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I. Mathematical simulations of cell trajectories

For simplicity in our simulations to describe the large scale effects of
angular variation on cell trajectories, we decompose each cell’s trajectory
in two-dimensional space to a set of vectors, ~v, of fixed magnitude, v, but
variable angle, θ. Of note, the assumption of fixed magnitude is not crucial
as long as there is not a significant relationship between δθ and v. We can
consider three simple sources of variation in θ: (A) a randomly chosen value
of θ at each time point where θε[0, 2π), (B) a randomly chosen angular veloc-
ity, ω, at each time point from a normal distribution where ω ∼ N (µω, σ

2
ω),

(C) a randomly chosen change in angular velocity, dω/dt, at each time point
where dω/dt ∼ N (µ(dω/dt), σ

2
(dω/dt)). Simulated trajectories for each of these

models are presented in Figure S1C.
Model A represents a uniform distribution of possible angles, creating

trajectories that resemble a classic random walk. Variation of this model
have been used successfully to describe the motion of Paramecium [1] and the
running and tumbling motion of Escherichia coli [2]. However, as expected
such models do a poor job of qualitatively replicating the persistence over
time of keratocyte trajectories or quantitatively reproducing the observed
distribution in angular speeds, and auto-correlations in angular speed.

To take into account path persistence, established by the persistence
of the polarized lamellipodia [3], Model B incorporates a simple correlated
random walk in the direction of travel over time, with

θi = θi−1 + ω ∗ dt, where ω ∼ N (µω, σ
2
ω).

We have defined µω as 0 and σ2ω as 1 deg /s2 for these simulations. This sim-
ple simulation produces trajectories that are wandering in nature. Models of
this type have been highly effective in describing the motion of Dictyostelium
discoideum where the angle of motion from one time point to the next is
correlated due to coupling of future protrusion to sites of previous protrusion
[4, 5], as well as the movement of other tissue culture cell lines [6].

Qualitatively these wandering trajectories are similar to a subset of the
observed keratocyte trajectories. These models also are able to replicate the
appropriate distribution of angular speeds, however they fail to recreate the
persistent turning behavior that is intermittently exhibited by keratocytes
as quantitatively observed by the elevated auto-correlations in angular speed
for some cells.

Model C explicitly introduces this correlation between angular speeds,
such that the change in direction traveled at one time point is related to the
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change in direction traveled at the next time point,

ωi = ωi−1 + (dω/dt) ∗ dt, where (dω/dt) ∼ N (µ(dω/dt), σ
2
(dω/dt))

This produces trajectories that qualitatively resemble actual keratocyte mi-
gration as well as a realistic distribution of angular speed and observed high
angular speed autocorrelation functions seen in some cells [7]; however, it
cannot generate bimodal angular speed distributions.

II. Computational model of asymmetric centripetal-flow induced keratocyte
turning

A. Myosin-powered retrograde actin network flow

Experimental and theoretical studies have established that myosin II
(hereafter referred to as “myosin”) contracts actin arrays and generates con-
tractile stress, and that this stress grows with increasing myosin concentra-
tion [8, 9]. We make the simplest assumption that the myosin-generated
contractile stress, kM , is linearly proportional to the myosin density, M .
Here k is the proportionality coefficient (typical force per myosin unit) that
in the model depends on blebbistatin/calyculin A treatment. The contrac-
tile force applied to the actin network is the divergence of the stress; in the
case of the scalar stress, its gradient, k∇M . Following Rubinstein et al.
2009 [10], we assume that adhesion complexes generate viscous resistance to
the flow of F-actin relative to the substrate (with velocity ~U in the lab coor-
dinate system). The respective resistance force, ζ ~U , where ζ is the effective
drag coefficient that we also refer to as adhesion strength, is balanced by
the active contractile stress: ζ ~U = k∇M .

The simple equation, ζ ~U = k∇M , does not take into account passive
stresses in the F-actin network due to its deformation during the flow. To
add these passive stresses, we follow Rubinstein et al. 2009 [10] and assume
that these stresses have a viscous character with a relevant time scale of tens
of seconds. The small elastic component of the stress in the lamellipodium
can be neglected [10], so we model a combination of the shear and deforma-
tion stresses in the F-actin with the formula (13µ + µb)(∇ · ~U)I + µ(∇~U +

(∇~U)T ), where µ and µb are the shear and bulk viscosities, respectively, and
I is the identity tensor. Adding the divergence of these passive stresses to
the myosin and adhesion forces results in the force balance equation deter-
mining the flow rate of F-actin:[(

1

3
µ+ µb

)
∇∇ · ~U + µ∇2~U

]
+ k∇M = ζ ~U (1)
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Using a zero pressure boundary condition at the free lamellipodial boundary:

~n ·
[(

1

3
µ+ µb

)
(∇ · ~U)I + µ∇~U + (∇~U)T ) + kM

]
= 0 (2)

Here ~n is the local normal unit vector to the lamellipodial boundary.
This model simplifies the analysis by assuming that the F-actin viscosity is
spatially constant and independent of the F-actin density. Note that due to
this assumption we do not simulate or track actin density. Including a more
detailed assumption of viscosity being a function of the F-actin density does
not change the qualitative pattern of the actin flow [10].

B. Myosin transport

Following Rubinstein et al. 2009 [10], we assume that myosin molecules
bind and move with the F-actin network. Myosin molecules can detach from
the F-actin, diffuse in the cytoplasm and reattach. Here, we assume that
detachment and reattachment is rapid, in which case the system of equa-
tions for the actin-associated and diffusing myosin molecules [10] reduces
to just one equation for the motion of actin-associated myosin [11]. In this
model, the rapid cycles of myosin detachment, diffusion in the cytoplasm,
and reattachment, effectively result in a slow diffusion of the actin-associated
myosin combined with the convective drift of myosin due to coupling with
the F-actin that has a characteristic actin network velocity, ~U :

∂M

∂t
= DM∇2M −∇ ·

((
~U −∇H(~x− ~xcm)

)
M

)
, (3)

where DM is an effective diffusion constant. The second term in Eq. (3) has
an additional factor to account for the observed expulsion of myosin from
the center of the cell, ~xcm, where the nucleus is located. Computationally
this expulsion is achieved by introducing the smoothed Heaviside function:

H(~x− ~xcm) =
f0 exp−|~x−~xcm|

2/r2
n

1 + |~x− ~xcm|4/r4n
(4)

where rn is the effective radius of the nucleus and f0 is the effective repulsion
strength. This function is approximately equal to f0 in the area covered by
the nucleus and zero outside the nucleus. The gradient of this function
introduces effective drift of myosin away from the nuclear center at the
nuclear boundary.
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The boundary conditions for the myosin transport are:

−~n ·
[
DM∇M −M

(
~U −∇H(~x− ~x0)

)]
= V⊥M, V⊥ < 0 (5)

M = 0, V⊥ > 0 (6)

where ~n is the outward normal at the cell boundary. The left hand side of
Eq. (5) is the total (diffusion-drift) flux of myosin at the retracting boundary.
When the boundary is not moving (V⊥ = 0), Eq. (5) becomes the usual
boundary condition with no flux. When the boundary is moving inward
(V⊥ < 0), additional inward myosin flux arises due to the fact that the total
myosin is conserved, so the inward-moving cell edge collects myosin at the
edge (with local density M) and advects this myosin into the cell interior. To
conserve the myosin density, this advection flux is the expression in the right
hand side of Eq. (5). In addition, Eq. (6) describes the approximate no flux
condition at the protruding boundary (V⊥ > 0). Due to effective diffusion,
we have to use the total (diffusion-drift) flux of myosin at the protruding
boundary. However, the effective diffusion is very slow. Thus, we can use
the approximation that the drift of myosin flux at the protruding boundary
is equal to zero, which means M = 0 at this part of the boundary (Eq. 6),
which matches experimental measurements (Figure 4A). This approximate
boundary condition, where we treat the minuscule myosin concentration at
the protruding edge as zero, does produce a very small loss of conservation of
total myosin density (typically < 0.02% of myosin per second is lost), so to
restore the conservation of total myosin density we have added an additional
step of uniformly re-normalizing the myosin density to each time step. This
procedure amounts to assuming that there is a reservoir of unbound myosin
that is in equilibrium with the bound pool.

C. Mobile cell boundary

The cell boundary evolves according to the superposition of the inward
boundary displacement from myosin-induced contraction and the outward
displacement from actin polymerization. The net rate of boundary displace-
ment, V⊥, in the locally normal direction is expressed in the model as

V⊥(s) = ~U(s) · ~n(s) +

[
Vp −

2τ0
R(s)

]
(7)

where s is the arclength parameter marking the position along the cell
boundary, ~n(s) is the outward pointing locally normal vector and ~U(s) ·~n(s)
is the local actin centripetal flow given by Eq. (1) projected onto the normal
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of the boundary. The term in the square brackets is the net actin poly-
merization rate, where Vp is the polymerization rate, and the second term
accounts for the effect of the membrane tension on decreasing the polymer-
ization rate. Experimentally, it has been established that lamellipodial area
is conserved, likely due to a fixed amount of plasma membrane area [11].
As the membrane is effectively unstretchable, the membrane tension would
increase as the cell area increases, decreasing the polymerization rate. We
model these mechanics by assuming that Vp is constant along the bound-
ary but decreases when the cell area increases. The second term in the
square brackets is the effective Laplace pressure, which prevents develop-
ment of sharp corners at the boundary. This term is small and does not
affect the global cell behavior, and scales with the local boundary curvature
1/R(s) = −~n(s) · ∂s~n(s). The proportionality coefficient, τ0, is defined by:
τ0 = σ0l

2
0/η0 where σ0 is the effective membrane tension (along the bound-

ary), l0 is a length scale of molecular dimension and η0 is the effective drag
coefficient for the membrane as the surface evolves. In essence, 2σ0/R, is
the Laplace pressure, multiplied by l20 to give us the total force on a patch
membrane of size l20. If we then divide the total force 2σ0l

2
0/R by the drag

coefficient associated with the patch of membrane, then we get the veloc-
ity at which the patch of membrane is moving. Note that τ0 has the same
dimension as a diffusion constant.

D. Adhesion

Adhesion strength, ζ, appearing in Eq. (1) varies spatially [10] so ζ =
ζ(~x). We model function ζ(~x) using patterns based on experimentally mea-
sured traction forces and distributions of adhesion molecules [10]. It is known
that the traction force is weakest at the rear and strongest at the sides of cell
[12]. This implies that adhesion strength should be the greatest at the sides
and the smallest at the rear, and the strength of adhesion at the leading
edge should be in between that of the rear and of the sides (Figure S3A).

To come up with a mathematical description for the pattern shown in
Figure S3A, it is best to work in the cell frame of reference, and for conve-
nience we use the center of mass ~xcm (center of the cell body in the model) as
the origin of our coordinate system. To define the x and y axes, we first com-
pute the eigenvectors of the gyration tensor as defined by Rij =

∫
xiyidA,

where the integration is over the whole cell. Because this is a symmetric
real tensor, it will diagonalize to create two unique orthogonal eigenvectors
{ês, êl} as long as the cell is not circularly symmetric. These two eigenvec-
tors, by construction, point along the longest and the shortest dimensions
of the cell. We next construct a dynamical vector variable N̂cell which acts
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like a compass that follows the shortest dimension (ês) corresponding to the
rear-front direction. This vector evolves according to:

∂N̂cell

∂t
= −γn

(
N̂cell − ês

)
(8)

where 1/γn is the characteristic fast response time, the exact value of which
does not affect the predicted behavior. At the beginning of the run, we set
N̂cell(t = 0) = ês(t = 0) as our initial condition. Since N̂cell points along the
short dimension of the cell we may designate it as the y axis and use the
perpendicular line crossing x̂cm as the x axis. Using this coordinate system,
we initially place two sites of locally maximal adhesion to the sides of the
cell where the adhesion strength peaks are at the coordinates (−h0,±d0/2)
(Figure S3A). To define the dynamic position of the adhesion peaks at the
cell sides, we define a generalized Heaviside step function, keeping in mind
that we are using the N̂cell coordinate system:

H(~x, ~x0,~a, ε) =
1

2

[
1− tanh

[
(~x− ~x0)((~x− ~x0)T~a)− 1

ε

]]
(9)

In this expression, vector quantities should be interpreted as column vectors
so that (~x− ~x0)T which stands for the transpose of (~x− ~x0) is a row vector.
Just like the regular step function, the value of this function is 1 inside some
region and 0 outside of this region with a transition zone width approximated
by ε|~a|−1/2. The shape of the region defined by this function is such that
if the argument of the tanh function is negative/positive, then position ~x
is inside/outside the given region, respectively. To see how this function
works, notice that if we multiply out the vectorial quantities in the function
argument using ~x = (x, y)T , ~x0 = (x0, y0)

T , and ~a = (ax, ay)
T , then

(~x− ~x0)((~x− ~x0)T~a)− 1 = ax(x− x0)2 + ay(y − y0)2 − 1 (10)

If we let ax = ay = 1/r2, we get

(~x− ~x0)((~x− ~x0)T~a)− 1 =
(x− x0)2

r2
+

(y − y0)2

r2
− 1 (11)

which tells us that the shape of the given region is a circle with radius r
centered at ~x. If ax 6= ay, then we have an ellipse. We define ζ with the help
of function H and the coordinate system N̂cell so that it matches closely
with the adhesion pattern shown in Figure S3A:

ζ(~x) = ζ0 + ζlH
[
~x, (−d0/2,−h0)T , (1/r20, 1/r20)T , ε

]
+ζrH

[
~x, (d0/2,−h0)T , (1/r20, 1/r20)T , ε

]
+ζf

(
1−H

[
~x, (0, 0,−h2)T , (4/d21, 1/h21)T , ε

]) (12)
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Here ζ0 is the baseline value for the adhesion strength (light blue region
at the rear shown in Figure S3A), ζf is the adhesion strength value at the
leading edge, and ζl and ζr are the adhesion strength values at the left and
right sides of the cell respectively.

E. Varying adhesion strengths ζl and ζr in time

To test how adhesion asymmetry causes the cell to turn dynamically,
we allow the adhesion strengths at the sides, ζl and ζr, to oscillate in time
according to equations:

ζl = ζ01 + ∆ζw sin(2πνt) (13)

ζr = ζ0r −∆ζw sin(2πνt) (14)

where ζ0l and ζ0r are the baseline adhesion strengths at the two sides. ∆ζ
is the maximum deviation from ζw and 1/ν is the period of oscillation of
adhesion strength. We also used other functions of time (that are always
bounded from below and above) to model more stochastic variance of the
adhesion strengths. For example, we used Ornstein-Uhlenbeck stochastic
process (random walk in time of an overdamped harmonic oscillator per-
turbed by the white Gaussian noise). Results did not depend strongly on
the nature of the time-dependent variation.

F. Adhesion dynamics and boundary-crossing simulation

We modeled cells crossing boundaries of different adhesion strength, by
first taking ζhigh(~x) and ζ low(~x) to denote the adhesion strength of the cell
when the cell is crawling on substrates with high and low adhesivity (as
measured by the RGD density) respectively. To smoothly let the cell cross
between the two different substrates and thus transition between ζhigh and
ζ low (and reverse), we again use a different type of Heaviside step function
Λ which gives a value of one to the region in space with high adhesion and
a value of zero to the areas with low adhesion substrate. Mathematically,
this may be expressed as (using the lab coordinate system)

ζ(~x) = ζ low[1− Λ(~x)] + ζhighΛ(~x) (15)

The precise form of Λ is similar to that for H (Eq. 9) with a different
argument function.
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G. Simulation setup

The initial condition for our simulation was a circular cell of area A =
600µm2. We initially spread myosin uniformly over the whole cell. Symme-
try was then broken by choosing a fixed orientation of the short axis of the
cell, N̂cell, and biasing adhesion strength to be asymmetric across the long
axis of the cell during the first minute, of the simulation. During this first
minute cells typically evolved into the characteristic crescent shape, after
which N̂cell was allowed to evolve according to Eq. (8).

All calculations are carried out using LGPL-licensed finite-element solver
FreeFem++ (www.freefem.org) as described in detail in [11].

H. Model parameters

The model variables and parameters are listed in the Tables S1 to S4
below. Most of the parameter values are taken directly from our previous
publications [10, 11] with minor changes. In the following sections we discuss
the physically relevant parameters.

Table 1: Model Variables

Variable Meaning Dimension

t time s

s arc length µm

~x two-dimensional coordinate µm

M(~x, t) myosin concentration units/µm3

~U(~x) local F-actin flow velocity µm/s

~n(~x) local normal unit vector to the lamellipodial edge non-dimensional

ζ(~x, t) adhesion strength/drag-coefficient nN · s/µm4

V⊥(s) net local protrusion/retraction rate µm/s

Vp local polymerization rate µm/s

R(s) local radius of curvature µm

I. Viscous actin-myosin network

We take the characteristic length to be the typical cell size (from front
to back) L0 = 10µm and the characteristic speed to be the characteristic
cell speed, V0 = 0.2µm/s which is comparable to the retrograde flow rate of
the actin network. We set the shear viscosity, µ = 5 kPa×s [10]. Given that
the bulk viscosity is normally higher than the shear viscosity (as the gels are
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Table 2: Definition of adhesion strength related parameters

Parameter Meaning Dimension

ζ0 baseline adhesion strength nN·s/µm4

ζ1 adhesion strength coefficient for the left wing nN·s/µm4

ζr adhesion strength coefficient for the right wing nN·s/µm4

ζf adhesion strength coefficient for the leading edge (front) nN·s/µm4

ζ01 baseline adhesion strength for the left wing nN·s/µm4

ζ0r baseline adhesion strength for the right wing nN·s/µm4

∆ζ maximum amplitude of adhesion strength perturbation nN·s/µm4

ν frequency of modulating adhesion strength s−1
h0 y-displacement relative to the cell center for the side adhesion patches µm
h1 front-back length µm
do x-displacement relative to the cell center for the side adhesion patches µm
h1 width parameter for front adhesion patch size µm
r0 side adhesion patch size µm
ε adhesion transition zone width parameter dimensionless

more resistant to compression than shear) we use the value µb = 100 kPa×s
as the bulk viscosity [10]. In order for the myosin stress to generate the ob-
served flow of the order of V0 = 0.2 µm/s inside a lamellipodium with char-
acteristic thickness of h = 0.2 µm, the typical force scale is µhV0 = f0 = 200
pN: In our calculations, we multiply the viscosities by the characteristic
thickness of the lamellipodium h = 0.2 µm in order to convert the 3D
stress derivatives into the 2D surface force densities. To non-dimensionalize
Eq. (1), we choose k = µV0L

2
0 = 100 nN×µm based on dimensional analysis.

Using this coefficient k, 100 units of mysoin in our scheme are expected to
generate an average force density on the order of 100k/L4

0 and hence are ca-
pable of generating an average traction force on the order of 100kh/L4

0 ∼ 200
Pa, comparable to known traction force data [13, 14]. For all our simulation
runs, unless stated otherwise, we use the total amount of myosin Mtotal = 80
non-dimensional units. (Note that Mtotal is conserved in the model.) We
set the diffusion coefficient DM = 1.2µm2/s to be sufficiently small to keep
the dimensionless Péclet number Pe = kM

ζ0DM
� 1 such that the actin flow

dominates over diffusion [15] when the adhesion strength is minimal (ζ = ζ0)
[11, 16].

J. Myosin dynamics with fixed cell boundary

As part of our test calculations, we consider what happens when the
shape of the cell is fixed (V⊥ = 0), but the cell is turning. To simulate
such a situation, we solve Eq. (3) while taking the motion of the turning cell
explicitly into account. This is done by adding a kinematic flow to Eq. (3)
so that it becomes:

∂M

∂t
= DM∇2M −∇ ·

((
~U + ~Ukinematic −∇H(~x− ~xcm)

)
M
)

(16)
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~Ukinematic = −Ωẑ × (~x− ~xω)

Here ~xω is the center of pivoting motion and −Ωẑ is the angular velocity of
the cell. The negative sign accounts for the fact that myosin should drift in
the direction opposite to the cell motion. ẑ is the unit vector pointing out
of the surface on which the cell crawls. For these computational runs, we
choose ~xω = (40µm, −5µm) relative to the cell center-of-mass and Ω = 1/250
s−1. These values indicate that the cell is moving at a linear speed of V̄ =
Ω|~xω| = 0.2 µm/s and angular speed of about V̄ /(2π|~xω|)× 360 deg = 0.23
deg/s, both comparable to measured speeds and angular speeds from the
experimental work.

K. Magnitude of adhesion strength

The strength of adhesion is characterized by the coefficients introduced
in Eq. (12), namely {ζ0, ζl, ζr, ζf}. We fix the baseline strength at ζ0 = 0.03
nN s/µm4 for all of our runs. This value is comparable to the low adhesion
strength we previously reported in [11]. The value for the other coefficients
varies depending on what system we are studying but we try to keep them
all comparable to the ‘medium’ values that we have reported previously
ζ̄ = 0.4 nN×s/µm4[11]. Note that with the ‘medium’ values of adhesion
strength and with a characteristic retrograde flow rate in our simulation of
Ū = 0.2 µm/s, the characteristic traction force will be ζ̄Ūh ∼ 16 Pa, which
is comparable to the experimentally measured traction force (5-10 Pa).

L. The nucleus

In our two-dimensional model the nucleus is represented as a disc with
radius rn = 7.5 µm centered at the cell center-of-mass ~xcm. To effectively
repel both myosin and adhesion from the region where the nucleus resides,
we need to choose fo exp(1)/rn = |∇H||~x−~x0|=rn > V0 for the repulsion to
be strong enough to counteract the actin flow. We choose f0 = 1 µm2/s,
which yields f0exp(1)/rn = 0.35 µm/s.

M. Cell shape dynamics

The dynamics of the cell boundary are dictated by the balance of the net
local protrusion/retraction rate and the Laplace pressure. The strength of
the Laplace pressure term is governed by τ0 = σ0l

2
0/η0. We chose the tension

σ0 to be 0.1 nN/µm [17]. The drag coefficient for the membrane η0 scales,
according to Stoke’s Law, as ≈ 6πµ0l0, where µ0 = 1 cP is the viscosity of
water. As for l0, it should be the size of a lipid molecule, approximately 1 nm.
Using these numbers, τ0 = 0.5 µm2/s. In this study, we used a comparable



Allen et al. Supplementary mathematical model 11

value of τ0 = 0.1 µm2/s, which means that the tension is slightly less than
0.1 nN/µm.

N. Dependence of the model behavior on the parameters

The most important parameters in the model are the myosin strength
k, the adhesion strength ζ, the actin viscosity µ, and the characteristic cell
speed V0. The model behavior is sensitive to these parameters in the sense
that for the shape and movement of the model cell to resemble the real cell,
there is a number of constraints on these parameters that have to be in
place, analyzed in detail in [10, 11]. These constraints are not rigid: a few-
fold changes of these parameter values (Table 3) still predicts qualitatively
all the observed behavior. Similarly, the model is robust to a few fold change
of all characteristic adhesion strengths used (Table 4). The model is even less
sensitive to all other parameters listed in Table 3: changes of up to an order
of magnitude of their values (one at a time, of course) do not change the
predicted behavior qualitatively. We emphasize that most of the parameters
orders of magnitude are known from extensive studies of keratocyte cells.

Table 3: Non-adhesion related constant model parameters

Parameter Meaning Dimension

V0 characteristic cell speed 0.2 µm/s

L0 characteristic radius 10 µm

h cell thickness 0.2 µm

A cell area 600 µm2

Mtotal total myosin 80 units

DM effective myosin diffusion constant 1.2 µm2/s

µ shear F-actin viscosity 5 kPa·s
µb bulk F-actin viscosity 100 kPa·s
k myosin force parameter 100 nNµm2/s

f0 nucleus repulsion strength 1 µm2/s

rn nucleus radius 7.5 µm

τ0 membrane tension parameter 0.3 µm2/s

γn decay constant for the director N̂cell 1/5 s−1
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Table 4: The values of adhesion strength parameters used

Parameter [Dim] Standard High Adh. Sub. Low Adh. Sub. Mild Turn Tight Turn

ζ0 [nN·s/µm4] 0.03 0.03 0.03 0.03 0.03

ζf [nN·s/µm4] 0.4 0.4 0.12 0.4 0.4

ζl [nN·s/µm4] 0.5 0.5 0.15 N/A N/A

ζr [nN·s/µm4] 0.5 0.5 0.15 N/A N/A

ζ0l [nN·s/µm4] N/A N/A N/A 0.5 0.5

ζ0r [nN·s/µm4] N/A N/A N/A 0.5 0.5

∆ζ [nN·s/µm4] N/A N/A N/A 0.1 0.45

ν [s−1] N/A N/A N/A 0.5 0.5
h0 [µm] 2 2 2 2 2
h1 [µm] 13 13 13 13 13
d0 [µm] 14 14 14 14 14
d1 [µm] 22 22 22 22 22
r0 [µm] 2.5 2.5 2.5 2.5 2.5

ε [dimensionless] .25 .25 .25 .25 .25

III. Simulation results

A. Asymmetries in myosin distribution, actin flow and traction forces in
turning cells

We first considered a cell with a fixed shape, chosen to approximate
an experimentally measured turning cell shape. Similar to most observed
turning cells, there is a lower aspect ratio on the slower side and a higher
aspect ratio on the faster side, i.e. the outer wing is more elongated than the
inner wing. For simplicity, in these simulations we removed the nucleus and
its effects from the cell center. With the fixed cell boundary, we used the
kinematic actin-myosin flow of a turning cell as explained above in Eq. (16),
as well as a fixed adhesion distribution in time. We tested two distributions
of adhesions to see which could replicate observed measurements of actin
flow, myosin distribution and traction forces. In one simulation, adhesion
was constant in space, while in the other it varied in space with adhesion
higher on the inner side of the turning cell. The adhesion distribution with
resulting simulation results are presented in Figure S3. We observed that
the myosin distribution in both cases was biased toward the fast side of the
cell due to the kinematic actin flow, with only slight insignificant differences
in myosin distributions between these two cases. However, as presented
in the main text, only an asymmetric adhesion distribution could replicate
experimental measurements of traction forces.

B. Boundary crossing and myosin asymmetry

We used the free-boundary model of the cell to simulate the cell move-
ment while crossing a boundary between high and low adhesions, as de-
scribed above. In the simulations at each time step, we scaled the adhesion
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strength pattern depicted in Figure S3A by a factor dependent on the parts
of the cell that were on higher or lower adhesion, respectively. The results
are shown in Figure 7B and Movie S7a,b. We found that, matching experi-
mental results, cells would turn towards the side of higher adhesion after an
asymmetry in adhesion developed at the cell rear.

We also simulated the situation where the density of myosin was in-
creased on one side of the cell (Movie S6). The simulation demonstrated
that an asymmetry in myosin produces a steady turn away from the side of
increased myosin. Yet, once the externally imposed bias in myosin concen-
tration is removed, myosin re-distributes around the cell, the cytoskeletal
symmetry is restored, and the cell starts to move straight. This matched
experimental findings from asymmetric exposure to the myosin activating
small molecule calyculin (Figure 6A). Thus the combined experimental
and simulation results indicate that the positive feedback between the kine-
matics of turning and myosin distribution are sufficient for transient but not
persistent turning. Conversely, asymmetry in protrusion was insufficient to
produce cell turning (Movie S8).

C. Turning behavior with myosin-adhesion feedback

As the computations with the free-boundary model were computation-
ally expensive, we developed the following combined analytic-computational
theory to examine long time scale cell trajectories. We first fixed the differ-
ence ∆ζ between the left and right adhesion strengths. As a result, the cell,
after a brief transient relaxation, started to move with steady shape and
angular speed, ω, along a trajectory with constant radius of curvature, R.
Also as a result, a steady difference in myosin concentration, ∆M , between
the left and right parts of the cell developed. We repeated such simulations
varying the value of ∆ζ from 0 to the maximum (no adhesion at one side),
and measured ∆M , ω, and R for each adhesion asymmetry (Figure S4A-
C). We found a strong relationship between the asymmetry in adhesion and
the predicted rate of turning and myosin asymmetry. In comparison, when
we varied the adhesion strength at the leading edge, we found that such
variance did not affect cell turning behavior significantly (Figure S4A,B).

We found that the angular speed is an approximately linear function of
the left-right adhesion difference: ω ≈ α∆ζ, and the myosin concentration
difference between the left and right sides of the cell is an approximately
linear function of the angular speed: ∆M ≈ βω (Figure S4A-C). Here α
and β are defined as constant parameters identified in the simulations.

We then followed the experimental and theoretical findings in [18] of the
negative feedback between local contraction and adhesion strength. In [18],
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the adhesion strength was the function of the local actin flow rate, but as the
flow rate V is proportional to the ratio of the myosin concentration to the
adhesion strength, here for simplicity we assume that the adhesion strength
is the following function of the myosin concentration: ζ = ζ1+(ζ0−ζ1)(0.5−
arctan(s(m−m̄))/π), so that the adhesion strength is a decreasing function
of the myosin concentration m (Figure S4D). This is also consistent with
the observed and predicted biphasic relationship between actin retrograde
flow speed and traction stress [19], and the hypothetical “molecular-clutch”
model of adhesions [20]. At the inner rear of the turning keratocyte, inward
actin flow is slow and the molecular clutch of adhesions is in place, creating
large traction forces. At the outer rear of the turning keratocyte, inward
actin flow is high secondary to myosin contractility and the molecular clutch
of adhesions fails, leading to small traction forces. To appropriately model
our data, it is important that the adhesion strength decreases slowly at
low myosin densities, faster at moderate myosin densities and slower again
at high myosin densities, as in Figure S4D. However, the exact functional
form of this dependence is not critical, and we also note that such functional
dependencies are ubiquitous in biology [21]. In the ζ(m) relation, ζ0 is
the high adhesion strength (Table 4), and ζ1 = ζ0/2 is the low adhesion
strength, s = 20 is the parameter determining how fast the adhesion drops
at threshold myosin density m̄ [18]; we choose m̄ = 1.2 where M = 1
corresponds to average myosin density at the cell rear in the state of the
straight movement.

According to this assumption of negative feedback of myosin contractility
on adhesion strength, if the cell moves with angular speed ω, then there will
be the resulting difference in myosin concentrations at the cell left and right
sides, M+m and M−m; 2m ≈ βω. Then, there will be the following side-to-
side difference in the centripetal flow: Vl ∼ (M + m)/ζl, Vr ∼ (M −m)/ζr,
where ζl == ζ1 + (ζ0 − ζ1)(0.5 − arctan(s(M + m − m̄))/π), and ζr ==
ζ1+(ζ0−ζ1)(0.5−arctan(s(M−m−m̄))/π). The resulting angular velocity
is proportional to the difference Vl − Vr, and so:

ω = f(m), f(m) = M
ζl − ζr
ζlζr

+m
ζl + ζr
ζlζr

, ζl,r == ζ1+(ζ0−ζ1)(0.5−arctan(s(M±m−m̄))/π).

(17)
On the other hand, we have:

ω ≈ 2m

β
(18)

The system of Eq. (17,18) is shown graphically in Figure 7C, and the
intersections of the two relationships determines the steady turning state of
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a cell. We investigate the behavior of this model when the average myosin
density (or strength) parameter M – changes. In this figure we can see
that for greater myosin strength, there are three steady states, one of which
corresponds to straight migration and equal adhesion at the sides (ω =
0,∆ζ = 0), and two others correspond to finite angular speeds and adhesion
strength differences at the sides. These two finite angular speeds are the
same in magnitude and opposite in sign, and they correspond to rotation in
the clockwise and counter-clockwise directions. The movement with ω = 0
is unstable while the two other ones are stable, so a cell with this described
negative feedback between local myosin concentration and adhesion strength
will switch between turning persistently in two opposite directions, matching
the behavior of experimentally observed trajectories (Figure S1C). On the
other hand, when myosin strength is low, the only stable state corresponds
to straight migration and equal adhesion at the sides (ω = 0,∆ζ = 0).

In order to illustrate this point, we numerically solved the system of two
dynamic equations:

dω

dt
=

1

τω
(f(m)− ω),

dm

dt
=

1

τm
(βω/2m) +B(t) (19)

for the angular speed and myosin difference that produce the steady solutions
given by Eq. 17 and 18, and describe the relaxation of the angular speed
and myosin difference to their steady states values with characteristic times
of τω, and τm respectively. In the second equation of Eq. 19, the term B(t)
is used to describe stochastic uncorrelated noise. Numerically, we can solve
Eq. 19 using the Forward Euler method as follows:

ω(t+ ∆t) = ω(t) +
∆t

τω
(f(m(t))− ω(t)),m(t+ ∆t)

= m(t) +
∆t

τζ
(βω(t)/2−m(t)) + (2D∆t)1/2Z

(20)

Here the stochastic term D is the effective diffusion of adhesion (random
steps of adhesion change), and Z is the standard normal random variable.
Note, that the same results can be achieved if the angular speed is noisy, or
both speed and adhesion are noisy, with the magnitude of the noise adjusted
to fit the results.

We simulated Eq. 20 numerically using the parameters M̄ = 1.1 for
control value of the myosin strength and, M̄ = 0.8 for low value of the
myosin strength, D = 0.01, β = 0.45 (other parameters are listed above) and
recorded the time series of cell angular speed. When the parameter M <
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0.9, the negative feedback of myosin on adhesion is too weak and the only
stable steady state corresponds to straight motion. When the parameter
M > 1, the negative myosin-adhesion feedback is strong enough to provide
the bistable cell switching behavior that results in peaks in the angular
speed distribution, which correspond to persistent turning with rates on the
order of ∼ 1 degree per second, as observed (Figure 6D). Simulations give
distributions of angular speeds, autocorrelation functions and trajectories
illustrated in Figure 6E, which agrees with our experimental measurements.

In addition, this model reproduces the experiment with motion in the
electric field as follows. We observe that the electric field tends to orient
the leading edge of the cell in the direction of the cathode. We model this
tendency by adding the term −rθ to the equation for the rate of change of
the angular velocity, where θ is the angle at which the cell moves relative
to the cathode direction. Essentially, the angular velocity of the cell rear is
slowed down by the leading edge pull proportionally to the deviation from
the cathode direction when the cell is turning away from this direction, and
accelerated when the cell is approaching this direction. Respective system
of equation is:

dω

dt
=

1

τω
(f(m)− ω)− rθ, (21)

dm

dt
=

1

τm
(βω/2m) +B(t), (22)

dθ

dt
= ω. (23)

Numerical solutions of these equations with r = 0.3 and all other parameters
the same as above are shown in (Figure S4) for both weak (M = 0.8) and
strong (M = 1) myosin contractility.
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