

Fig. S1. Changes in ribosome composition by exposure to (PR) $\mathbf{2 0}_{20}$ peptides. a, STRING analysis (https://string-db.org) of the protein interaction networks found between the proteins identified in the purification of ribosomes from RPS9 ${ }^{\mathrm{SBP}}$-expressing HeLa cells. The node containing 60S and 40S factors (RPLs and RPSs) is indicated (arrow). The panel illustrates the ribosome composition from (PR) $)_{20}$-untreated cells. b, Protein levels of RPL factors in ribosomes purified from Hela RPS9 ${ }^{\text {SBP }}$ cells exposed to $10 \mu \mathrm{M}$ of (PR $)_{20}$ for 16 h , as identified by LC-MS/MS. c, Protein levels of RPL factors in the input extracts used for ribosome purification from Hela RPS9 ${ }^{\text {SBP }}$ cells exposed to $10 \mu \mathrm{M}$ of $(\mathrm{PR})_{20}$ for 16 h , as identified by LC-MS/MS.

Fig. S2. (PR) $\mathbf{2 0}_{20}$ peptides impair the assembly of $80 S$ ribosome particles on mRNA. a, Representative polysome profiles obtained from HeLa cells untreated or treated with $10 \mu \mathrm{M}$ of (PR)20 for 16 h . The presence of halfmers is indicated (arrows). \mathbf{b}, Electron microscopy images from purified 40 S and 60 S ribosomal complexes (1 pmol each) assembled in vitro in the presence of MgCl_{2}, and in the presence or absence of 5 pmol of $(\mathrm{PR})_{20}$. Assembled 80S particles are indicated (red arrows). c, Quantification of 80 S particles identified in (d) ($\mathrm{n}=1000$) in nonassembly (1 mM MgCl 2) or assembly (5 mM MgCl 2) conditions.

Fig. S3. Effects of (PR) $\mathbf{2 0}_{\mathbf{2 0}} \mathbf{o n} \mathbf{m R N A}$ translation. a, In vitro translation of 100 ng of luciferase mRNA (quantified by luciferase activity) in the presence of increasing doses of $(\mathrm{PR})_{20}$. \mathbf{b}, In vitro translation of 100 ng of luciferase mRNA in the presence or absence of $0.5 \mu \mathrm{M}(\mathrm{PR})_{20}$. Translation products were labeled with $\left[{ }^{35} \mathrm{~S}\right]$-Met/Cys and analyzed by SDS-PAGE and autorradiography. c, In vitro translation of 50 ng of luciferase mRNA was allowed for 15^{\prime} and stopped in ice. After inhibition of new translation initiation with lactimidomycin for 10^{\prime}, translation was allowed in the presence or absence $0.5 \mu \mathrm{M}(\mathrm{PR})_{20}$ for the indicated times. d, In vitro translation of 100 ng of luciferase mRNA with different 5^{\prime} UTR lengths in the presence or absence of $0.5 \mu \mathrm{M}(\mathrm{PR})_{20}$. e, In vitro translation of 100 ng of luciferase mRNA in the presence or absence of $0.5 \mu \mathrm{M}(\mathrm{PR})_{20}$. In the right two columns, the mRNA was extracted from a translation reaction done in the presence of the DPR, and subsequently used in a new translation reaction performed in the absence of $(P R)_{20}$. *, $\mathrm{p}<0.05$.

Fig. S4. DNA- and RNA-binding by (PR) $\mathbf{2 0}_{20}$ peptides. (a, b) Binding of (PR) $)_{20}$ to DNA (a) or RNA (b) as examined by EMSA. Previously annealed 19 bp Cy3-dsDNA or Cy3-RNA oligonucleotides $(0.2 \mu \mathrm{M})$ were incubated with increased doses of PR_{20} for 10^{\prime}. The images show the disappearance of free dsDNA/dsRNA and non-annealed ssDNA/ssRNA oligonucleotides, which occurs concomitant with the accumulation of DNA- or RNA-(PR $)_{20}$ complexes on the loading well. The sharp transition from unbound to unbound fractions is indicative of cooperative binding in all cases. A quantification from these assays is shown in Fig. a.

Fig. S5. Effect of heparin on the nucleolar accumulation of (PR) $\mathbf{2 0}_{\mathbf{2 0}}$. a, Immunofluorescence of HA-(PR $)_{20}$ (green) and the nucleolar factor UBF1 (red) in U2OS cells treated with $7.5 \mu \mathrm{MHA}$ $(\mathrm{PR})_{20}$ alone or together with $0.5 \mu \mathrm{M}$ heparin for 8 h . \mathbf{b}, HTM-mediated quantification of the nucleolar HA-(PR) $)_{20}$ intensity from U2OS cells treated as in (a).

Table S1. Proteins with reduced levels on ribosomal fractions purified from $(\mathrm{PR})_{20}$-treated HeLa-RPS $9^{\text {SBP }}$ cells.

Gene Name	$\log _{2}\left((\mathrm{PR})_{20} /\right.$ control $)$
PSME3	-3.61
H1FX	-1.94
RPL27A	-1.76
RPLP2	-1.71
BRIX1	-1.52
GTPBP4	-1.35
RPL32	-1.32
KRR1	-1.22
NAP1L4	-1.21
HP1BP3	-1.20
RPL3	-0.99
RPL14	-0.87
RPL10A	-0.70
RPL6	-0.66
UTP14A	-0.65
RPL9	-0.63

Table S2. Proteins that show statistically significant reduced levels on chromatin after treatment of U2OS cells with (PR $)_{20}(20 \mu \mathrm{M})$ or PROTAMINE $(30 \mu \mathrm{M})$.

Gen Symbol	Log $_{2}\left((\mathrm{PR})_{20} /\right.$ control $)$	$\log _{2}($ Protamine/control $)$
FURIN	-2.45	-3.61
POTEJ	-2.05	-2.15
POTEKP	-1.72	-1.63
TMEM126B	-1.40	-1.19
POTEF	-1.38	-1.20
HIST1H1C	-1.33	-0.61
FARS2	-1.28	-0.75
HIST1H1A	-1.27	-0.46
SNX5	-1.06	-0.82
H1F0	-1.05	-0.39
PITPNA	-1.02	-0.60
PDK2	-1.01	-0.64
GLTSCR2	-1.01	-0.42
EEF1B2	-1.01	-0.86
EEF1G	-0.98	-0.75
GAPDH	-0.97	-0.80
NRF1	-0.96	-0.90
PSMF1	-0.93	-0.42
AURKC	-0.92	-0.87
CORO1B	-0.88	-0.47
EBAG9	-0.87	-0.64
APEX1	-0.86	-0.70
EEF1D	-0.83	-0.69
ALDOC	-0.82	-0.45
REPIN1	-0.82	-0.54
H2AFY	-0.82	-0.43
RXRB	-0.75	-0.50
HMGA1	-0.75	-0.68
TPT1	-0.73	-0.65
RPUSD4	-0.72	-0.87
DNAJC15	-0.70	-0.40
RING1	-0.70	-0.57
PCBP3	-0.67	-0.41

HMGA2	-0.66	-0.51
SLC25A40	-0.65	-0.41
HN1L	-0.65	-0.40
MEN1	-0.65	-0.40
MSN	-0.64	-0.58
HDGF	-0.62	-0.44
HCFC1	-0.62	-0.52
TGIF2LX	-0.62	-0.52
HMGB1;HMGB1P1	-0.62	-0.50
LRRC57	-0.60	-0.49
FLNA	-0.60	-0.50
RANBP1	-0.60	-0.59
NCKIPSD	-0.59	-0.61
EZR	-0.58	-0.51
CMSS1	-0.58	-0.35
LANCL2	-0.58	-0.58
CSRP2	-0.58	-0.48
TMF1	-0.58	-0.44
EEF1A2	-0.56	-0.54
TARS	-0.56	-0.45
CDYL	-0.56	-0.75
DIDO1	-0.55	-0.44
AHNAK	-0.55	-0.48
ACAP2	-0.55	-0.39
SYNGR3	-0.55	-0.74
PALM2	-0.55	-0.60
ARHGAP17	-0.55	-0.48
ID1	-0.55	-0.57
CCAR1	-0.54	-0.39
RPL18	-0.54	-0.40
COPS7A	-0.54	-0.38
CCDC50	-0.53	-0.51
ZBTB10	-0.53	-0.53
CCNC	-0.53	-0.88
SFSWAP	-0.52	-0.38
SLC43A3	-0.52	-0.60
WASF2	-0.52	-0.45
SPR	-0.61	
GAP43	-1	-1

FSCN1	-0.51	-0.40
VPS39	-0.51	-0.57
FUS	-0.50	-0.46
SARS	-0.50	-0.46
FIP1L1	-0.49	-0.38
DIAPH2	-0.49	-0.67
CSTF2	-0.49	-0.40
SCAF4	-0.49	-0.36
CBX8	-0.48	-0.47
PRPF38B	-0.48	-0.35
DCUN1D1	-0.47	-0.61
DDX31	-0.47	-0.45
PDLIM7	-0.47	-0.41
RECQL	-0.47	-0.36
FNBP4	-0.47	-0.40
EHD3	-0.46	-0.38
SCAF1	-0.46	-0.37
MRGBP	-0.46	-0.54
MAVS	-0.45	-0.38
CORO1C	-0.45	-0.55
MINA	-0.45	-0.48
COPS8	-0.45	-0.74
TCERG1	-0.45	-0.42
NEDD1	-0.44	-0.59
SEPT9	-0.44	-0.43
HDGFRP3	-0.44	-0.36
FAHD1	-0.44	-0.73
FKBP3	-0.43	-0.42
PA2G4	-0.43	-0.42
DDX42	-0.43	-0.40
CASK	-0.42	-0.69
GABPA	-0.41	-0.36
MAD2L1BP	-0.40	-0.40
ITPRIP	-0.40	-0.67
EHD4	-0.40	-0.36
NARS	-0.39	-0.41
EEF1A1;EEF1A1P5	-0.39	-0.47
WDR33	-0.39	-0.42
DEK	-0.39	-0.44

TBP	-0.39	-0.36
DOK1	-0.39	-0.35
IFIT2	-0.39	-0.72
UBAP2L	-0.38	-0.49
SEPT11	-0.38	-0.36
RSU1	-0.37	-0.38
NACA	-0.37	-0.51
ORC1	-0.37	-0.42
CCNL1	-0.37	-0.37
CEP97	-0.37	-0.45
UBE2I	-0.36	-0.42
VPS13C	-0.36	-0.41
PRDX1	-0.36	-0.40
DR1	-0.36	-0.64
BCL7B	-0.35	-0.36
KDM2A	-0.35	-0.41

