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Section A: Measures used in the network simulation

Average shortest path length

The average shortest path length (ASPL, Figure 2 D) is considered here as a measure to analyze the spatial
distribution of activation within the memory area. A high ASPL between neurons indicates that these
neurons are spatially broadly distributed across the memory area. By contrast, a low ASPL indicates
that the neurons are clustered. In particular, as strongly activated neurons are supposed to become part
of a memory representation, we focus on the distribution of highly activated neurons. For this, for each
trial, we identified the 10% of neurons with the highest activity level (index set P ) and calculated the
shortest path length (SPL; [?]); using the networkX package for Python) between them and averaged
over all those paths (denoted by 〈·〉):

ASPL = 〈SPLi,j〉i,j∈P,i6=j. (12)

Dynamic equilibria of synaptic weights

The average outgoing recurrent synaptic weight (Figure 2 E) is a measure of the interconnection within
a neuronal sub-population in the memory area (index set Q). We therefore averaged the synaptic weight
over all the connections among neurons within the sup-population:

w̄rec = 〈wrec
i,j 〉i,j∈Q,i 6=j. (13)

The average incoming feed-forward synaptic weight (Figure 2 F,G) is the average synaptic weight of
connections between a sub-population in the memory area (index set Q) and a specific stimulus pattern
in the input area (index set H):

w̄ff = 〈wff
i,k〉i∈Q,k∈H . (14)

Response disparity dependent on stimulus similarity

To analyse the response disparity, stimulus S1 is presented 10 times for 5 sec with 1 sec pause in between to
form a single CA. After that, plasticity is shut off and we present variations of stimulus S1 with increasing
stimulus disparity until the stimulus equals stimulus S2 (Figure 2 H). Stimulus disparity measures the
relative amount of non-overlap between two stimulus patterns, in this case stimulus S1 and its variation (in
the following called stimulus S1’). Both stimuli are of identical size NS = 0.5 ·N I, so that the stimulus
disparity is calculated as follows:

stimulus disparity (S1, S1′) = 1− 1

NS
·
N I∑
k

Sk(S1) · Sk(S1′), (15)

with binary stimulus patterns for a given stimulus X ∈ S1, S1′:

Sk(X) =

{
1, if Ik(X) = 130,

0, if Ik(X) = 0.
(16)

Thus, a stimulus disparity equal zero describes two identical stimuli, whereas a disparity equal one
indicates two non-overlapping stimulus patterns. The input area size of N I = 36 allows for 18 steps in



3

variation of 5.5̄% each. At the end of each presentation, we compare the resulting response in the memory
area with the one at the end of the learning phase (i.e. the response to the original stimulus S1). The
response vector overlap (RVO; Figure 2 H) describes the similarity between the response patterns in the
memory area due to the presentation of stimuli S1 and S1’:

RV O(S1, S1′) =

NM∑
i

Ri(S1) ·Ri(S1′) (17)

with binary response of neuron i to a given stimulus X ∈ S1, S1′:

Ri(X) =

{
1, if Fi(X) > 0.5 · α,
0, else.

(18)

Explicit network simulation results

S 1. Explicit results depicted in Figure 2 A,B: average shortest path length (ASPL) and average
synaptic weights.

test0 test1 test2

w̄ff
11 107 (36) 290 (11) 302 (11)

w̄ff
12 96 (22) 145 (19) 25 (15)

w̄ff
21 95 (21) 3.03 (0.12) 14.95 (0.13)

w̄ff
22 108 (36) 103 (36) 305.004 (0.002)

w̄rec
1 19.37 (0) 69 (10) 81 (22)

w̄rec
2 19.37 (0) 16.6 (5.2) 63 (20)

w̄rec
RR 19.37 (0) 24.7 (6.2) 30 (11)

ASPL S1 3.592 (0.018) 1.809 (0.014) 1.808 (0.016)
ASPL S2 3.592 (0.017) 3.546 (0.036) 1.837 (0.035)

Section B: Nullclines and Equilibria

The equilibrium values w̄ff,∗
i and w̄rec,∗

i of the feed-forward and recurrent weights can be obtained as a
function of the equilibrium values of the population activities F̄ ∗i from Equation 10 and Equation 11:

w̄ff,∗
ik (F̄ ∗i ) =

√
κffF̄ ∗i Īk
F̄ ∗i − FT

. (19)

w̄rec,∗
i (F̄ ∗i ) =

√
κrec(F̄ ∗i )2

F̄ ∗i − FT
, (20)

The equilibrium value ū∗inh of the membrane potential of the inhibitory population can be formulated as
a function of F̄ ∗1 and F̄ ∗2 based on Equation 8:

ū∗inh(F̄ ∗1 , F̄
∗
2 ) = Rinhτinh(winh,1N1F̄

∗
1 + winh,2N2F̄

∗
2 ). (21)
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By inserting Equations 20, 19 and 21 into Equation 7 and using F̄ ∗i = F (ū∗i ), we obtain a system of the
two population nullclines that only depends on the equilibrium values ū∗1 and ū∗2 (i ∈ {1, 2}):

0 = − ū
∗
i

τ
+R

(
n̄rec
i w̄rec,∗

i (F̄ ∗i )F̄ ∗i + wi,inhF̄
∗
inh(F̄ ∗1 , F̄

∗
2 ) +

∑
k

n̄ffw̄ff,∗
ik (F̄ ∗i )Īk

)
.

We solve this system numerically to receive the equilibrium values ū∗1 and ū∗2 and, in consequence, by

means of equations 20, 19 and 21, also w̄rec,∗
1 , w̄rec,∗

2 , w̄ff,∗
1A , w̄ff,∗

1B , wff,∗
2A , w̄ff,∗

2B and ū∗inh.

Section C: Stability

The stability of an equilibrium is determined by the sign of the eigenvalue with the largest real part of
the system’s Jacobi matrix evaluated at the equilibrium. The nonzero terms of the Jacobi matrix are
(i ∈ {1, 2}, k ∈ {S1,S2}):

∂ ˙̄ui
∂ūi

= −1

τ
+Rn̄rec

i w̄lat
i

∂F̄i
∂ūi

,
∂ ˙̄ui
∂ūinh

= Rwi,inh
∂F̄inh

∂ūinh
,

∂ ˙̄ui
∂w̄rec

i

= Rn̄rec
i F̄i,

∂ ˙̄ui
∂w̄ff

ik

= Rn̄ff
i Īk,

∂ ˙̄uinh

∂ūi
= Rinhwinh,iNi

∂F̄i
∂ūi

,
∂ ˙̄uinh

∂ūinh
= − 1

τinh
,

∂ ˙̄wrec
i

∂ūi
= µrec ∂F̄i

∂ūi

(
2F̄i −

(w̄rec
i )2

κrec

)
,

∂ ˙̄wrec
i

∂w̄rec
i

=
2µrec

κrec
(FT − F̄i)w̄rec

i ,

∂ ˙̄wff
ik

∂ūi
= µff ∂F̄i

∂ūi

(
Īk −

(w̄ff
ik)2

κff

)
,

∂ ˙̄wff
ik

∂w̄ff
ik

=
2µff

κff
(FT − F̄i)w̄ff

ik

with

∂F̄i
∂ūi

= βF̄i

(
1− F̄i

α

)
and

∂F̄inh

∂ūinh
= βF̄inh

(
1− F̄inh

α

)
.

The eigenvalues of the resulting matrix are determined numerically.

Section D: Feed-Forward Synaptic Weight Change

For constant pre- and post-synaptic activities (Figure 5 D), Equation 10 can be solved analytically by
separation of variables. The resulting time-course wff

i (t) depends on the given parameters and initial
conditions:

w̄ff
i (t) =



w̄ff,∗
i coth

(√
F̄iĪi(F̄i−FT)

κff (t− t0)µff + arcoth
(
w̄ff

i (t0)

wff,∗
i

))
for w̄ff

i (t0) > wff,∗
i ∧ F̄ff

i > FT ∧ Īi > 0,

w̄ff,∗
i tanh

(√
F̄iĪi(F̄i−FT)

κff (t− t0)µff + artanh
(
w̄ff

i (t0)

wff,∗
i

))
for w̄ff

i (t0) < wff,∗
i ∧ F̄ff

i > FT ∧ Īi > 0,

w̄ff,†
i tan

(√
F̄iĪi(F̄i−FT)

κff (t− t0)µff + arctan
(
w̄ff

i (t0)

wff,∗
i

))
for w̄ff

i (t0) < wff,∗
i ∧ F̄ff

i < FT ∧ Īi > 0,(
1

w̄ff
i (t0)

− FT−F̄ ff
i

κff (t− to)µff
)−1

for F̄ff
i = 0 ∨ Īi = 0
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with

w̄ff,†
i (F̄ ∗i ) =

√
κffF̄ ∗i Ī

FT − F̄ ∗i
.

Section E: Comparison of Bifurcation Curve with Network Sim-
ulation

When comparing the equilibrium structure of the population model dependent on the input amplitude
(bifurcation parameter) with the equilibria reached in network simulations (Figure 5 C), the network
simulations are initialized close to the different expected stable configurations. For every input amplitude
I, we perform two simulations with different initial conditions:

• wrec
ij = 0.25ŵrec for all realized recurrent synapses and wff

ij = ŵff for all realized feed-forward
synapses.

• wrec
ij = ŵrec for synapses in between 121 neurons in a circle-shaped population, wrec

ij = 0.25ŵrec for

all other realized recurrent synapses and wff
ij = ŵff for all realized feed-forward synapses.

In each case, the network is simulated for 50, 000 s. Every simulation is repeated 50 times with different
random connectivities. To avoid simulation artefacts related to absolute silence of input channels, we
assume a small background activity of 0.1α for inactive inputs. In the final state, we either consider all
neurons with activity higher than 0.5α or, if there are none, 120 neurons centred around the activity
centre of the network as population 1. Population 2 is defined as the circular group of 120 neurons with
the highest distance (respecting the periodic boundary conditions) to population 1. Within these two
population, we evaluate the mean recurrent weight.

Large Input Amplitudes In the network simulation, the functional role of the inhibitory population
is two-fold: On the one hand, inhibition mediates the competition between different populations. This
role is also captured by the population model. On the other hand, it prevents an active cell assembly
from growing without limit by inhibiting neighbouring neurons. This aspect is not reflected in the
population model as in the latter the size of the populations is approximated as being fixed. Due to this
discrepancy, the population model predicts equilibria also for very large input amplitudes while in the
network simulation these input amplitudes lead to full activation of the complete network.

Section F: Supplementary Figures
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S 1. The robustness of CA formation according to parameter variations. The formation of a
cell assembly is robust against changes in the velocity of synaptic adaptations of the feed-forward (µff;
Equation 5) and of the recurrent synapses (µrec; Equation 6). Given one learning phase, (A) ASPL
(between the 10 mostly active neurons) as well as (B) average recurrent synaptic weights within the CA

indicate that a CA is formed for a wide range of time scale ratios (rµ = µrec

µff ). Please note that a low

ASPL (≈ 1.8; A, red line) and a significant increase of the average recurrent synaptic weight above the
initial mean value (0.25; B, red line) indicate a proper formation of a CA. In the main text, synaptic
changes of both types of synapses (feed-forward as well as recurrent) occur with the same time scale
µff = µrec = µ.
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S 2. All synaptic weights of feed-forward and recurrent connections. Raw data of the weights
of (top) feed-forward and (bottom) recurrent synapses (left) before learning, (middle) after the first
learning phase, and (right) after the second learning phase for one system initiation. Indices of neurons
in the memory area are sorted according to formed CAs (blue and red shading) while indices of neurons
in the input area are sorted according to their input-affiliation (blue and red boxes).

neuron indices in
the memory area

recurrent connectivity
in the memory area

1, 2, 3, ... 

31, 32, 33, ...

841, 842, ...

871, 872, ...

..., 28, 29, 30,

..., 58, 59, 60,

..., 869, 870,

..., 899, 900

A B

S 3. Indexing of neurons in sub-plots and topology. Indexing of neurons and recurrent
connectivity in the memory area. (A): The neurons are arranged on a 30x30-grid with indices running
from left-top to right-bottom such that each dot in sub-plots of Figure 3 and Figure 4 indicate
properties of one neuron. (B): Each neuron is connected to its neighbours, if the position of the
neighbouring neuron is within a circle of radius 4 (measured in neuronal units; see two circles as
examples). Periodic boundary conditions are introduced to avoid boundary and finite-size effects.
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S 4. Parameter estimation for population model. Some parameters of the population model are
estimated from the full network model. Each panel shows the histogram of a parameter from 1000
different network initializations. Average values are given as mean±standard deviation. (A): numbers of
neurons within the first formed CA, with average N̄CA = 120± 4. (B): average number of feed-forward
connections per CA-neuron from the active input population I1 to corresponding CA, with average
n̄ff = 2.37± 0.07. (C): average number of recurrent connections each neuron within the first formed CA
receives from other neurons in the same CA, with average n̄rec = 33.8± 0.4).

0.5 1 2
−1.0

−0.5

0.0

0.5

1.0

w̄
re

c
1

−
w̄

re
c

2
[w

re
c

] pop. 1

pop. 2

2

3

7

7

ε2/ ε1ratio

m
a
x

attractive equil.

repulsive equil.

S 5. Excitability bifurcation diagram as obtained from the population model. Excitability
bifurcation diagram as obtained from the population model. Note that a higher value of εi means a
lower excitability of population i and vice-versa. For a given ratio ε2

ε1
, the used values are
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