =

∑

x∈A
πx = 1. (S9)

The sum over all polymorphic states is a little bit more tedious:

∑

s∈P
λs =

1
2

∑

x ,y∈A
x 6=y

N−1
∑

i=1

λi
x y

=
1
2

∑

x ,y∈A
x 6=y

N−1
∑

i=1

πxπy mx y/q
i

=
1
2

∑

x ,y∈A
x 6=y

πxπy mx y N
N−1
∑

i=1

1
i(N − i)

= aN

∑

x ,y∈A
x 6=y

πxπy mx y , (S10)

where we used

N−1
∑

i=1

1
i(N − i)

=
2
N

aN and aN =
N−1
∑

j=1

1
j

(S11)
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S2. Symmetry of Stationary Distribution

The elements of p corresponding to polymorphic states are symmetric with respect to a
permutation of bases. That is, for 1 ≤ i ≤ N , we have pi

x y = pN−i
x y . This conforms to the

high symmetry of the model itself (Eq. S1). We expect that high mutational biases lead to a
skewed stationary distribution not only at the boundaries but to a lower extent also for poly-
morphic states. This is reflected in the solution of the diffusion equation for unequal scaled
mutation rates θ1 and θ2, Φ(ν,θ1,θ2) ∼ Beta(θ1,θ2) which allows mutations also when the
population is polymorphic. Mutational biases in population genetics theory are captured by
a non-uniform π in phylogenetics. Also the reversible PoMo approach (revPoMo) does this
at the boundary but not in between them because of the symmetry of the polymorphic ele-
ments of p. However, we can convince ourselves that the boundary mutation model is correct
within its assumptions, i.e., non-uniform π does not contradict a symmetric distribution of
the polymorphic states for boundary mutation only.

Let the distribution of allele frequencies be very skewed such that πx = nπy (n ∈ N, n�
1; we do not assume that

∑

x∈APoMo
πx = 1). In this case, the entries of the stationary distri-

bution are:

py = cπy , (S12)

px = cπx = cnπy , and (S13)

pi
x y = cnπyπy mx y/q

i . (S14)

The mutation coefficients are µx y = mx yπy and µy x = nmx yπy . At equilibrium, the fre-
quency of state {N x} is n times higher than the one of state {N y} but the mutation rate
from x to y is also n times smaller. In total, the mutation rates from {N x} in direction of y
and from {N y} in direction of x are pxµx y = pyµy x = cnπyπy mx y . They level out and the
effective frequency of polymorphic states at equilibrium is symmetric.

S3. Description of Simulations

S3.1. Small Trees

Here, we provide command lines for the simulation pipeline of the Incomplete Lineage
Sorting (ILS) scenario that is also treated in the main manuscript and another 4-species
scenario with Recent Radiation (RR) events. Two scenarios with 8 species (balanced, BAL
and unbalanced UNB) have also been included. An exact description of the RR, BAL and UNB
scenarios can be found in our previous publication (De Maio, Schrempf, and Kosiol, 2015).

1. Simulate gene trees for a fixed species tree with MSMS v.3.2 (Ewing and Hermisson,
2010); e.g., ILS scenario, tree height 1 Ne, 10 Samples (S) 3 Genes (G) and the first
replicate (R).

1 java -Xmx1g -jar msms3.2rc-b163.jar 40 3 -t 0.01 \
2 -I 4 10 10 10 10 -ej 0.5 4 3 -ej 0.6 3 2 \
3 -ej 1 2 1 -oSeqOff -T \
4 > 01a_msms_out/ILS_1Ne_10S_0003G_00R

4



The MSMS output has to be modified slightly before Seq-Gen can read it.
2. Creation of sequence data with Seq-Gen v.1.3 (Rambaut and Grass, 1997). The HKY

model is used, the stationary frequencies for A, C , G and T are set to 0.3, 0.2, 0.2 and
0.3 respectively and the transition to transversion ratio is 3.0. Note that this means that
the ratio of the transition rate to the transversion rate is 6.0. One gene has 1000 base
pairs (bp). The height of the species tree is 1.0 which is scaled by a factor of 0.0025
by Seq-Gen. This means that the average number of substitutions from the tip to the
root is 0.0025.

1 seq-gen -mHKY -f0.3,0.2,0.2,0.3 -t3.0 -l1000 -n1 -on \
2 -s0.0025 < 02_seqgen_in/ILS_1Ne_10S_0003G_00R \
3 > 03_seqgen_out/ILS_1Ne_10S_0003G_00R

3. The resulting sequences are either concatenated, for the use of concatenation methods
or converted to Counts Files with libPoMo (De Maio, Schrempf, and Kosiol, 2015).

S3.2. Large Trees
Here, we describe the simulation pipeline for the large trees simulated under the Yule

speciation model. The species and gene trees with 50 and 60 species were simulated with
SimPhy v.1.0 (Mallo et al., 2015). It randomly simulates species trees and subsequently gene
trees. The creation of sequences with Seq-Gen and the preparation of the input files for
concatenation methods and PoMo is the same as described above. This is the command line
for the trees with 60 species and a tree height of 3 Ne.

1 simphy -sb f:0.0001226623470983912 -rs 10 -rl f:1 -rg 3 \
2 -sp f:10000 -sg f:1 -sl f:60 -st f:30000 \
3 -si f:10 -su f:0.00005 \
4 -o data/01b_simphy_out/Y50_1Ne_10S_0003G

S4. Description of Analysis

Three different methods were used to analyze sequence data: an analysis of the concate-
nated input with standard DNA substitution models (concatenation), the older non-reversible
version of PoMo in HyPhy (PoMo, De Maio, Schrempf, and Kosiol, 2015) and the new re-
versible version of PoMo in IQ-TREE (revPoMo, Nguyen et al., 2015). Source code and bina-
ries are available online under

• https://github.com/pomo-dev/PoMo/releases/tag/v1.1.0 and

• https://github.com/Cibiv/IQ-TREE/tree/PoMo, respectively.

S4.1. Concatenation
The concatenated input was analyzed with IQ-TREE and the HKY model.

1 iqtree -s ILS_1Ne_10S_0003G_00R -m HKY
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S4.2. Non-Reversible PoMo

The non-reversible version of PoMo runs within a Python interpreter. The .cf file ending
indicates that the file is a Counts File.

1 PoMo.py "HYPHYMP CPU=1" -t 0.0025 ILS_1Ne_10S_0003G_00R.cf

S4.3. Reversible PoMo

The reversible version of PoMo has been implemented into IQ-TREE (Nguyen et al., 2015).
It automatically recognizes Counts File data and uses PoMo with a virtual population size of
9 and the weighted sampling technique by default.

1 iqtree -s ILS_1Ne_10S_0003G_00R_CF09.cf -m HKY

The sampling technique and virtual population size can be adjusted with the -st flag. The
following code snippet runs PoMo with a virtual population size of 7 and the sampled input
method.

1 iqtree -s ILS_1Ne_10S_0003G_00R_CF09.cf -m HKY -st CR07

Options and detailed help are available with iqtree -h and online at
https://github.com/Cibiv/IQ-TREE/tree/PoMo.
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S5. Details on Implementation

S5.1. Numerical Stability

To increase numerical stability we fix the last element of π to 1.0 as opposed to fixing
the sum of its elements to 1.0, which is done by standard DNA substitution models. We
want to emphasize that the nature of the model may lead to numerical instabilities especially
because the stationary frequency vector p may have very low entries for some polymorphic
states compared to the entries of boundary states. This huge span may lead to problems upon
eigendecomposition which may be avoided by using a Taylor expansion for the calculation
of the matrix exponential (Pond et al., 2005). Subsequently, the partial likelihood vector of
inner nodes has the same structure and the standard numerical precision might be insuffi-
cient. Most numerical problems can be avoided by using the weighted input method because
then the likelihoods of many states at the leaves of the tree are nonzero.

The difficulties in implementing complex models and the corresponding numerical chal-
lenges are fundamental in maximum likelihood inference, especially once the amount of data
or the model state space increases. The limit of numerical precision where the likelihood com-
putation breaks down and the Felsenstein’s algorithm does not work with extremely small
numbers anymore might be reached. We have seen this happening for codon models, as well
as for DNA models when we have more than 2000 tips in the tree.

S5.2. Weighted Input Method

If the observed samples are fixed for a specific nucleotide x at a specific site the weighted
input method tends to underestimate the partial likelihood of the boundary state {N x} and
overestimate the likelihoods for polymorphic PoMo states that include at least one x . We
multiply the partial likelihood of the boundary state {N x} with a factor of

�4
2

�

because this is
the number of nucleotide combinations. This improves estimates, especially when N is much
larger than the actual number of samples per population in the data.

S5.3. Beta-Binomial with Pool-Seq Data Input

A beta-binomial distribution can be used to allow pool sequence (Futschik and Schlöt-
terer, 2010) input data with sequencing errors to revPoMo. Then, even if the state at the
tip of the tree is {NA}, the probability of this state given a sample {(M − 1)A, 1C} is not 0
because of a possible sequencing error. Similar to Eq. (13), we have

P({ j x , (M − j)y}|{i x , (N − i)y}) = BetaBin
�

j; M ,
i
N

,ρ
�

, (S15)

where ρ is the dispersion factor. It models the probability of sequencing errors by defining
the amount of extra variance with respect to the binomial distribution

Var
�

BetaBin( j; M ,
i
N

,ρ)
�

= M
i(N − i)

N2
(1+ (M − 1)ρ)

= Var
�

Bin( j; M ,
i
N
)
�

(1+ (M − 1)ρ). (S16)
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S6. Further Results — Runtimes

Additionally to the ILS scenario, we also analyzed the RR scenario (De Maio, Schrempf,
and Kosiol, 2015). The tree height was either 1 Ne or 10 Ne. The sample number was 2, 3, 10
and 20 and also the virtual population size of PoMo was varied. The next figures are a more
complete subset of the results (runtimes and branch score distances, BSDs) that have been
produced. In all figures we abbreviate the concatenation approach, the non-reversible PoMo
approach, revPoMo with weighted input method and revPoMo with sampled input method
with “IQ-TREE, HKY+Conc”, “HyPhy, HKY+PoMo”, “IQ-TREE, HKY+revPoMo+Weighted” and
“IQ-TREE, HKY+revPoMo+Sampled”, respectively.

S6.1. Incomplete Lineage Sorting Scenario
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Incomplete Lineage Sorting, 1Ne, 3S

IQ-TREE, HKY+Conc
HyPhy, HKY+PoMo
IQ-TREE, HKY+revPoMo+Weighted

Figure S1: Runtimes of the concatenation, non-reversible PoMo and revPoMo (N = 9, weighted) approaches for the
ILS scenario with three samples and a tree height of 1 Ne and different amounts of data on the x-axis. The HKY
model was used for all methods. Each gene has a length 1000 bp.
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Figure S2: The runtimes of the concatenation, non-reversible PoMo and revPoMo (N = 9, weighted) approaches for
the ILS scenario with 20 samples and a tree height of 1 Ne and different amounts of data on the x-axis. The HKY
model was used for all methods. Each gene has a length 1000 bp.
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S6.2. Recent Radiation Scenario

3 5 10 20 50 100 200 500 1000
Number of Genes

0

100

101

102

103

C
PU

Ti
m

e
[s
]

Recent Radiation, 1Ne, 10S

IQ-TREE, HKY+Conc
HyPhy, HKY+PoMo
IQ-TREE, HKY+revPoMo+Weighted

Figure S3: The runtimes of the concatenation, non-reversible PoMo and revPoMo (N = 9, weighted) approaches for
the recent radiation (RR) scenario with ten samples and a tree height of 1 Ne and different amounts of data on the
x-axis. The HKY model was used for all methods. Each gene has a length 1000 bp.
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S7. Further Results — Tree Errors

S7.1. Incomplete Lineage Sorting Scenario
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IQ-TREE, HKY+revPoMo+Weighted

Figure S4: The tree error measured by the branch score distance for the concatenation, non-reversible PoMo and
revPoMo (N = 9, sampled and weighted) approaches with the HKY model in dependence of the amount of data. The
analyzed sequences were simulated under the ILS scenario with two samples and a tree height of 1 Ne; one gene
has 1000 bp.
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Figure S5: The tree error measured by the branch score distance for the concatenation, non-reversible PoMo and
revPoMo (N = 9, weighted) approaches with the HKY model in dependence of the amount of data. The analyzed
sequences were simulated under the ILS scenario with three samples and a tree height of 1 Ne; one gene has 1000
bp.
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Figure S6: The tree error measured by the branch score distance for the concatenation, non-reversible PoMo and
revPoMo (N = 9, weighted) approaches with the HKY model in dependence of the amount of data. The analyzed
sequences were simulated under the ILS scenario with 20 samples and a tree height of 1 Ne; one gene has 1000 bp.
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S7.2. Recent Radiation Scenario

The recent radiation (RR) scenario involves three species that are very closely related.
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Figure S7: The tree error measured by the branch score distance for the concatenation, non-reversible PoMo and
revPoMo (N = 9, sampled and weighted) approaches with the HKY model in dependence of the amount of data. The
analyzed sequences were simulated under the RR scenario with two samples and a tree height of 1 Ne; one gene has
1000 bp. In this specific case, revPoMo has a higher tree error. The weighted input method is more accurate.
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Figure S8: The tree error measured by the branch score distance for the concatenation, non-reversible PoMo and
revPoMo (N = 9, weighted) approaches with the HKY model in dependence of the amount of data. The analyzed
sequences were simulated under the RR scenario with three samples and a tree height of 1 Ne; one gene has 1000
bp. The reversible model performs best.
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Figure S9: The tree error measured by the branch score distance for the concatenation, non-reversible PoMo and
revPoMo (N = 9, weighted) approaches with the HKY model in dependence of the amount of data. The analyzed
sequences were simulated under the RR scenario with ten samples and a tree height of 1 Ne; one gene has 1000 bp.
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Figure S10: The tree error measured by the branch score distance for the concatenation, non-reversible PoMo and
revPoMo (N = 19, weighted) approaches with the HKY model in dependence of the amount of data. The analyzed
sequences were simulated under the RR scenario with 20 samples and a tree height of 1 Ne; one gene has 1000 bp.
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S7.3. Balanced Tree Scenario

The balanced tree (BAL) has eight species. Every split creates two clades with an equal
number of species. I.e., the oldest split divides the tree into two clades with four species.
Hardly any incomplete lineage sorting is expected in this scenario. Indeed, PoMo does not
perform considerably better, even when a lot of data is available.
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Figure S11: The tree error measured by the branch score distance for the concatenation and revPoMo (N = 9,
sampled) approaches with the HKY model in dependence of the amount of data. The analyzed sequences were
simulated under the BAL scenario with three samples and a tree height of 1 Ne; one gene has 1000 bp. This is the
only case where PoMo performs worse.
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Figure S12: The tree error measured by the branch score distance for the concatenation and revPoMo (N = 9,
sampled) approaches with the HKY model in dependence of the amount of data. The analyzed sequences were
simulated under the BAL scenario with ten samples and a tree height of 1 Ne; one gene has 1000 bp.
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Figure S13: The tree error measured by the branch score distance for the concatenation and revPoMo (N = 9,
sampled) approaches with the HKY model in dependence of the amount of data. The analyzed sequences were
simulated under the BAL scenario with three samples and a tree height of 10 Ne; one gene has 1000 bp.
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Figure S14: The tree error measured by the branch score distance for the concatenation and revPoMo (N = 9,
sampled) approaches with the HKY model in dependence of the amount of data. The analyzed sequences were
simulated under the BAL scenario with ten samples and a tree height of 10 Ne; one gene has 1000 bp.
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S7.4. Unbalanced Tree Scenario

The unbalanced tree (UNB) scenario has eight species. Every split takes away one species.
I.e., the oldest split divides the tree into clades with one and seven species. Here, we expect
a lot of incomplete lineage sorting, especially when the tree is short.
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Figure S15: The tree error measured by the branch score distance for the concatenation and revPoMo (N = 9,
sampled) approaches with the HKY model in dependence of the amount of data. The analyzed sequences were
simulated under the UNB scenario with three samples and a tree height of 1 Ne; one gene has 1000 bp. PoMo
performs way better here because a high level of incompletely sorted lineages is expected for this scenario.
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Figure S16: The tree error measured by the branch score distance for the concatenation and revPoMo (N = 9,
sampled) approaches with the HKY model in dependence of the amount of data. The analyzed sequences were
simulated under the UNB scenario with ten samples and a tree height of 1 Ne; one gene has 1000 bp. PoMo performs
way better here because a high level of incompletely sorted lineages is expected for this scenario.
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Figure S17: The tree error measured by the branch score distance for the concatenation and revPoMo (N = 9,
sampled) approaches with the HKY model in dependence of the amount of data. The analyzed sequences were
simulated under the UNB scenario with three samples and a tree height of 10 Ne; one gene has 1000 bp.
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Figure S18: The tree error measured by the branch score distance for the concatenation and revPoMo (N = 9,
sampled) approaches with the HKY model in dependence of the amount of data. The analyzed sequences were
simulated under the UNB scenario with ten samples and a tree height of 10 Ne; one gene has 1000 bp.
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S7.5. Yule Tree with 50 Species

We also simulated a Yule tree for 50 species with 1 Ne tree height and a rate of three
speciation per coalescent time unit.
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Figure S19: The tree error measured by the branch score distance for the concatenation and revPoMo (N = 9,
weighted) approaches with the HKY model in dependence of the amount of data. The analyzed sequences were
simulated under a Yule speciation model with ten samples per species and a tree height of 1 Ne; one gene has 1000
bp.
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S8. Dependence on the Virtual Population Size
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Figure S20: The branch score distance in dependence of the virtual population size N for both sampling techniques
of revPoMo and the incomplete lineage sorting scenario with three samples and a tree height of 1 Ne . The error bars
are standard deviations of ten runs. For N = 1, the estimate of the concatenation approach was used because PoMo
requires N ≥ 2. All models use the HKY model. The accuracy of revPoMo improves up to a virtual population size
of N = 9. We believe that an underestimation of actual substitutions (Fig. 8) and maybe also the introduction of
numerical errors due to an oversized state space leads to the deterioration of the branch score distance for large N .
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Figure S21: The branch score distance in dependence of the virtual population size N for both sampling techniques
of revPoMo and the incomplete lineage sorting scenario with 20 samples and a tree height of 1 Ne . The error bars
are standard deviations of ten runs. For N = 1, the estimate of the concatenation approach was used because PoMo
requires N ≥ 2. All models use the HKY model. Here, the accuracy of revPoMo slightly improves even for high
virtual population sizes.
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Figure S22: The branch score distance in dependence of the virtual population size N for both sampling techniques
of revPoMo and the incomplete lineage sorting scenario with three samples and a tree height of 10 Ne . The error
bars are standard deviations of ten runs. For N = 1, the estimate of the concatenation approach was used because
PoMo requires N ≥ 2. All models use the HKY model. The accuracy of the reversible PoMo improves up to a
virtual population size of N = 9. We believe that an underestimation of actual substitutions (Fig. 8) and maybe also
the introduction of numerical errors due to an oversized state space leads to the deterioration of the branch score
distance for large N .
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Figure S23: The branch score distance in dependence of the virtual population size N for both sampling techniques
of revPoMo and the incomplete lineage sorting scenario with 20 samples and a tree height of 10 Ne . The error bars
are standard deviations of ten runs. For N = 1, the estimate of the concatenation approach was used because PoMo
requires N ≥ 2. All models use the HKY model. The accuracy of the reversible PoMo minimally improves even for
high virtual population sizes.
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