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Supplementary Figure 1: Schematic diagram of the developed method. a, Rigidity of spherical deformable 
polyacrylamide-co-acrylic acid microparticles (DAAM-particles) can be tuned by adjusting the crosslinker 
(bisacrylamide) or total acrylamide concentration. b, Inclusion of acrylic acid (AAc) in the DAAM-particle allows 
direct conjugation of proteins and carboxyl-reactive fluorescent dyes to the gel. In our approach, the gel is 
functionalized further with αBSA-IgG. c, The mechanical properties of DAAM-particles can be characterized using 
atomic force microscopy (AFM). Using pyramidal tips with large end radius (~700 nm) allows both imaging and 
Hertzian indentations of MPs. d, Phagocytes (in this manuscript J774 macrophage-like cells) are exposed to DAAM-
particles functionalized to trigger phagocytosis. When the DAAM-particles are of sufficiently low rigidity, the 
forces exerted by the cell during phagocytosis will deform the particles. e, Confocal microscopy allows visualization 
of the particle shape using the dye embedded in the gel. Image analysis allows reconstruction of the particle 
boundary with superresolution in the radial direction. f, As the mechanical properties of the DAAM-particles are 
known, isotropic and homogeneous, observed deformations can be used to calculate the forces exerted by the cell.  
	 	



	

	
	
Supplementary Figure 2: Batch production of pAAm Microparticles using hydrophobic Shirasu Porous Glass 
(SPG). a, SPG membrane pore size versus estimated number of particles per batch, calculated as Vaq/VMP, where Vaq 
is the volume of the aqueous phase containing the gel mixture (10 mL), and VMP is the volume of a single particle, 
as quantified in figure 1b (main text). The blue line corresponds to the linear relation between SPG membrane pore 
size and particle size with slope 4.9 (Fig. 1b, main text). Note that this estimate assumes no gel swelling, which 
results in an underestimate of the number of particles per batch. b, Phase images of MPs that were made with the 
same pore size membrane and different crosslinker concentrations (Cc). Lowering Cc results in more hydrogel 
swelling (as evidenced from the reduced contrast indicating lower polymer density) and larger particles. c, Radial 
fluorescence intensity profile illustrating particle radial homogeneity (more than 100 MPs were used to create this 
average). Identical to figure 1b (main text), but for Cc 0.32%. 
	 	



	
 
Supplementary Figure 3: Depth-dependent measurement of point-spread-functions (PSFs) in adherent 
hydrogels.	a, (Left) Diagram of the approach: polyacrylamide (pAAm) hydrogels that are covalently bound to the 
glass surface, and, in which fluorescent nanoparticles (~100 nm diameter) were incorporated, were imaged on a 
confocal microscope. (Right) Confocal image (axial-slice) of such a hydrogel. It can be seen that particles further 
from the surface appear dimmer and elongated along the axial direction. The location of the glass slide can be 
determined from the background signal, when the contrast is enhanced (now shown). b, Reconstructed point-spread-
functions (PSFs) from red 100 nm nanoparticles imaged at various distance from the surface (z). Fluorescent signals 
of over 50 nanoparticles within each distance interval were superimposed with subpixel resolution and averaged. In 
z-slices the particles look identical, but in axial-direction the PSF width increases with distance to the surface. The 
middle PSF was used for simulating the appearance of a homogeneous microsphere on the confocal (Fig. 1c, main 
text and Supplementary Fig. 2). The PSF on the right was used for deconvolution of DAAM-particles in PBS (Fig. 
4, main text). c, Similar to b, but reconstructed from 100 nm yellow-green nanoparticles measured in high refractive 
index (RI) medium (Vectashield (VS); RI ~ 1.45). This PSF was used for deconvolution of DAAM-particles imaged 
in VS (Fig. 3, main text).    	
	
	 	



	
 
Supplementary Figure 4: Microparticle lensing and image distortion in high refractive index media. Z- and 
axial slices from representative confocal image stacks through a pAAm (Cc = 0.32%) and a 10 µm Yellow-Green PS 
particle. pAAm MPs were functionalized with Alexa 488-cadaverine. Surface of pAAm and PS MPs was 
functionalized with BSA, αBSA-IgG, and Alexa 546-GαR-IgG measured in Vectashield (refractive index: ~1.45). 
The polystyrene particle appears deformed (‘egg-shaped’) in the axial direction. The surface stain is also clearly 
distorted: the signal is displaced from the actual surface, and shows large intensity variations, in the upper 
hemisphere. These artifacts arise due to the refractive index mismatch between particle and medium, which results 
in the particle acting as a lens. Such gross artifacts are not noticeable with pAAm particles, since their refractive 
index is very close to the medium (Fig. 1d, main text). 
  



	
	

	
Supplementary Figure 5: Contact radius determination and comparison of elastic properties between pAAm 
microparticles and bulk gels. a, (Left) Shape determination from atomic force microscopy (AFM) images. In grey, 
a line profile from an image through the maximum of a particle, measured along the slow scanning axis. A spherical 
arc was fit to the upper half of the line profile (since the lower part of a sphere cannot be imaged with AFM). The 
particle radius of curvature (R) was then estimated as R = Rtot - Rtip, where Rtot is the radius of the fitted spherical 
arc, and Rtip is the radius of the AFM tip. Under assumption that the particles form spherical caps, and using the 
height estimated from the image, this yields an estimate of the particle shape and, hence, the contact radius with the 
surface (a). (Right) Quantification of the particle contact radius with the surface for particles with and without 
functionalization, and various crosslinker concentration. Errorbars indicated standard deviations. b, Comparison of 
Young’s moduli of microparticles (~10 µm) with bulk adherent hydrogels of identical composition, i.e. same total 
acrylamide concentration, same crosslinker concentration and same acrylic acid concentration. n = 15 indentations 
in unique locations for all the bulk gels. Data for MPs is identical to figure 1f in the main text. Error bars mark 
standard deviations between individual force curves (bulk gels), or standard deviations from particle-to-particle, 
where for each particle the Young’s modulus was estimated as the average from 2-5 indentation curves (MPs). 
	 	



	
Supplementary Figure 6: Image analysis steps for 3D particle shape reconstruction and free boundary 
analysis. a, Particle shape reconstruction. Confocal image stacks were first deconvolved, using a point spread 
function measured with 100 nm red fluorescent nanoparticles, imaged ~8 µm from the surface (Supplementary Fig. 
3). Subsequently, edge detection was performed using convolution with the 3 kernels of the 3D-Sobel Operator, 
after which a single 3D image was calculated as the magnitude of the 3 resulting images. Next, lines were drawn 
outward from the centroid with approximately equally spaced angles, and the fluorescent signal along these lines 
was approximated by interpolation. A Gaussian function was fit to the peak in the resulting line profile, allowing 
determination of surface coordinates. Finally, triangulation was performed to calculate particle and surface 
properties (e.g. centroid, volume, surface area, curvature). b, Free boundary analysis. The immunostained non-
occluded part of the particle surface was analyzed similar to the particle fluorescent signal, except that 1) Edge 
detection was not performed; 2) A regular grid was used; 3) The peak of the Gaussian profile was not localized, but 
instead, the integral of the Gaussian was calculated, which was approximated as Itot = 1.065 * Imax * FWHM, where 
Itot is the total fluorescent intensity under the Gaussian, Imax is the maximum fluorescent intensity, and FWHM is the 
full width half maximum of the Gaussian. Itot was more uniform over the MP surface than the Imax. A 2D projection 
of Imax was made (left) and the signal was binarized using a region-based active contour (or “snake”) algorithm1 
(dashed red line). Finally, the binary mask was used to align the particles, with the base of the cup at longitude -0.5π 
and latitude 0. The mask was also interpolated to determine for each edge coordinate if it was within the area 
covered by the cell, or part of the traction-free boundary. 
	  



	
	
Supplementary Figure 7: Uptake of pAAm MPs by J774 macrophage-like cells is ligand-dependent. a, J774 
murine macrophage-like cells were seeded in a 12-well plate (1.5 x 105 cells/well). The next day, cell nuclei were 
stained with Hoechst, and then exposed to stiff (crosslinker concentration: 3.2%) MPs (~7.5 x 10^5 MPs/well), 
stained with TRITC-Cadaverine and further functionalized with BSA and αBSA-IgG, or only BSA, for 30 minutes. 
Cells were then fixed, washed vigorously and imaged (40x). Typical fields of view (FOV) are shown. b, 
Quantification of the number of beads (counted from fluorescent TRITC-CAD signal) per cell (counted from 
fluorescent Hoechst signal). Approximately 400 cells were analyzed in each condition. Error bars represent standard 
deviations estimated as √λ, where λ is the average number of beads per cell, hence we make the assumption that the 
number of MPs per cell follows a Poisson distribution.  
	
	 	



							 	
Supplementary Figure 8: Determination of the free parameters α  and β  in solving the mixed-boundary 
problem. The converged shape difference 𝐷 𝑟; 𝑟! , traction magnitude 𝑅 𝑻; 𝜕𝛺!  on the traction-free region, and 
the elastic energy 𝐸!" as a function of optimization parameters α and β for particle 1-3 (see main text). Data for 
particle 4 is not shown because it is fully internalized and therefore does not have a traction-free boundary. Note that 
the dependence on α and β is similar for all 3 particles with strongly different sizes of the traction-free boundary (9 - 
84% of the total particle surface). This allows use of a single α and β value for all shapes. a, Converged 
𝐷 𝑟; 𝑟! ,𝑅 𝑻; 𝜕𝛺!  and 𝐸!" as a function of α, with b = 10-5. 𝛼 controls emphasis on the traction-free boundary 
during optimization: the higher the 𝛼 value, the lower the traction magnitude will be on the traction-free region. At 
𝛼 ≈ 10!!, the converged shape difference (< 25 nm) and traction magnitude (< 10 Pa) are both low and the energy 
has plateaued. Increasing 𝛼 leads to a large increase in the elastic energy, whereas reducing 𝛼 increases  𝑅 𝑻; 𝜕𝛺!  
(it decreases 𝐷 𝑟; 𝑟! , but the shape is already fitted below the noise level: ~50 nm). Therefore, 𝛼 ≈ 10!! is the 
optimal choice. b, plot of the converged 𝐷 𝑟; 𝑟! ,𝑅 𝑻; 𝜕𝛺!  and 𝐸!" as a function of 𝛽,  with fixed 𝛼 = 10!!. 𝛽 
controls the emphasis on the elastic energy during optimization, as well as the anti-aliasing. Hence, the converged 
𝐸!" decreases, the shape and the force field are smoothened with increasing 𝛽. The converged value of shape 
difference and traction increases strongly with increasing 𝛽 > 10!!, while for 𝛽 < 10!! the converged values 
remain rather constant. Therefore, 𝛽 = 10!! (and 𝛼 = 10!!) is the best choice for the global optimization. 
	 	



	

 
Supplementary Figure 9: Gaussian curvature indicates ring homogeneity differences between particles. A 
particle in the stage of pseudopod progression (top, particle 2, 34% engulfed, see also main text figure 4b) and a 
particle in the phase of cup closure (bottom, particle 3, 84% engulfed, see also main text figure 4c) are shown. 
Gaussian curvature is zero when one of the two principal curvatures is 0, positive when both principal curvatures 
have the same sign (a bulge or an indentation), and negative when the principal curvatures have opposite signs (a 
saddle point). This highlights homogeneities in the ring, which are striking in particle 2, but mostly absent in particle 
3. Stars mark the phagocytic cup base. Left, projection of particle surface from a perspective that facilitates ring 
visualization. Right, equirectangular map projections (similar to figure 4 in the main text). 
	  



Supplementary Table 1: Concentrations used for conjugation of the MPs 
Particle Cc C BSA C Ab1 C Ab2 C dye Figure 
 % (m/m) (mg/mL) (mg/mL) (µg/mL) mmol/L 

  
     Intraparticle homogeneity illustration 
DAAM 2.3 5* - - 2.32 1e 
DAAM 0.32 5* - - 0.58 S2 
 
     Lensing effect illustration 
DAAM 0.32 19 0.09 4.5 0.58§ 1i, S4 

  PS - 0.04† 0.06 3 - 1i, S4 
 
     Mechanical characterization (AFM)/Determination resolution/Sphericity measurements 
DAAM 2.3 77 - - 2.32 1j, 1k, S5 
DAAM 0.65 29 - - 0.87 1k, S5 
DAAM 0.32 19 - - 0.58 1k, 2, S5 
 
     Measurements phagocytic efficiency  
DAAM 2.3 77 - - 0.58 S7 
DAAM 2.3 77 0.14 - 0.58 S7 
 
     Phagocytic deformation assay 
DAAM 0.32 19 0.09 4‡ 0.58 3, 4, 5, S8 

 
Concentration of crosslinker (Cc), BSA, primary antibody (anti-BSA rabbit IgG), secondary antibody (anti-rabbit 
IgG) used for the various experiments. For all conjugations of deformable acrylamide-co-acrylic acid microparticles 
(DAAM-particles), the particle concentration was kept at 5% v/v. For polystyrene microparticles (PS MPs) particle 
concentration was 2% (v/v). BSA concentration was chosen such that enough BSA was present to bind 25% of the 
acrylic acid groups within the particles. *FITC-BSA instead of BSA was used for derivation, in which case a smaller 
amount of protein was used. †For polystyrene particles a much lower concentration was used, since the protein can 
not diffuse into the non-porous particle. In this case, 10x the amount to saturate the surface area of the particles was 
used. Primary antibody concentration was chosen such that enough IgG was present for opsonizing 2x the surface of 
the particles (although the primary antibody may diffuse into the particles). Secondary antibody concentration was 
picked such that enough antibody was present for ~0.1x surface saturation. ‡Immunostaining was performed after 
exposure of the beads to cells. Concentration of the carboxyl-reactive dye (TRITC-Cadaverine (Cad)) was chosen 
such that enough dye was present to bind 50% of the acrylic acid groups within the particles. §Alexa Fluor 488-Cad 
was used instead of TRITC-Cad. Most right column indicates the figures for which each of these particles was used, 
where S indicates reference to supplementary figures. 
	
	 	



Supplementary Note 1: Spherical harmonic decomposition of particle shape  

For determining if there is a characteristic length scale of the deviations of non-deformed 

particles from a perfect sphere, the edge coordinates of adherent particles (those with the highest 

signal-to-noise ratio in figure 2a in the main text) were represented in Cartesian coordinates 

𝑥! ,𝑦! , 𝑧! , 𝑖 = 1,2,… ,𝑛. First, we determine the center 𝑋,𝑌,𝑍  and the radius 𝑅 of the particle 

by minimizing the sum of the squared distances between the data points to the spherical surface 

given by 𝑋,𝑌,𝑍,𝑅 : 

min
!,!,!,!

𝑥! − 𝑋 ! + 𝑦! − 𝑌 ! + 𝑧! − 𝑍 ! − 𝑅!
!

 

The data points were then represented in spherical coordinates: 

𝑟! = 𝑥! − 𝑋 ! + 𝑦! − 𝑌 ! + 𝑧! − 𝑍 !,𝜃! = arccos
𝑧! − 𝑍
𝑅 ,𝜑! = atan2 𝑦! − 𝑌, 𝑥! − 𝑋 , 

which can be treated as the radius of points being a function of co-latitude and longitude 𝑟(𝜃,𝜑). 

Considering the measurement error increases with the distance to the equator (𝜃 = 90°), the 

actual radius is corrected using weighted function 𝑤 𝜃  described in Supplementary Note 3: 

𝑟! 𝜃! ,𝜑! = 𝑤 𝜃! 𝑟! − 𝑅 + 𝑅. 

Since we only obtained data on the upper half of the particle, we copy and reverse the 

data points to form a complete sphere: 𝑟 𝜃 > 90°,𝜑 = 𝑟 180°− 𝜃,𝜑 + 𝜑! , where 𝜑! is a 

random angle between 0°, 90°  to avoid the symmetry of the upper and lower sphere. Next, 

using SHTools2 spherical harmonic analysis was performed on 𝑟 𝜃,𝜑  using the least-square 

method: 

𝑟 𝜃,𝜑 = 𝑟!!𝑌!! 𝜃,𝜑 ,
!!

!!!!

!!"#

!!!

 

where 𝑟!! are the spherical harmonic coefficients, and 𝑌!! are the spherical harmonic functions 

defined in Supplementary Note 4. In the following analysis, the cutoff 𝑙!"# = 20 was used to be 

consistent with the spherical harmonic method we use throughout the manuscript. Finally, the 

“per-𝑙” power spectrum of the spherical harmonic coefficients are defined as  

𝑆! = 𝑟!! !
!!

!!!!

 

for presenting the magnitude of the coefficients as a function of spherical harmonic degree 𝑙. 

 



Supplementary Note 2: Dilation and smoothing of the edge of the traction-free surface 

For calculation of surface traction forces, the traction-free boundary region was dilated 

and its edge was smoothed. The rational for dilation is based on 1) lack of knowledge about the 

exact correspondence of the region of possible cellular force exertion on the target with the area 

of tight proximity between cell and target (where the fluorescent secondary antibody probe is 

excluded), 2) the notion that overestimation of the extent of the traction-free surface will likely 

have a more profound effects on the resultant forces than underestimation of this area. 

Smoothing of the edge was applied to prevent overestimation of high-frequency contributions in 

the force calculations. 

Dilation by 1 µm was performed by excluding points from the traction free surface with 

great circle distance <1 µm to any point part of the edge of the traction-free boundary. Then a 

weight function is defined as: 

𝑤! 𝜃,𝜑 =
1, beyond the dilated edge completely traction free                        
0,1 ,   between non-dilated and dilated edge smoothed edge region  
0, inside the non-dilated region completely in contact                   

 

In between the smoothed edge region, we smoothly interpolate the 𝑤! values between 0 

and 1. In particular, we constructed 𝑤! 𝜃,𝜑  as following: we first assign 0.5 to the values on 

the transitional region: 

𝑤!! 𝜃,𝜑 =
1, beyond the dilated edge completely traction free                        
0.5,       between non-dilated and dilated edge smoothed edge region  
0, inside the non-dilated region completely in contact                   

 

Then a spherical harmonic expansion is applied to 𝑤!! 𝜃,𝜑 : 

𝑤!! 𝜃,𝜑 = 𝑤!,!"! 𝑌!! 𝜃,𝜑 ,
!,!

 

 and the edge-smoothing is applied to 𝑤! by damping the high frequency coefficients: 

𝑤! 𝜃,𝜑 = 𝑤!,!"! 𝑞 𝑙  𝑌!! 𝜃,𝜑
!,!

, 

where 

𝑞 𝑙 =

0, 𝑙 > 𝑙!!

sin! 2𝜋
𝑙!! − 𝑙
𝑙!! − 𝑙!"

, 𝑙!" ≤ 𝑙 ≤ 𝑙!!

1, 𝑙 < 𝑙!"

 

which cuts off the coefficients smoothly between 𝑙!!  and 𝑙!" . In this paper, we use 



𝑙!" = 12 and 𝑙!! = 20. 

Finally, the corrected residual traction magnitude is calculated as: 

𝑅 𝑻;𝜕Ω! =
1
𝑚 𝑻! 𝜃!!,𝜑!! ⋅𝒘!  𝑤 𝜃!!  𝑤! 𝜃!! ,𝜑!!

!

!

 

The traction in the contact region is hence not considered in 𝑅 𝑻;𝜕Ω! , while the traction on the 

completely traction-free region is fully considered and the traction on the edge is partially 

considered. 

 

Supplementary Note 3: Spherical Harmonics definition 

The definition of spherical harmonic functions in this paper is as following:  

𝑌!! 𝜃,𝜑 =
𝑃!! cos𝜃  𝑒!"# ,𝑚 ≥ 0

−1 ! 𝑌!
! ∗

,𝑚 < 0
, 

where 𝑌!
! ∗

is the complex conjugate of 𝑌!
! , and 𝑃!! 𝜇  is the normalized associated 

Legendre function with the complex 4𝜋-normalization which is defined as following: 

𝑃!! 𝜇 = 2𝑙 + 1
𝑙 −𝑚 !
𝑙 +𝑚 !𝑃!" 𝜇  

The unnormalized associated Legendre functions are: 

𝑃!" 𝜇 = 1− 𝜇!
!
!
𝑑!

𝑑𝜇! 𝑃! 𝜇 , 

where the Legendre function 𝑃! 𝜇  is defined in Supplementary Note 2. Spherical harmonic 

functions are orthogonal for different 𝑙,𝑚  degrees: 

𝑌!! 𝜃,𝜑 ∗ 𝑌!!
!!

𝜃,𝜑  𝑑𝑆 =
!Ω

4𝜋𝛿!!!𝛿!!! , 

where 𝛿!!! is the Kronecker delta function. 

Given the orthogonality property of spherical harmonic functions, it is straightforward to 

evaluate the elastic energy by convolving displacement field and traction field on the spherical 

surface, which equals to the inner product of spherical harmonic coefficients: 

𝐸!" =
1
2 𝑢! 𝜃,𝜑 ⋅ 𝑇! 𝜃,𝜑  𝑑𝑆

!!
= 2𝜋 𝑢!"#

∗𝑇!"#
!,!,!

 

where 𝑢!"#
∗
 are the complex conjugates of the coefficients 𝑢!"#. 



Supplementary Note 4: Gauss-Legendre quadratic (GLQ) meshing, latitude and resolution 

weighing function 

Gauss-Legendre quadratic mesh with degree 𝐿 is exact if the sampling function 𝑓 𝜃,𝜑  is 

terminated within 𝐿  degrees of spherical harmonics. The longitude nodes are uniform on 

longitude with 360°/ 2𝐿 + 1 , and the latitude nodes correspond to zeros of the Legendre 

Polynomial of degree 𝑙 = 𝐿 + 1: 

𝑃! 𝜇 =
1
2!𝑙!

𝑑!

𝑑𝜇! 𝜇
! − 1 ! ,  

where 𝜇 = cos𝜃. In total, GLQ has 𝑛!"#$ = 𝐿 + 1 × 2𝐿 + 1  nodes on 𝜃,𝜑  space.  

GLQ meshing introduces a higher node density at the poles of the sphere than at the 

equator. To avoid overrepresentation of the contribution of the shape and traction at the poles, 

the nodes are weighted by weight function 𝑤 𝜃 = sin𝜃 during the evaluation of the shape 

difference  𝐷 𝑟;𝑟0  and the traction magnitude 𝑅 𝑻;𝜕Ω! . In addition, we also include the 

weighing vector 𝒘! = 1,1,1/3 !  in Cartesian coordinates to address that the measurement noise 

level in the axial-direction is higher than in the lateral directions. 

𝐷 𝑟; 𝑟! =
1
𝑛 𝑟!! − 𝑟! 𝜃!! ,𝜑!! 𝒓 𝜃!! ,𝜑!! ⋅𝒘!  𝑤 𝜃!!

!

!

 

𝑅 𝑻;𝜕Ω! =
1
𝑚 𝑻! 𝜃!!,𝜑!! ⋅𝒘!  𝑤 𝜃!!

!

!!
!,!!

! ∈!Ω!

 

 

 

	
	 	



SUPPLEMENTARY	DISCUSSION	
	
Superresolving the particle boundary by edge localization microscopy (ELM) 

In the radial direction, we have been able to resolve the particle boundary with accuracy 

beyond the diffraction limit (dx,y ≈ 200 nm, dz ≈ 600 nm). Such resolution is accomplished 

similarly to single-molecule localization techniques3,4; the particle edge, representing an 

optically distinct feature, can be localized with precision that increases approximately with 1/√N, 

where N is the number of photons collected. For a homogeneously labeled particle, the radial 

intensity profile can be approximated as the convolution of a step function, representing the 

homogeneous and dense presence of fluorophores, with a Gaussian function representing the 

emission spot, i.e. the point spread function (PSF), of a single fluorophore. The derivative of this 

convolution is, in fact, a Gaussian itself, localized at the particle edge. Hence, edge 

superlocalization can be performed by fitting a Gaussian to the derivative of the intensity profile 

at the particle edge, where the discrete derivative can, for example, be approximated using the 

3D Sobel operator5. 

 

Synchronized particle polymerization using oil-soluble polymerization initiators 

Water-soluble initiators, such as ammoniumpersulfate (APS) have frequently been used 

for polyacrylamide polymerization, and were also used previously for particle synthesis. Such 

initiators must be present in the gel mixture during emulsification, since they are not oil-soluble. 

It was previously shown that use of such initiators can lead to differential particle properties 

(optical and mechanical) over the extrusion period.6 This could be attributed to polymerization of 

the gel mixture before extrusion, which occurs, albeit slowly without TEMED, over the 

relatively long extrusion period (≳1h).6 Another potential explanation is based on the rapid 

degradation of APS in aqueous solutions, which could result in a higher concentration of APS 

and more efficient polymerization of droplets extruded early on, while droplets extruded later 

will polymerize less efficiently and will therefore have different properties. Regardless of the 

exact mechanisms that underlie the particle property dependence on extrusion time, use of an oil-

soluble initiatior (e.g. AIBN) prevents such problems as it prevents polymerization of the gel 

mixture before extrusion and initiator degradation, and allows triggering polymerization in a 

entirely synchronized fashion. Using an oil-soluble initiator therefore likely improves particle-to-



particle homogeneity. Finally, the use of AIBN did not seem to affect the uniformity of the 

particle polymer network, as evidenced from the homogeneous radial fluorescent staining of the 

particles (Fig. 1e, Supplementary Fig. 2), which indicates that AIBN diffusion into the 

microdroplets did not result in any radial particle inhomogeneities.   
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