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1 Limix methods and implementation

Limix is a flexible mixed model framework, allowing to efficiently formulate a variety of different mixed
model analyses. Complex covariance functions that describe random effects can be combined from building
blocks, using addition and multiplication as basic operations (Section 1.1). Inference in these models can
be performed by gradient-based optimisation of the marginal likelihood or a regularized version thereof
(Section 1.2). Section 1.4 describes how the same framework can be extended to perform efficient inference
in the special case of matrix variate data and Section 1.5 outlines the software implementation and
exemplifies the basic usage.

In the most general formulation, we assume that the data y is multivariate normal distribution with
mean µ and covariance matrix Σ

y ∼ N (µθ ; Σθ ) , (1.1)

where θ is the set of model parameters. In linear mixed models µθ typically is a linear function µθ = Xβ,
parametrized by a fixed design matrix X and fixed-effect parameters β. The covariance matrix Σ θ is
parametrized by individual variance components or covariance functions, corresponding to random effects
in the model. In this instance, the set of model parameters θ is given by the union of the fixed effects β
and the variance parameters.

1.1 Kernel methods for defining composite covariance functions

Defining property of a valid covariance matrix is a positive semi-definite symmetric matrix. In Limix we
utilize a key insight from the kernel machines literature that allows construction of covariance matrices
by combing a set of covariance matrices. First, we define a set of base covariance functions used in Limix
(Section 1.1.1). In Section 1.1.2, we then define basic operations to combine two base covariance matrices
A and B using sum and multiplication operators, which obey positive semi-definiteness of the resulting
matrix C. By iteratively applying these operations we can obtain complex covariance matrices from
simpler base covariance models.

1.1.1 Base covariance models

Limix provides implementations for a range of covariance matrices, where the most important examples
are defined here. A more rigorous treatment of covariance functions including the definition of more
extensive examples can be found in Rasmussen and Williams [2005]. Each covariance is parameterised by
a set of parameters θ, giving rise to a semi-positive definite covariance matrix C(θ). For inference, the
matrix derivatives of C w.r.t θi are needed, see also Section 1.2.

Fixed covariance matrix

If the covariance A between the samples is observed, we have to learn the amplitude σ2
g > 0:

C(θ) = σ2
gA,

∂C

∂σ2
g

= A (1.2)

Here, θ = [σ2
g ].
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1 Limix methods and implementation

Linear covariance function

The linear covariance function can be derived by marginalizing out the weights in a random effect model
Xβ, assuming β ∼ N (0, σ2

g). This results in a covariance of the form C(θ) = σ2
gXX

>, where again
θ = [σ2

g ]. This covariance can be used to model polygenic effects if X corresponds to genome-wide SNP
data.

Free form covariance model

In practice, the covariance between phenotypes is not observed and hence it’s parameters need to be
inferred from data. The most general form is the free form covariance, which is a general N ×N matrix
that obeys the semi positive-definiteness constraints. To this end, we parametrize the covariance using
cholesky factors, as any semi-positive definite matrix has a valid cholesky decomposition.

C(θ) = LL>,
∂C

∂L
= L∂(L)> + ∂(L)L> (1.3)

where L is a lower triangular matrix of covariance parameters, i.e. θ = [L0,0,L1,0,L1,1, . . . ,L0,N ,LN,N ].
The gradient with respect to a matrix field Lij can be obtained by applying the chain rule ∂C

∂Lij
= ∂C

∂L
∂L
∂Lij

.

Low-rank covariance model

We can restrict the phenotypes to lie in a lower-dimensional linear subspace, by using a low-rank param-
eterization of the covariance matrix

C(θ) = ZZ>,
∂C

∂Z
= 2Z (1.4)

whereZ is aN×K matrix, withK < N , and the parameters are its entries, i.e. θ = [Z0,0,Z0,1, . . . ,Z0,K , . . . ,
Zn,0, . . . ,ZN,K ]. The gradient with respect to an entry Zij can then again be obtained by using the chain
rule ∂C

∂Zij
= ∂C

∂Z
∂Z
∂Zij

.

Diagonal covariance matrix

The diagonal covariance matrix is often used to model the noise between the phenotypes. By restricting the
matrix to be diagonal, we implicitly assume that the noise is independently, but not identically distributed

C(d) = diag(d),
∂C

∂d
= I, (1.5)

where θ = [d1, . . . ,dN ].

1.1.2 Composite covariance functions

First, the sum of two covariance matrices is a covariance matrix.

A+B = C, (1.6)

Additive combinations of covariance matrices allow for variance decomposition and can be interpreted as
multiple independent random effects.Second, the point-wise product of two covariance matrices is a valid
covariance matrix,

A�B = C (1.7)

and the Kronecker product of two covariances matrices is as well (see also Section 1.4)

A⊗B = C. (1.8)
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1.2 Inference and parameter estimation

The gradient of the composite covariance functions can be obtained by applying iteratively the sum and
product rule TODO ∂ is now a gradient, not derivative.

∂

∂θ
(A+B) =

∂

∂θ
A+

∂

∂θ
B (1.9)

∂

∂θ
(A�B) =

∂

∂θ
(A)�B +A� ∂

∂θ
(B) (1.10)

∂

∂θ
(A⊗B) =

∂

∂θ
(A)⊗B +A⊗ ∂

∂θ
(B) . (1.11)

1.2 Inference and parameter estimation

1.2.1 Maximizing the model likelihood

We perform parameter estimation by maximizing the log likelihood. The gradient of the log likelihood is
optimized using LBFGS [Liu and Nocedal, 1989].

∂

∂θi
logN

(
y
∣∣µθ ; Σθ

)
=− 1

2
tr

(
Σ−1
θ

∂Σθ

∂θi

)
+

1

2
(y − µθ)>Σ−1

θ

∂Σθ

∂θi
Σ−1
θ (y − µθ)

− (y − µθ)>Σ−1
θ

∂ (y − µθ)

∂θi
(1.12)

1.2.2 Regularization

Estimating the covariance matrix between phenotypes is hindered by the large parameter space: for
free-form covariance matrices, the number of parameters is growing quadratically with the number of
phenotypes, while the number of new data points is only growing linearly. If not accounted for, this will
lead to overfitting, i.e. the model does not only explain the signal of the data but also the noise, which in
turn leads to a bad generalization behavior and a loss of interpretability. A natural way to prevent this is
to add a regularization term over the covariance matrix

min
θ
− logN

(
y
∣∣µθ ; Σθ

)︸ ︷︷ ︸
data fit

+ Reg(Σθ)︸ ︷︷ ︸
regularizer

. (1.13)

While the first term maximizes the fit between the data and the model, the second term acts as a penalizer
that prevents the model from becoming too complex. In practice, we used the sum-of-squares penalty
on the off-diagonal entries as regularization function Reg(Σθ) = λ

∑
i 6=j (Σθ)ij

2, where λ is the trade-
off parameter between fitting the data and regularizing. We do not penalize the diagonal elements, to
retain an unbiased estimate of the heritabilities. From the Bayesian perspective, the regularization term
is equivalent to an isotropic Gaussian prior, with zero mean.

Out of sample prediction In practice, it is often hard to find the right trade-off between model fit and
regularization. We used out of sample prediction accuracy to find the appropriate λ. Predictions for new
data points can be carried out by conditioning on the observed data

p(y∗|y,θ) =N
(
y∗|µθ(X∗) + Σθ(X∗,X)Σ−1

θ (y − µθ);

Σθ(X∗,X∗)−Σθ(X∗,X)Σ−1
θ Σθ(X,X)∗

)
, (1.14)

where µθ(X∗) is the mean function on the test inputs, Σθ(X,X)∗ depicts the covariance between the
training and the test samples, and Σθ(X∗,X∗) between the test samples.
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1 Limix methods and implementation

1.3 Kronecker product identities

Let A be a N ×M matrix, and B be a P × Q matrix. The Kronecker product A ⊗B is a NP ×MQ
matrix and defined as follows

A⊗B =

A11B . . . A1nB
...

. . .
...

Am1B . . . AmnB

 (1.15)

Due to its block structure, the Kronecker product has a number of nice properties that speed up
inference[Bernstein, 2009, Petersen and Pedersen, 2006]. In particular, the dot product between two
Kronecker products is a Kronecker product again

(A⊗B) (C ⊗D) = AC ⊗BD, (1.16)

where C ∈ RM×R and D ∈ RQ×S . It can be evaluated in O(NM2R + PQ2S) time, while the naive
runtime is O(NPM2Q2RS).

Let vec be an operation that concatenates the columns of a N×M matrix into a vector of length N ·M .
The product of Kronecker product and a vectorized matrix can be computed efficiently

(A⊗B) vec(Y ) = vec
(
BY A>

)
(1.17)

bringing the runtime down to O(PQ2N +QN2M) from O(NPMQ).

Let UASAU
>
A be the eigenvalue decomposition of A ∈ RN×N and UBSBU

>
B the eigenvalue decompo-

sition of B ∈ RP×P . The eigenvalue decomposition of the Kronecker product A ⊗B can be synthesized
by the eigenvalue decompositions of its components

A⊗B = (UA ⊗UB) (SA ⊗ SB)
(
UA
> ⊗UB>

)
(1.18)

leading to a runtime reduction from O(N3P 3) to O(N3 + P 3).

1.4 Efficient inference for matrix variate mixed models

In Section 1.1, we gave a general overview over existing covariance functions. We now consider the special
case in which the covariance matrix can be written as a sum of two Kronecker products and the fixed
design matrix also exhibits Kronecker structure

N

 vec (Y )
∣∣ J∑
j=1

(Aj ⊗Xj) vec (Bj) ; C(θC)⊗R(θR)︸ ︷︷ ︸
signal

+ Σ(θΣ)⊗ I︸ ︷︷ ︸
noise

 , (1.19)

Here, Y denotes the N × P data matrix with N samples and P phenotypes. For the fixed effect j, the
matrix Bj ∈ RMj×Dj denotes the fixed-effects, Aj ∈ RP×Mj is the design matrix of the column effects
and Xj ∈ RN×Dj of the row effects. We define R(θR) as the signal row covariance of the data matrix and
C(θC) as the signal column covariance matrix. Similarly, the noise column covariance matrix is given by
Σ(θΣ). For the sake of clarity, we further assume that the noise row covariance matrix is the identity I,
the extension to an arbitrary noise row covariance matrix is straightforward. For notational convenience,
we will also drop the dependence of the covariance matrices on additional hyperparameters from now on.

The merits of this class of models lie in its tractability: as we show in the following, efficient inference
can be performed in O(N3 + P 3) time and in O(N2 + P 2) space, whereas an arbitrary covariance matrix
of size NP has runtime O(N3P 3) and a memory requirement of O(N2P 2).
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1.4 Efficient inference for matrix variate mixed models

1.4.1 Log likelihood evaluation

The log likelihood of the data is given by:

logL = −NP
2

log(2π)− 1

2
log |C ⊗R+ Σ⊗ I| − 1

2
vec(Yr)

> (C ⊗R+ Σ⊗ I)−1 vec(Yr), (1.20)

where Yr is the residual phenotype, after the fixed effects have been subtracted from the data:

vec(Yr) = vec(Y )−
J∑
j=1

(Aj ⊗Xj) vec(Bj)

= vec

Y − J∑
j=1

XjBjA
>
j

 (1.21)

Let UΣSΣUΣ
> be the eigenvalue decomposition of Σ. As shown in [Stegle et al., 2011a, Rakitsch

et al., 2013], we can whiten the covariance matrix in a two-step procedure. First, we whiten the noise by
factoring it out. Second, we exploit the fact that the eigenvalue decomposition of a Kronecker product is
compatible with a constant diagonal matrix to whiten the remaining covariance matrix:

K = C ⊗R+ Σ⊗ I
(1.18)

= C ⊗R+UΣSΣU
>
Σ ⊗ I

(1.16)
=

(
UΣSΣ

1
2 ⊗ I

)SΣ
− 1

2UΣ
>CUΣSΣ

− 1
2︸ ︷︷ ︸

C̃

⊗R+ I ⊗ I

(SΣ
1
2UΣ

> ⊗ I
)

(1.18)
=

(
UΣSΣ

1
2 ⊗ I

)(
UC̃SC̃U

>
C̃
⊗URSRU>R + I ⊗ I

)(
SΣ

1
2UΣ

> ⊗ I
)

(1.16)
=

(
UΣSΣ

1
2UC̃ ⊗UR

) (
SC̃ ⊗ SR + I ⊗ I

) (
U>
C̃
SΣ

1
2UΣ

> ⊗U>R
)
, (1.22)

where UC̃SC̃U
>
C̃

is the eigenvalue decomposition of C̃. The log determinant can then be written as

log |C ⊗R+ Σ⊗ I| |AB|=|A|·|B|
= log |SΣ ⊗ I|+ log |SC̃ ⊗ SR + I ⊗ I| (1.23)

|A⊗B|=|A|P ·|B|N
= N

P∑
p=1

logSΣ[p, p] +

P∑
p=1

N∑
n=1

log
(
SC̃ [p, p]SR[n, n] + 1

)
(1.24)

We can evaluate the squared form efficiently as follows

vec(Yr)
> (C ⊗R+ Σ⊗ I)−1 vec(Yr)

(1.22)
= vec(Yr)

>
[(
UΣSΣ

1
2UC̃ ⊗UR

) (
SC̃ ⊗ SR + I ⊗ I

) (
U>
C̃
SΣ

1
2UΣ

> ⊗U>R
)]−1

vec(Yr)

=

[(
UΣSΣ

1
2UC̃ ⊗UR

)−1
vec(Yr)

]> (
SC̃ ⊗ SR + I ⊗ I

)−1
[(
UΣSΣ

1
2UC̃ ⊗UR

)−1
vec(Yr)

]
=

[(
U>
C̃
SΣ
− 1

2U>Σ ⊗U>R
)

vec(Yr)
]> (

SC̃ ⊗ SR + I ⊗ I
)−1

[(
U>
C̃
SΣ
− 1

2U>Σ ⊗U>R
)

vec(Yr)
]

(1.17)
= vec

[
U>RYrUΣSΣ

− 1
2UC̃

]> (
SC̃ ⊗ SR + I ⊗ I

)−1
vec
[
U>RYrUΣSΣ

− 1
2UC̃

]
= vec

[
U>RYrUΣSΣ

− 1
2UC̃

]>
vec
[
D �U>RYrUΣSΣ

− 1
2UC̃

]
, (1.25)

where D is a N × P matrix defined by the entries

D[n, p] =
1

SC̃ [p, p]⊗ SR[n, n] + 1
. (1.26)
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1 Limix methods and implementation

The inverse of the covariance term times a vector is therewith:

(C ⊗R+ Σ⊗ I)−1 vec(Yr) =
(
UΣSΣ

− 1
2UC̃ ⊗UR

)
vec

D �U>RYrUΣSΣ
− 1

2UC̃︸ ︷︷ ︸
Ỹr

 (1.27)

1.4.2 Estimation of the covariance parameters

We want to evaluate the gradient with respect to a particular covariance parameter θ ∈ {θC ,θR,θΣ}.
The derivative consists of the derivative of the determinant term and the derivative of the squared form.
Each of these is given separately for the row covariance parameter θr ∈ θR. The gradients for the column
covariance parameters can be derived analogously and are omitted for brevity.

We start with the gradient of the log determinant:

∂

∂θr
log |C ⊗R+ Σ⊗ I|

= tr

(
(C ⊗R+ Σ⊗ I)−1

(
C ⊗ ∂

∂θr
R

))
(1.22)

= tr

([(
UΣSΣ

1
2UC̃ ⊗UR

) (
SC̃ ⊗ SR + I ⊗ I

) (
U>
C̃
SΣ

1
2UΣ

> ⊗U>R
)]−1

(
C ⊗ ∂

∂θr
R

))
(AB)−1=B−1A−1

= tr

((
U>
C̃
SΣ

1
2UΣ

> ⊗U>R
)−1 (

SC̃ ⊗ SR + I ⊗ I
)−1

(
UΣSΣ

1
2UC̃ ⊗UR

)−1
(
C ⊗ ∂

∂θr
R

))
tr(AB)=tr(BA)

= tr

((
SC̃ ⊗ SR + I ⊗ I

)−1
(
UΣSΣ

1
2UC̃ ⊗UR

)−1
(
C ⊗ ∂

∂θr
R

)(
U>
C̃
SΣ

1
2UΣ

> ⊗U>R
)−1

)
(1.16)

= tr

((
SC̃ ⊗ SR + I ⊗ I

)(
U>
C̃
SΣ
− 1

2UΣ
>CUΣSΣ

− 1
2UC̃ ⊗UR>

(
∂

∂θr
R

)
UR

))
def(C̃)

= tr

((
SC̃ ⊗ SR + I ⊗ I

)(
U>
C̃
C̃UC̃ ⊗UR>

(
∂

∂θr
R

)
UR

))
tr(AB)=vec(A)>vec(B)

= diag
(
SC̃ ⊗ SR + I ⊗ I

)> [
diag

(
SC̃
)
⊗ diag

(
UR>

(
∂

∂θr
R

)
UR

)]
(1.28)

The gradient of the squared form is given by:

∂

∂θr
vec(Yr)

> (C ⊗R+ Σ⊗ I)−1 vec(Yr)

= −vec(Yr)
> (C ⊗R+ Σ⊗ I)−1

(
C ⊗ ∂

∂θr
R

)
(C ⊗R+ Σ⊗ I)−1 vec(Yr)

(1.27)
= −vec

(
Ỹr

)> (
UΣSΣ

1
2UC̃ ⊗UR

)−1
(
C ⊗ ∂

∂θr
R

)(
U>
C̃
SΣ

1
2U>Σ ⊗U>R

)−1
vec
(
Ỹr

)
(1.16)

= −vec
(
Ỹr

)[
U>
C̃
SΣ
− 1

2U>ΣCUΣSΣ
− 1

2UC̃ ⊗U
>
R

(
∂

∂θr
R

)
UR

]
vec
(
Ỹr

)
def(C̃)

= −vec
(
Ỹr

)> [
SC̃ ⊗U

>
R

(
∂

∂θr
R

)
UR

]
vec
(
Ỹr

)
(1.17)

= −vec
(
Ỹr

)>
vec

[
U>R

(
∂

∂θr
R

)
URỸrSC̃

]
(1.29)
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1.4 Efficient inference for matrix variate mixed models

1.4.3 Estimation of the fixed effects

Gradient Evaluation We first evaluate the gradient with respect to a single fixed effect

∂

[∂Bk]a,b

(
−1

2
vec(Yr)

> (C ⊗R+ Σ⊗ I)−1 vec(Yr)

)
= −vec(Yr)

> (C ⊗R+ Σ⊗ I)−1 vec

(
∂Yr

[∂Bk]a,b

)
(1.27)

= −vec
(
Ỹr

)> (
U>
C̃
SΣ
− 1

2UΣ
> ⊗U>R

)
vec

(
∂Yr

[∂Bk]a,b

)
(1.17)

= −vec
(
Ỹr

)
vec

(
U>R

(
∂Yr

[∂Bk]a,b

)
UΣSΣ

− 1
2UC̃

)
= −vec

(
Ỹr

)>
vec
(
U>R

(
[Xk]:,a[Ak]

>
:,b

)
UΣSΣ

− 1
2UC̃

)
tr(AB)=vec(A)>vec(B)

= −tr
(
Ỹr
>
U>R [Xk]:,a[Ak]

>
:,bUΣSΣ

− 1
2UC̃

)
tr(AB)=tr(A)tr(B)

= −tr
(

[Ak]
>
:,bUΣSΣ

− 1
2UC̃Ỹr

>
U>R [Xk]:,a

)
tr(A)=tr(A>)

= −[Xk]
>
:,aURỸrU

>
C̃
SΣ
− 1

2UΣ
>[Ak]:,b (1.30)

When stacking together the derivatives for all a and b, the gradient with respect to all entries of Bk

follows as

∆

∆Bk

(
−1

2
vec(Yr)

> (C ⊗R+ Σ⊗ I)−1 vec(Yr)

)
=−X>k URỸrU>C̃SΣ

− 1
2UΣ

>Ak (1.31)

Closed form maximum likelihood estimates First, we rewrite the mean function by concatenating the
Kronecker products of the design matrix

Φ = [A1 ⊗X1, . . . ,AJ ⊗XJ ] (1.32)

and concatenating the fixed effects

β =

vec(B1)
. . .

vec(BJ)

 , (1.33)

where Φ is a NP ×DM matrix and β is a DM × 1 vector, with D =
∑

j Dj and M =
∑

jMj . It is easy

to show that
∑J

j=1 (Aj ⊗Xj) vec(Bj) = Φβ.
By setting the gradient of the log-likelihood with respect to the weight vector to zero, we can then

obtain a closed form solution of the maximum-likelihood estimate βM :

∇
∇βM

(
−1

2
(vec (Y )− Φβ)> (C ⊗R+ Σ⊗ I)−1 (vec (Y )− Φβ)

)
= 0 (1.34)

Φ> (C ⊗R+ Σ⊗ I)−1 ΦβM − Φ> (C ⊗R+ Σ⊗ I)−1 vec (Y ) = 0 (1.35)

Φ> (C ⊗R+ Σ⊗ I)−1 Φβ = Φ> (C ⊗R+ Σ⊗ I)−1 vec (Y ) (1.36)
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1 Limix methods and implementation

βM =
(

Φ> (C ⊗R+ Σ⊗ I)−1 Φ︸ ︷︷ ︸
left term

)−1
Φ> (C ⊗R+ Σ⊗ I)−1 vec (Y )︸ ︷︷ ︸

right term

(1.37)

We first compute the right term with respect to the jth block.

(Aj ⊗Xj)
> (C ⊗R+ Σ⊗ I)−1 vec (Y )

(1.27)
= (Aj ⊗Xj)

>
(
UΣSΣ

− 1
2UC̃ ⊗UR

)
vec
(
D �U>RYrUΣSΣ

− 1
2UC̃

)
(1.16)

=
(
A>j UΣSΣ

− 1
2UC̃ ⊗X

>
j UR

)
vec
(
D �U>RYrUΣSΣ

− 1
2UC̃

)
(1.17)

= vec
[
X>j UR

(
D �U>RYrUΣSΣ

− 1
2UC̃

)
U>
C̃
SΣ
− 1

2U>ΣAj

]
(1.38)

By concatenating the blocks, we obtain

Φ>
(
C ⊗R+ σ2I

)−1
vec (Y ) =


vec
(
XT

1 UR

(
D �U>RYrUΣSΣ

− 1
2UC̃

)
U>
C̃
SΣ
− 1

2U>ΣA1

)
...

vec
(
XT
J UR

(
D �U>RYrUΣSΣ

− 1
2UC̃

)
U>
C̃
SΣ
− 1

2U>ΣAJ

)
 (1.39)

For the left term, we need to invert the block matrix Φ> (C ⊗R+ Σ⊗ I)−1 Φ ∈ RDM×DM . We start
with computing the (i, j)th block involving the ith and the jth fixed effects:

(Ai ⊗Xi)
> (C ⊗R+ Σ⊗ I)−1 (Aj ⊗Xj)

(1.22)
= (Aj ⊗Xj)

>
[(
UΣSΣ

1
2UC̃ ⊗UR

) (
SC̃ ⊗ SR + I ⊗ I

) (
U>
C̃
SΣ

1
2UΣ

> ⊗U>R
)]−1

(Aj ⊗Xj)

= (Ai ⊗Xi)
>
(
UΣSΣ

− 1
2UC̃ ⊗UR

) (
SC̃ ⊗ SR + I ⊗ I

)−1
(
U>
C̃
SΣ
− 1

2UΣ
> ⊗U>R

)
(Aj ⊗Xj)

(1.16)
=

(
A>i UΣSΣ

− 1
2UC̃ ⊗X

>
i UR

) (
SC̃ ⊗ SR + I ⊗ I

)−1
(
U>
C̃
SΣ
− 1

2UΣ
>Aj ⊗U>RXj

)
=

P∑
c=1

([
A>i UΣSΣ

− 1
2UC̃

]
:,c
⊗X>i UR

)(
SC̃ [c, c]SR + I

)−1
([
U>
C̃
SΣ
− 1

2UΣ
>Aj

]
c,:
⊗U>RXj

)
(1.16)

=
P∑
c=1

([
A>i UΣSΣ

− 1
2UC̃

]
:,c
⊗X>i UR

)([
U>
C̃
SΣ
− 1

2UΣ
>Aj

]
c,:
⊗
(
SC̃ [c, c]SR + I

)−1
U>RXj

)
(1.16)

=
P∑
c=1

([
A>i UΣSΣ

− 1
2UC̃

]
:,c

[
U>
C̃
SΣ
− 1

2UΣ
>Aj

]
c,:
⊗X>i UR

(
SC̃ [c, c]SR + I

)−1
U>RXj

)
(1.40)

Evaluating the term takes O(PM2 + PD2N) time. If the number of samples is smaller than the number
of traits (N < P ), we can also explicitly sum over the samples leading to a runtime of O(ND2 +NM2P ).
Inverting the left term has a runtime complexity of O(D3M3).
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1.5 Implementation details

1.4.4 Predictions

The mean predictor can be evaluated efficiently as follows

vec(M∗) =
J∑
j=1

(
Aj ⊗X?

j

)
vec(Bj) + (C ⊗R?) (C ⊗R+ Σ⊗ I)−1 vec

Y − J∑
j=1

(Aj ⊗Xj) vec(Bj)


def(Yr)

=

J∑
j=1

X?
jBjA

T
j + (C ⊗R?) (C ⊗R+ Σ⊗ I)−1 vec(Yr)

(1.27)
=

J∑
j=1

X?
jBjA

T
j + (C ⊗R?)

(
UΣSΣ

− 1
2UC̃ ⊗UR

)
vec
(
Ỹr

)
(1.16)

=

J∑
j=1

X?
jBjA

T
j +

(
CUΣSΣ

− 1
2UC̃ ⊗R

?UR

)
vec
(
Ỹr

)
(1.17)

=
J∑
j=1

X?
jBjA

T
j + vec

[
R?URỸr

(
CUΣSΣ

− 1
2UC̃

)>]

=

J∑
j=1

X?
jBjA

T
j + vec

(
R?URỸrU

>
C̃
SΣ
− 1

2U>ΣC
>
)

(1.41)

1.5 Implementation details

OOP design

code example
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2 Multivariate linear mixed models for statistical
genetics

2.1 Introduction

In the most general formulation LIMIX models an N×P matrix Y of N samples for each of P phenotypes
by a multivariate linear mixed model with J fixed effects {Fj} and I random effects {Ui}

Y =
J∑
j=1

Fj +
I∑
i=1

Ui. (2.1)

Each of the fixed effects and random effects is Kronecker structured. In particular, any fixed effect Fi
can be written as (Ai ⊗Xi) vec (Bi) where Ai ∈ RP×M is the design matrix of the phenotypic effects,
Xi ∈ RN×D is the design matrix of the sample-specific effects, and Bi ∈ RM×D is the matrix of the effect
sizes; while any random effect Ui is matrix-variate normal distributed, Ui ∼ NNM ( 0 ; Ri , Ci), with row
covariance matrix Ri ∈ RN×N and column covariance matrix Ci ∈ RP×P . Ri and Ci can be interpreted
as sample-to-sample and trait-to-trait relatedness matrices due to contribution i respectively.

All the models described by equation (2.1) can be dynamically built using LIMIX and subsequently fitted
to the data using the optimization framework we introduced in Section 1. In the following subsection we
show how some commonly used mixed models for genetic studies can be written as in (2.1). Afterwards
we review common types of genetic studies that are supported by LIMIX. In Section 2.2 we present the
framework made available by LIMIX to dissect the phenotypic variability across different sources and make
out-of-sample phenotype predictions. As discussed in the main text, generalization performance measured
by out-of-sample prediction can be used as a model selection criterion, given the wealth of models made
available by LIMIX. In Section 2.3 we describe models for genome-wide association studies (GWAS) and
show how they can be extended to build a multi-locus multivariate model. Finally, in Section 2.4 we
discuss the PANAMA module in LIMIX, which can be used to infer non-observed (hidden) covariates so
that they can be accounted for in GWAS and variance decomposition.

2.1.1 Some recently proposed MTMM

A particular, yet multivariate case of this general model is when the same design is used for all fixed effects
and only two random effects describing the genetic and non-genetic contributions to the phenotype are
considered:

Y = (A⊗X) vec (B) +U + Ψ, U ∼ NNM ( 0 ; R , C) , Ψ ∼ NNM ( 0 ; I , Σ) (2.2)

where R is the kinship matrix, which describes the genetic relatedness between the samples, C describes
the genetic relatedness between the phenotypes, and Σ the relatedness between the phenotypes due to
shared non-gentic effects, i.e. noise. Similar models have been recently employed in genetic analysis of
multiple phenotypes [Zhou and Stephens, 2014, Korte et al., 2012, Rakitsch et al., Stegle et al., 2011b].

Considering the univariate version of the model in (2.2), the trait design matrix in the fixed effect
collapses to 1 while the trait-to-trait covariance matrices reduce to single variance components. Indicating
with y, β, u, ψ, σ2

g and σ2
n the univariate versions of Y , B, U , Ψ, C2 and Σ2 the model reduces to

y = Xβ + u+ψ, u ∼ N
(
0, σ2

gR
)
, Ψ ∼ N

(
0, σ2

eI
)

(2.3)
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2 Multivariate linear mixed models for statistical genetics

Very similar models have been widely used in genetic studies for heritability estimation and GWAS [Kang
et al., 2010, Lippert et al., 2011, Listgarten et al., 2013, Segura et al., 2012].

Instead of considering the effect from single variants as in (2.3), one can consider the effects from all
SNPs in a region (e.g., a gene or a chromosome). This effect, r, can be modelled as random effect whose
covariance matrix S is a region-based genetic relatedness matrix:

y = r + u+ψ, r ∼ N
(
0, σ2

rS
)
,u ∼ N

(
0, σ2

gR
)
, Ψ ∼ N

(
0, σ2

eI
)

(2.4)

Similar ideas and models have been employed for general set tests [Listgarten et al., 2013], rare variant
testing [Wu et al., 2011], and heritability estimation [Yang et al., 2010].

2.2 Variance Decomposition

In this section, we describe the variance decomposition framework made available by LIMIX that al-
lows for dissecting the phenotypic variability across different sources for univariate (subsection 2.2.1) and
multivariate analysis (subsection 2.2.2). In the same framework, LIMIX makes also available a tool for
out-of-sample predictions, which we discuss in subsection 2.2.3.

2.2.1 Single-trait variance decomposition

In the model for univariate variance decomposition, fixed effects reflects reflect covariates while random
effects contributions from different sets of variants (e.g., different chromosomes or local and distal genetic
contributions). The covariance matrices of these contributions are empirical covariance matrices describing
genetic relatedness based on the different sets. The approach can be generalized to include non-genetic
random effects whose covariance matrices are known a priori, allowing for correction of covariates and
joint estimation of genetic and non-genetic contributions to the phenotypic variability.

The model can be written as:

y = Xβ +
∑
i

ui +ψ, ui ∼ N
(
0, σ2

iRi

)
, Ψ ∼ N

(
0, σ2

eI
)

(2.5)

where Ri is the covariance matrix for contribution i. If R is a genetic contribution from set of SNPs S,
with a bit of abuse of notation we can write

R =
1

C
W:,SW:,S

T (2.6)

where C = 1
N tr

(
W:,SiW:,Si

T
)
. The parameters of the model are the fixed effects β and the variance

components σ2
i and σ2

e .
Variance explained by the fixed effect d can be retrieved by considering var (Xd,:β). P: think the

following is superfluous Since one is usually interested in the fraction of total variance explained by each
contribution rather than absolute variance contribution, variance components are normalized to sum up
to 1.

2.2.2 Multiple-trait variance decomposition

Using the notation introduced in Section 2.1, the general model for multivariate variance decomposition
can be written as

Y =
∑
i

(Ai ⊗Xi) vec (Bi) +
∑
i

Ui + Ψ, Ui ∼ NNM ( 0 ; Ri , Ci(αi)) , Ψ ∼ NNM ( 0 ; I , Σ (αΣ))

(2.7)

where Ui indicates the genetic effect from random effect i with trait-to-trait covariance matrix Ci and
sample-to-sample covariance matrix Ri introduced in (2.6), Ψ denotes the non-genetic contribution. We
have indicated with αi, αΣ the parameters of the trait-to-trait covariance matrices, which are estimated
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2.3 Genome-wide Association Studies

from the data. The parameters of the model are again the weight matrix of fixed effects B and the
variance components α = {α1, ...,αΣ}. Although LIMIX handles incomplete designs and cases where
more than 2 random effect terms are involved, in the case of 2 random effect terms and without missing
values in the phenotype matrix Y LIMIX exploits the Kronecker structure in the model and implements
the mathematical tricks discussed in the previous chapter to conduct fast estimation of parameters.

In the most general model the trait-to-trait covariance matrices are general semi-definite positive ma-
trices (freeform matrices) parametrized by 1

2P (P + 1) real values. However, such a general form may lead
to overfitting as the number of parameters increases quadratically in the number of traits while the data
only linearly. LIMIX circumvents this problem in two ways:

• it makes available to the user a set of different covariance matrices to perform optimization of the
P × P covariance matrices;

• it allows the user to introduce a regularization on the covariance parameters

For a technical discussion about the different covariance matrices and possible regularization schemes
made available by LIMIX we refer the user to the previous chapter, while here we discuss utility and
interpretation of these. First of all, we highlight that using a diagonal covariance matrix as trait-to-trait
covariance matrix for random effect i is equivalent to assume that term i does not contribute to trait-to-
trait correlations. A sum of a rank R matrix and spherical residualC(θ) = AAT +σ2I (lowrank-id), where
A ∈ RP,R and θ =

{
vec (A) , σ2

}
, might help address overfitting problems as the number of parameters

scales linearly with the number of traits. On the other hand, this parametrisation offers limited flexibility
for the diagonal elements especially for low R, yielding biased heritability estimates. A more flexible
form is the sum of a low-rank term and a trait-specific independent contribution C(θ) = AAT + diag(c)
(lowrank-diag), where θ = {vec (A) , c} and c ∈ RP . The penalization on the off-diagonal entries of the
trait-trait covariance matrix, or its inverse, bridges a fully independent model (diagonal matrix) to the
unpenalised model. To select the extent of the penalization, one can use cross validation exploiting the
phenotype prediction tools discussed in next subsection (2.2.3).

To dissect the contribution of each random effect term into shared and trait-specific effects, we decom-
pose the trait-to-trait covariance matrix Ci into the biggest semi-positive definite block matrix contained
in Ci and a residual: C = a21PP +R, where 1PP denotes a P ×P matrix of ones. Given this representa-
tion, we can then interpret a2 and 1

P trR respectively as the average variance across traits of shared and
trait-specific effects across traits.

2.2.3 Phenotype Predictions

The LIMIX variance decomposition model also implements a tool for phenotype predictions, which can
be used to monitor overfitting and perform model selection. For example, this can help select the set of
fixed and random effects to consider, the best parametrisation of the trait-to-trait covariance matrices, or
the best extent of the matrix penalization.

Following (1.14), the predictive posterior mean of the contribution all terms in model (2.7) is

vec(M?) =
∑
i

(Ai ⊗X?
i ) vec(Bi) +

∑
i

(Ci ⊗R?
i )K

−1vec

(
Y −

∑
i

(Ai ⊗Xi) vec(Bi)

)
(2.8)

where K =
∑

iCi ⊗Ri + Σ ⊗ I and R?
i is the cross covariance for term i. For example, if R has the

form in (2.6) then we have R? ∝W:,SW
?
:,S

T ∈ RNN?
where N and N? are the number of samples in the

training and test sets respectively and W and W ? are their genotype.

2.3 Genome-wide Association Studies

In this section we briefly describe the methods implemented in LIMIX to perform single and multi-locus
analysis in GWAS.
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2 Multivariate linear mixed models for statistical genetics

2.3.1 univariate GWAS

The standard LMM considered in GWAS is

y ∼ N
(
Wα+ xβ, σ2

g (R+ δI)
)

(2.9)

where x is the genotypic profile of the SNP being tested, β its effect size, R the sample-to-sample related-
ness matrix and δ = σ2

g/σ
2
e the signal-to-noise ratio. Testing for association of the SNP to the phenotype

is done by testing β 6= 0. The δ representation of the marginal likelihood allows fast scalable methods and
has been widely used in GWAS [Lippert et al., 2011, Zhou and Stephens, 2012].

P: not sure we want to say this The variance decomposition tool from LIMIX can be used to build
more complex forms of the relatedness matrix R. For example, considering the model (2.5) introduced in
the previous section, we can estimate the variance components {σ̂i}i by maximum likelihood or penalized
maximum likelihood and then define a new relatedness matrix R =

∑
i σ̂

2
iRi/

∑
i σ̂

2
i that accounts for all

contributions. This is equivalent to fix the contributions of each random effect term on the null model
while the signal-to-noise ratio is still flexibly evaluated SNP-wise using the model in (2.9). However,
building a too complex background model might explain away genetic signal leading to power reduction
in GWAS. In all our experiments we just considered the full kinship matrix as relatedness matrix, with
the exception of the transcript-based eQTL analysis where we accounted for hidden confounders by using
PANAMA (section 2.4).

2.3.2 multivariate GWAS

The multivariate version of 2.9 is

Y ∼ N
(
(Acov ⊗W ) vec (B0) + (A1 ⊗ x) vec (B) , σ2

g (C ⊗R+ δΣ⊗ I)
)

(2.10)

where the trait-trait matrices C and Σ can be estimated using the variance decomposition tool and then
plugged in. This equals to estimate the variance parameters on the model with no association with the
marker. However, LIMIX allows for SNP-specific estimates of the global variance of random effects σ2

g

and the signal-to-noise ratio δ. The model in (2.10) is used to test for specific trait designs of the marker
on the multivariate phenotype. To do so, the alternative model in (2.10) is compared to a null model
which has the same form but characterized by a different trait design A0 for the marker effect. In the
following we describe the choices of A0 and A1 to conduct the tests that are most commonly considered
in multivariate GWAS and some of their extentions.

• Any effect test : this is a P degrees of freedom test where we test if the marker has an effect on at
least one of the phenotypes (A1 = IP and A0 = 0P ).

• Common effect test : this is a one degree of freedom test, where in the alternative model the marker
has the same effect size and direction across all phenotypes (A1 = 1P ) while the null model does
not contain the effect from the marker (A0 = 0P ).

• Specific effect test : this is a one degree of freeform test that we can use to test if the genetic marker
acts specifically on the phenotype p. The design in the alternative model is a combination of a
common effect and an independent effect for trait p A1 = [1P , 1trait==p], where 1trait==p return a
vector with 1 at element p and 0 at all other elements, while in the null model we just have the
common effect, A0 = 1P .

• Any specific effect test : this is a P − 1 degrees of freeform test where we test whether the marker
has a specific effect on at least one of the phenotypes. The alternative model describes an any effect
from the marker (A1 = IP ) while the null model describes a common effect (A0 = 1P ).

LIMIX flexibly allows considering more complex tests to really exploit the information in multivariate
datasets. Here we describe an example of a more complex test. Suppose we want to jointly model T
traits across E different environments, for a total of P = TE trait-environment combinations. In this
example, we might be interested in discovering loci that affect multiple phenotypes differently across
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2.4 PANAMA

different environment. This is a T degree of freedom test and can be performed in LIMIX by considering
an alternative model where the marker has different effect sizes across traits and environments (A1 = IP )
and a null model where the marker has same effect size across different environments for each trait
(A0 = IT ⊗ 11,E).

P: not sure we want to leave this in LIMIX makes also available a more general model for multivariate
GWAS that handles non-Kronecker structured fixed effects and incomplete designs. However, such a
model does not allow speed-ups and can be only used for the joint analysis of a few traits. The model
implemented for such a task is practically the analogous of (2.9):

vec (y) ∼ N
(
Wα+ a0 � xβ0 + a1 � xβ1, σ

2
g (K + δI)

)
(2.11)

where y is an NP × 1 multi-phenotype vector, y = vec (Y ), and an element-wise product � is introduced
to introduce flexible designs. While the first fixed effect for SNP x is contained both in the full and the
null model, we test for design a1 by testing β1 6= 0. For example, if l labels a categorical variable with
values in {l1, l2, l3}, setting a0 = 1P and a1 = 1l==l1 we can test for l1×SNP interactions.

2.3.3 Multi-locus GWAS

All the models we introduced in this section can be extended to consider multiple loci by step-wise forward
selection [Segura et al., 2012]. This is the first time multivariate analysis and step-wise forward selection
are combined together. The general framework LIMIX employs to perform multi-locus GWAS encompasses
two main steps

1. a genome-wide scan is performed using the model in (2.10)

2. if the most associated marker has P-value lower than a certain threshold the marker is added as
covariate and back to step 1, otherwise the algorithm stops here.

LIMIX allows the user to

• set the type of test to be performed in the genome-wide scans;

• set the design of the SNPs that are added as covariates;

• set a threshold either over the P-value or the Q-value of the most associated SNP as stopping
criterion;

• add a maximum number of iterations as stopping criterion;

• update the parameters of the trait-to-trait covariance matrices after each inclusion using internally
the variance decomposition module.

2.4 PANAMA

The PANAMA tool from LIMIX can be used to find a sample-by-sample covariance matrix that accounts
for genetic and non-genetic confounders [Fusi et al., 2012]. This can be done when a high number of traits
are thought to share common confounding structure. This is the case of eQTL analysis, where thousands
of genes most likely share sample-specific confouders. Reproducing the framework used in gaussian process
latent variable model [Lawrence, 2004, 2005], we assume independence of the traits (e.g., gene expression
in eQTL analysis) conditions on the latent factors. After normalizing all traits to z-scores, we again
consider a particular model from the general form (2.1):

yp = u+ η +ψ, ∀p (2.12)

u ∼ N
(
0, σ2

gRgeno

)
, u ∼ N (0, Rconf (α)) , Ψ ∼ N

(
0, σ2

eI
)
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2 Multivariate linear mixed models for statistical genetics

where Rg is the genetic relatedness matrix introduced before while Rc (α) is the relatedness matrix due to
unobserved covariates. The parameters of the model are

{
α, σ2

g , σ
2
e

}
. As full rank matrices might overfit

the data explaining away genetic signal, LIMIX models Rc (α) as rank r matrix and allows the user to
choose r. A sensible value for r can be chosen by looking at the number of PCAs of the sample-by-sample
empirical covariance matrix explaining 70%-90% of the variance.

Once Rc is learned from the data, a new sample-to-sample relatedness matrix can be plugged in the
GWAS tools both for single and multivariate analysis.
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