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Supplementary	Note	1:	Simulating	phenotypes	from	DNAm	data	

Simulation	 scenario	 1:	 Simulating	a	 phenotype	with	 effects	 from	 a	 set	 of	 causal	

probes	(on	the	odd	chromosomes)		

We	 used	 the	 DNAm	 data	 from	 the	 LBC	 cohort	 after	 quality	 control	 (Methods).	 The	

DNAm	probes	were	adjusted	for	age,	sex,	experimental	batches,	and	smoking	status.	The	

phenotype	was	simulated	based	on	the	following	model		

																																									! = #$ + &																																																																																							(1)
	

where	!	is	 a	 vector	 of	 phenotypes,	#	is	 a	 matrix	 of	 standardised	 DNAm	measures	 for	

1,319	individuals	and	a	set	of	causal	probes	(randomly	sampled	from	all	probes	on	the	

odd	chromosomes),	'	is	a	vector	of	the	effects	of	the	causal	probes,	and	&	is	a	vector	of	

residuals.	The	probe	 effects	were	 generated	 from	a	 standard	normal	distribution,	 and	

the	 elements	 in	&	were	 generated	 from	((0, ,#$- (
.

/0
− 1))	with	,#$- 	being	 the	 empirical	

variance	 of	 the	 elements	 in	 vector	#$ 	and	4- 	being	 the	 proportion	 of	 phenotypic	

variance	explained	by	the	causal	probes.	We	simulated	the	phenotype	with	100	causal	

probes	 with	4- = 0.5	(per-probe	4- = 0.005),	 and	 repeated	 the	 simulation	 100	 times	

with	 the	 causal	 probes	 resampled	 in	 each	 simulation	 replicate.	 We	 also	 tested	 the	

robustness	of	the	models	under	two	additional	settings,	i.e.,	10	causal	probes	with	4- =

0.2 	(per-probe	4- = 0.02 )	 and	 1000	 causal	 probes	 with	4- = 0.4 	(per-probe	 4- =

0.004).	

	

In	 each	 simulation	 replicate,	 we	 tested	 the	 associations	 between	 the	 simulated	

phenotype	 and	all	 the	 probes	 using	different	methods.	 The	 genome-wide	 significance	

level	was	set	to	2.19e-07	based	on	a	Bonferroni	correction	for	228,694	tests.		

	

Simulation	scenario	2:	Simulating	a	phenotype	with	effects	from	cell	types	but	no	

direct	effects	from	the	probes	

We	used	the	DNAm	data	and	cell	counts	measured	for	five	primary	blood	cell	types	in	

the	LBC	cohort	to	simulate	a	phenotype	based	on	the	following	model		

! = 9' + &																																																																																			(2)	

where	!	is	 a	 vector	 of	 phenotypes,	9	is	 a	matrix	 of	 standardised	 cell	 counts	 for	 1,319	

individuals	and	5	cell	types,	'	is	a	vector	of	the	effects	of	the	cell	types,	and	&	is	a	vector	

of	residuals.	The cell type effects were generated from a standard normal distribution, 

and the elements of &	were	 generated	 from	((0, ,9'- (
.

:;<;=
0 − 1))	with	,9'- 	being	 the	

empirical	 variance	 of	 all	 the	 elements	 in	 vector	9'	and	>?@?A- being	 the	 proportion	 of	
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phenotypic	variance	explained	by	CTCs.	Given	the	observed	variance	explained	by	5	cell	

types	(i.e.,	neutrophils,	lymphocytes,	monocytes,	eosinophils	and	basophils)	that	varied	

from	0	to	~0.05	 for	4	real	traits	 (i.e.,	BMI,	height,	 lung	 function	and	walking	speed)	 in	

LBC	(Supplementary	Table	10),	we	used	a	range	of	parameter	values	for	>?@?A- 	in	the	

simulation,	 i.e.,	 0.005,	 0.01,	 0.02,	 0.03,	 0.04	 and	 0.05.	 We	 repeated	 each	 simulation	

scenario	 1000	 times	 (we	 ran	 more	 simulation	 replicates	 in	 this	 case	 to	 get	 a	 more	

precise	estimate	of	power).	 In	addition,	we	also	simulated	extreme	cases	with	>?@?A- 	=	

0.1,	 0.3,	 0.5	 and	0.7.	 In	 each	 simulation	 replicate,	we	 performed	 the	 association	 tests	

using	different	methods	and	used	a	genome-wide	significance	level	of	2.19e-07	based	on	

a	Bonferroni	correction	for	228,694	tests.		

	

We	also	applied	 the	method	to	simulate	a	phenotype	with	100	replicates	based	on	22	

experimental	batches	(i.e.,	22	plates)	in	lieu	of	the	5	cell	types	with	>BCDEF- 	ranging	from	

0.005	to	0.7.	Note	that	in	this	case	the	DNAm	probes	were	adjusted	for	age,	sex,	sample	

position	on	the	chip,	CTCs	and	smoking	status.	

	

Simulation	 scenario	 3:	 Simulating	 a	 phenotype	 with	 effects	 from	 both	 causal	

probes	and	cell	types	

In	 this	 scenario,	 we	 used	 the	 LBC	 data	 to	 simulate	 a	 phenotype	 based	 on	 the	model	

below	

! = 9' + #$ + &	 	 (3)	

where	 all	 the	 parameters	 and	 variables	 have	 been	 defined	 above.	 The	 five	 cell	 types	

explained	 5%	 of	 variance	 of	 the	 simulated	 phenotype	 and	 the	 100	 causal	 probes	

(randomly	 sampled	 from	 all	 probes	 on	 the	 odd	 chromosomes)	 explained	 50%	 of	 the	

variance.	The	simulation	was	repeated	100	times	with	causal	probes	resampled	in	each	

simulation	replicate.		

	

We	also	applied	the	method	to	simulate	a	phenotype	with	100	replicates	based	on	100	

causal	probes	(explaining	50%	of	the	variance)	and	22	experimental	batches	(explaining	

5%	of	the	variance).	In	this	case,	the	DNAm	probes	were	adjusted	for	age,	sex,	sample	

position	on	the	chip,	CTCs	and	smoking	status.	

	

Simulations	to	evaluate	OSCA-OREML		

We	simulated	a	phenotype	based	on	model	(1),	i.e.	! = #$ + &.	In	this	simulation,	we	did	

not	limit	the	causal	probes	on	the	odd	chromosomes	but	allowed	them	to	be	sampled	at	

random	across	 the	whole	 genome.	We	 simulated	 the	phenotype	 in	2	 scenarios,	1)	 the	
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null	model	(i.e.,	Xb	=	0),	2)	the	alternative	model	(G	causal	probes	ramdomly	sampled	

from	 all	 the	 probes	with	G	=	 1,	 50	 or	 500	 and	 the	 correponding	4-	=	 0.1,	 0.2	 or	 0.5)	

using	the	method	described	above.	Each	DNA	methyaltion	probe	in	LBC	was	adjusted	for	

age,	sex,	experimental	batches,	smoking	status	and	CTCs.	We	repeated	each	simulation	

500	 times	 to	 obtain	 the	 mean	 and	 standard	 deviation	 of	 the	 OREML	 estimate	 over	

repeated	sampling.	
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Supplementary	Note	2:	A	brief	 summary	of	 the	 feature	 selection	 strategy	

used	in	FaST-LMM-EWASher		

FaST-LMM-EWASher	 is	 an	MLM-based	EWAS	method	which	 tests	 the	 association	of	 a	

probe	with	a	 trait	 conditioning	on	 the	 random	effects	 of	 a	set	 of	 selected	probes.	The	

main	 analysis	 pipeline	 implemented	 in	 FaST-LMM-EWASher	 can	 be	 summarised	 as	

following:	

1. Read	the	DNAm	and	phenotype	data.	

2. Remove	probes	with	small	and	large	mean	beta	values.	

3. Compute	the	principal	components	for	the	individuals	using	the	DNAm	data.	

4. Run	 MLM-based	 association	 analyses	 iteratively	 with	 increasing	 number	 of	 PCs	

(from	0	to	10)	fitted	as	covariates.	In	each	iteration,	a	feature	selection	process	is	

conducted	 to	 select	 probes	 to	 be	 fitted	 as	 the	 random	 effects	 in	 the	 MLM	 (not	

including	the	probes	in	<50Kb	distance	from	the	probe	in	question).	The	iteration	

proceeds	until	the	genome	inflation	factor	is	smaller	than	1	or	the	number	of	PCs	is	

10.		

	

The	algorithm	to	select	the	random-effect	probes	can	be	described	as	

1) Split	the	sample	into	10	sub-samples	of	the	same	size	

2) For	each	sub-sample	

a. Use	the	target	sub-sample	as	the	test	set	and	a	pool	of	all	the	other	sub-

samples	as	the	training	set.	

b. Run	linear	regression	analysis	in	the	training	set.	

c. Define	a	vector	with	fixed	numbers,	 i.e.,	H	=	[1,	101,	201,	301,	401,	501,	

601,	701,	801,	901,	2000,	3000,	4000,	5000,	6000,	7000,	8000,	9000]	

d. For	each	number	in	the	vector	H	above,	take	the	top	IJ	probes	ranked	by	

the	 linear	 regression	 p-values	 in	 the	 training	 set	 to	 predict	 the	

phenotype	in	the	test	set.		

e. Calcualte	 SSE	 and	 the	 log	 likelihood	 from	 regressing	 the	 phenotype	

against	the	predictor	in	the	test	set.	

3) Calculate	 the	mean	values	of	SSE	and	log	 likelihood	across	the	10	sub-samples	

for	IJ.	

4) Select	a	number	in	vector	H	(denoted	by	IKLM)	that	shows	the	largest	mean	log	

likelihood	or	the	smallest	mean	SSE.	

5) Select	the	top	IKLM 	probes	from	linear	regression	analysis	in	the	whole	sample.	
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Supplementary	Note	3:	Quality	control	of	the	DNA	methylation	data	in	LBC	

A	 total	 of	 3,191	whole	 blood	 samples	 from	 3	 waves	 were	 assayed	with	 the	 Illumina	

HumanMethylation450	 Bead	 Chips	 at	 485,512	 CpG	 sites	 across	 the	 genome.	 We	

removed	146	duplicated	samples	or	samples	for	which	>5%	of	the	probes	with	intensity	

detection	(against	negative	probes	on	the	array)	p-value	>0.01.	We	also	removed	probes	

with	 intensity	 detection	 p-value	 >0.01	 in	 >5%	 of	 the	 samples	 and	 probes	 on	 the	 sex	

chromosomes.	We	further	excluded	probes	encompassing	SNPs	annotated	in	dbSNP	and	

probes	identified	as	potentially	cross-hybridizing.	A	total	of	3,018	samples	and	307,360	

probes	were	retained	for	analysis	(Supplementary	Table	11).		
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Supplementary	Note	4:	Key	features	of	OSCA	

We	 have	 mentioned	 in	 the	 main	 text	 the	 two	 primary	 applications	 of	 OSCA	 (OSCA-

MOMENT	 and	 OSCA-OREML).	 Here,	 we	 listed	 a	 number	 of	 additional	 key	 features	 of	

OSCA	(Supplementary	Figure	27).	

• Genetic	 association	 analysis	 based	 on	 linear	 regression	 for	 molecular	 traits,	 also	

known	 as	 omic-data-based	 quantitative	 trait	 locus	 (xQTL)	 analysis.	 The	 xQTL	

analysis	is	computationally	intensive	because	of	the	large	number	of	traits	(e.g.,	tens	

of	 thousands	of	 traits	 for	gene	 expression	 and	hundreds	of	 thousands	of	 traits	 for	

DNA	methylation).	To	speed	up	the	analysis,	OSCA	parallelises	the	analysis	to	array	

jobs	and	uses	multi-threading	to	utilise	multiple	CPUs	in	one	job.	For	analyses	with	a	

number	 of	 covariates,	 OSCA	 has	 an	 option	 to	 accelerate	 the	 computation	 by	 pre-

adjusting	the	phenotype	and	omic	measures	by	the	covariates.	The	xQTL	output	(i.e.,	

the	summary	statistics)	are	stored	 in	 the	SMR	BESD	 format	 [1],	greatly	alleviating	

the	storage	burden	and	also	facilitating	the	follow-up	analyses	using	SMR.	

• Omic-data-based	 phenotype	 prediction.	We	 have	 implemented	 in	 OSCA	 the	 omic-

data-based	best	linear	unbiased	predictor	(OBLUP)	[2]	to	compute	the	joint	effects	

of	 all	measures	of	 an	omic	profile,	which	 can	 subsequently	be	used	 to	predict	 the	

phenotypes	of	individuals	in	an	independent	sample.	Note	that	the	OBLUP	analysis	

needs	 to	be	performed	 in	 conjunction	with	OREML.	We	will	 implement	Lasso	and	

Elastic	net	based	prediction	approaches	and	multi-component	OBLUP	in	OSCA	in	the	

near	future.	

• Simulating	phenotype	based	on	omic	data	(see	the	Supplementary	Note	1	 for	the	

simulation	method).	

• Meta-analysis	 of	 xQTL	 summary	 statistics	 from	 multiple	 cohorts	 with	 or	 without	

sample	 overlap.	 OSCA	 estimates	 sample	 overlap	 between	 pairwise	 cohorts	 using	

summary	 statistics	 of	 the	 non-significant	 SNPs	 and	 performs	 a	 meta-analysis	

account	 for	 sampling	 covariance	 among	 the	 estimates	 from	multiple	 cohorts	 by	 a	

generalised	 least	 squares	 approach	 [3].	 If	 all	 the	 cohorts	 are	 independent,	 the	

method	 is	 equivalent	 to	 the	 conventional	 inverse-variance-weighted	meta-analysis	

approach	[4].	

• Data	 storage.	 For	 the	 efficiency	 of	 data	 management,	 we	 store	 the	 omic	 data	 in	

binary	format	(BOD	file	format)	in	OSCA,	which	is	more	efficient	to	read	and	write	

compared	 to	 text	 format,	 and	 save	 the	 xQTL	 output	 in	 SMR	 BESD	 format	 as	

mentioned	above.	We	also	provide	functions	that	support	the	conversion	between	a	

BOD	file	and	a	plain	text	file.	
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Supplementary	 Figure	 1	 Power	 and	 false	 positive	 rate	 for	 the	 MWAS	 methods	 in	

simulation	scenario	1	(phenotypes	simulated	based	on	effects	 from	10	causal	probes).	

(a)	Each	column	represents	the	mean	of	genomic	inflation	factor	from	a	method	across	

100	simulation	replicates	with	an	error	bar	representing	+/-	SE	of	the	mean.	 (b)	Each	

dot	represents	 the	 false	positive	rate	of	a	method	(with	an	error	bar	representing	+/-	

the	 SE),	 calculated	 as	 the	 proportion	 of	 simulations	 with	 one	 or	 more	 null	 probes	

detected	at	the	genome-wide	significance	level.	(c)	Each	column	represents	the	mean	of	

the	mean	chi-squared	values	of	10	causal	probes	from	a	method	across	100	simulation	

replicates	with	an	error	bar	representing	+/-	SE	of	the	mean.	(d)	Each	dot	represents	the	

power	 of	 a	 method	 (with	 an	 error	 bar	 representing	 +/-	 the	 SE),	 computed	 as	 the	

proportion	of	causal	probes	detected	at	a	genome-wide	significance	level	based	on	the	

calibrated	chi-squared	values	in	100	simulation	replicates.		



	 9	

	
Supplementary	 Figure	 2	 Power	 and	 false	 positive	 rate	 for	 the	 MWAS	 methods	 in	

simulation	scenario	1	(phenotypes	simulated	based	on	effects	from	1000	causal	probes).		

See	Figure	1	for	details	of	the	labels.	
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Supplementary	 Figure	 3	 Power	 and	 false	 positive	 rate	 for	 the	 MWAS	 methods	 in	

simulation	scenario	3	(phenotypes	simulated	based	on	effects	 from	100	causal	probes	

and	5	CTCs).	See	Figure	1	for	details	of	the	labels.	
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Supplementary	 Figure	 4	 Power	 and	 false	 positive	 rate	 for	 the	 MWAS	 methods	 in	

simulation	scenario	3	(phenotypes	simulated	based	on	effects	 from	100	causal	probes	

and	5	CTCs)	with	LBC1936.	See	Figure	1	for	details	of	the	labels.	
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Supplementary	 Figure	 5	 Power	 and	 false	 positive	 rate	 for	 the	 MWAS	 methods	 in	

simulation	scenario	3	(phenotypes	simulated	based	on	effects	 from	100	causal	probes	

and	5	CTCs)	with	LBC1921.	See	Figure	1	for	details	of	the	labels.	
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Supplementary	 Figure	 6	 Power	 and	 false	 positive	 rate	 for	 the	 MWAS	 methods	 in	

simulation	 scenario	 3	 (phenotypes	 simulated	 based	 on	 effects	 from	 10	 causal	 probes	

and	5	CTCs).	See	Figure	1	for	details	of	the	labels.	
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Supplementary	 Figure	 7	 Power	 and	 false	 positive	 rate	 for	 the	 MWAS	 methods	 in	

simulation	scenario	3	(phenotypes	simulated	based	on	effects	from	1000	causal	probes	

and	5	CTCs).	See	Figure	1	for	details	of	the	labels.	
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Supplementary	Figure	8	Genomic	inflation	factor	and	false	positive	rate	for	the	MWAS	

methods	 in	 simulation	 scenario	 2	 (phenotypes	 simulated	 based	 on	 the	 effects	 of	 22	

batches	 without	 causal	 probes).	 Shown	 on	 the	 horizontal	 axis	 is	 the	 proportion	 of	

variance	in	the	simulated	phenotype	explained	by	the	batch	effects	(>BCDEF- ).	(a)	Each	dot	

represents	 the	 mean	N	value	 from	 100	 simulation	 replicates	 given	 a	 specified	>BCDEF- 	

value	for	a	method	with	an	error	bar	representing	+/-	the	SE	of	the	mean.	(b)	Each	dot	

represents	the	 false	positive	rate,	calculated	as	 the	proportion	of	simulation	replicates	

with	one	or	more	null	probes	detected	at	a	genome-wide	significance	level.		
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Supplementary	 Figure	 9	 Power	 and	 false	 positive	 rate	 for	 the	 MWAS	 methods	 in	

simulation	scenario	3	(phenotypes	simulated	based	on	effects	 from	100	causal	probes	

and	22	batches).	See	Figure	1	for	details	of	the	labels.	
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Supplementary	Figure	10	Comparison	between	the	result	from	MOA/MOMENT	

analysis	of	the	whole	sample	and	that	from	a	meta-analysis	of	summary	statistics	from	

MOA/MOMENT	analyses	of	LBC1936	and	LBC1921	across	100	simulation	replicates.	(a)	

Pearson	correlation	between	the	result	from	MOA	of	the	whole	sample	and	the	meta-

analysis	of	summary	statistics	from	MOA.	(b)	Pearson	correlation	between	the	result	

from	MOMENT	of	the	whole	sample	and	the	meta-analysis	of	summary	statistics	from	

MOMENT.	(c)	Kolmogorov–Smirnov	distance	between	the	result	from	MOA	of	the	whole	

sample	and	the	meta-analysis	of	summary	statistics	from	MOA.	(d)	Kolmogorov–

Smirnov	distance	between	the	result	from	MOMENT	of	the	whole	sample	and	the	meta-

analysis	of	summary	statistics	from	MOMENT.
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Supplementary	Figure	11	Manhattan	plots	of	association	p-values	from	9	MWAS	methods	for	BMI	in	LBC.	The	red	horizontal	line	represents	the	

genome-wide	significance	level.
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Supplementary	Figure	12	Manhattan	plots	of	association	p-values	from	9	MWAS	methods	for	height	in	LBC.	
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Supplementary	Figure	13	Manhattan	plots	of	association	p-values	from	9	MWAS	methods	for	lung	function	in	LBC.		
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Supplementary	Figure	14	Manhattan	plots	of	association	p-values	from	9	MWAS	methods	for	walking	speed	in	LBC.		
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Supplementary	Figure	15	Manhattan	plots	of	association	p-values	from	6	MWAS	methods	for	lung	function	with	smoking	status	fitted	as	a	fixed	

covariate	in	LBC.		
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Supplementary	Figure	16	Manhattan	plots	of	association	p-values	from	9	MWAS	methods	for	a	categorical	phenotype	of	smoking	status	(coded	as	

0,	1	and	2	for	non-smoker,	former	smoker	and	current	smoker)	in	LBC.		
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Supplementary	Figure	17	Manhattan	plot	of	association	p-values	from	MOA	for	a	categorical	phenotype	(coded	as	0,	1	or	2)	of	smoking	status	with	

the	top	4	MOMENT	signals	fitted	as	fixed	covariates.		
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Supplementary	Figure	18	Manhattan	plots	of	association	p-values	from	9	MWAS	methods	for	a	binary	phenotype	of	smoking	status	(coded	as	0	and	

1	for	non-smoker	and	former	smoker	or	current	smoker)	in	LBC.		
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Supplementary	Figure	19	Correlation	of	the	off-diagonal	elements	between	GRM	and	

ORM	computed	from	genetic	and	DNAm	data	in	LBC.	



	 27	

	

	

Supplementary	Figure	20	Proportion	of	null	probes	with	PMWAS	<	0.05	in	simulation	

scenario	1.	Each	column	represents	the	mean	of	proportion	of	null	probes	from	a	

method	across	100	simulation	replicates	with	an	error	bar	representing	+/-	SE	of	the	

mean.
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Supplementary	 Figure	 21	 Genomic	 inflation	 factor	 and	 false	 positive	 rate	 for	 the	

MWAS	methods	in	simulation	scenario	2	with	large	!"#"$% 	(from	0.05	to	0.7).	Shown	on	

the	 horizontal	 axis	 are	 the	!"#"$% 	values	 used	 to	 simulate	 the	 phenotype.	 (a)	 Each	 dot	

represents	 the	 mean	&	value	 from	 1000	 simulation	 replicates	 given	 a	 specific	!"#"$% 	

value	for	a	method	with	an	error	bar	representing	+/-	the	SE	of	the	mean.	(b)	Each	dot	

represents	the	 false	positive	rate,	calculated	as	 the	proportion	of	simulation	replicates	

with	one	or	more	null	probes	detected	at	a	genome-wide	significance	level.	
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Supplementary	 Figure	 22	 Genomic	 inflation	 factor	 and	 false	 positive	 rate	 for	 the	

MWAS	methods	in	simulation	scenario	2	with	large	!'()*+% 	(from	0.05	to	0.7).	Shown	on	

the	horizontal	axis	are	 the	!'()*+% 	values	used	 to	 simulate	 the	phenotype.	 (a)	Each	dot	

represents	the	mean	&	value	from	100	simulation	replicates	given	a	specific	!'()*+% 	value	

for	 a	 method	 with	 an	 error	 bar	 representing	 +/-	 the	 SE	 of	 the	 mean.	 (b)	 Each	 dot	

represents	the	false	positive	rate.	
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Supplementary	Figure	23	Manhattan	plots	of	association	p-values	from	linear	

regression	for	5	CTCs.	DNAm	probe	measures	were	adjusted	for	age,	sex,	experimental	

batches,	and	smoking	status.	
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Supplementary	 Figure	 24	 Genomic	 inflation	 factor	 and	 false	 positive	 rate	 for	 the	

MWAS	methods	with	the	measured	and	predicted	CTCs	fitted	as	covariates	in	simulation	

scenario	2.	(a)	Mean	&	value	from	1000	simulation	replicates	given	a	specific	!"#"$% 	value	

for	a	method	with	an	error	bar	representing	+/-	the	SE	of	the	mean.	(b)	False	positive	

rate.	CTCs:	linear	regression	with	the	measured	CTCs	fitted	as	covariates.	“preCTCs”	or	

“_preCTCs”:	analysis	with	the	predicted	CTCs	fitted	as	covariates.	
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Supplementary	 Figure	 25	 Genomic	 inflation	 factor	 and	 false	 positive	 rate	 for	 the	

MWAS	methods	with	 the	 predicted	 CTCs	 fitted	 as	 covariates	 in	 simulation	 scenario	2	

with	 large	!"#"$% 	(ranging	 from	 0.05	 to	 0.7).	 (a)	 Mean	&	value	 from	 1000	 simulation	
replicates	with	an	error	bar	representing	+/-	the	SE	of	the	mean.	(b)	False	positive	rate.	

CTCs:	 linear	 regression	 with	 the	 measured	 CTCs	 fitted	 as	 covariates.	 “preCTCs”	 or	

“_preCTCs”:	analysis	with	the	predicted	CTCs	fitted	as	covariates.		
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Supplementary	Figure	26	Genomic	inflation	factor	and	false	positive	rate	for	MOA	and	

MOMENT	with	the	measured	CTCs	fitted	as	covariates	in	simulation	scenario	2	(!"#"$% 	

ranging	from	0.05	to	0.7).	(a)	Mean	&	value	from	1000	simulation	replicates	with	an	
error	bar	representing	+/-	SE	of	the	mean.	(b)	False	positive	rate.	CTCs:	linear	

regression	with	the	measured	CTCs	fitted	as	covariates.	MOA_CTCs	(or	MOMENT_CTCs):	

MOA	(or	MOMENT)	analysis	with	the	measured	CTCs	fitted	as	covariates.	
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Supplementary	Figure	27	Schematic	diagram	of	OSCA
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Supplementary	Table	1	Summary	of	the	results	from	all	the	MWAS	methods	in	simulation	scenario	1	

	
100	Causal	Probes	 Odd	chromosomes	 Even	chromosomes	(null)	

!" 	 s.e.m.	 FPR	 Power	
#$%%%	 s.e.m.	 #&'($%%%%%%	 s.e.m.	 #$%%%	 s.e.m.	 )̅	 s.e.m.	 #$%%%	 s.e.m.	 )̅	 s.e.m.	

Unadjusted	 15.60	 0.769	 2.41	 0.076	 8.78	 0.672	 7.92	 0.56	 8.58	 0.66	 7.67	 0.532	 0.405	 0.013	 1.00	 0.17	
5PCs	 7.71	 0.087	 4.76	 0.045	 1.70	 0.030	 1.65	 0.024	 1.67	 0.028	 1.63	 0.023	 0.118	 0.003	 0.97	 0.89	

ReFACTor	 8.00	 0.091	 4.34	 0.062	 1.93	 0.044	 1.90	 0.045	 1.91	 0.044	 1.90	 0.045	 0.149	 0.005	 0.99	 0.81	
LFMM2-ridge	 7.42	 0.065	 5.28	 0.04	 1.43	 0.010	 1.41	 0.010	 1.42	 0.010	 1.41	 0.009	 0.083	 0.002	 0.92	 0.93	
LFMM2-lasso	 7.07	 0.061	 5.25	 0.041	 1.37	 0.008	 1.35	 0.008	 1.36	 0.008	 1.35	 0.008	 0.073	 0.001	 0.82	 0.93	

SVA	 8.52	 0.153	 4.92	 0.087	 2.00	 0.085	 1.83	 0.064	 1.97	 0.081	 1.81	 0.061	 0.134	 0.007	 0.96	 0.80	
FaST-LMM-
EWASher	 6.43	 0.132	 5.15	 0.054	 1.26	 0.020	 1.25	 0.020	 1.25	 0.020	 1.24	 0.019	 0.054	 0.003	 0.63	 0.94	

MOA	 6.06	 0.05	 6.08	 0.051	 1.00	 0.001	 1.00	 0.001	 1.00	 0.001	 1.00	 0.001	 0.002	 4e-4	 0.10	 0.98	
MOMENT	 5.46	 0.05	 5.42	 0.051	 1.01	 0.001	 1.01	 0.001	 1.01	 0.001	 1.01	 0.001	 0.004	 5e-4	 0.03	 0.95	

#$%%%:	mean	chi-squared	value.	
s.e.m.:	standard	error	of	the	mean.	

#&'($%%%%%%:	mean	chi-squared	value	adjusted	by	the	genome	inflation	factor	of	the	null	SNPs	on	the	even	chromosomes.	
)̅:	mean	genome	inflation	factor.	
!" :		Kolmogorov-Smirnov	statistic	to	measure	deviation	of	the	p-value	distribution	from	the	expected	distribution	under	the	null.	
	



	 36	

Supplementary	Table	2	Summary	of	the	results	from	all	the	MWAS	methods	in	simulation	scenario	3	

	
100	Causal	Probes	 The	target	odd	chromosomes	 The	even	chromosomes	

!" 	 s.e.m.	 FPR	 Power	
#$%%%	 s.e.m.	 #&'($%%%%%%	 s.e.m.	 #$%%%	 s.e.m.	 )̅	 s.e.m.	 #$%%%	 s.e.m.	 )̅	 s.e.m.	

Unadjusted	 15.42	 0.746	 2.43	 0.077	 8.99	 0.683	 7.77	 0.566	 8.80	 0.664	 7.57	 0.547	 0.400	 0.013	 1.00	 0.14	
5PCs	 7.63	 0.086	 4.76	 0.042	 1.67	 0.021	 1.63	 0.018	 1.64	 0.020	 1.61	 0.017	 0.116	 0.003	 0.96	 0.88	

ReFACTor	 7.96	 0.087	 4.27	 0.064	 1.94	 0.041	 1.93	 0.043	 1.93	 0.041	 1.92	 0.044	 0.152	 0.005	 0.99	 0.72	
LFMM2-ridge	 7.41	 0.070	 5.28	 0.039	 1.43	 0.011	 1.41	 0.010	 1.42	 0.010	 1.40	 0.009	 0.083	 0.002	 0.94	 0.97	
LFMM2-lasso	 7.05	 0.065	 5.26	 0.039	 1.37	 0.009	 1.35	 0.008	 1.35	 0.009	 1.34	 0.008	 0.072	 0.001	 0.80	 0.98	

SVA	 8.57	 0.142	 4.93	 0.079	 2.07	 0.096	 1.85	 0.068	 2.03	 0.092	 1.83	 0.066	 0.136	 0.007	 0.96	 0.85	
FaST-LMM-
EWASher	 6.18	 0.127	 5.08	 0.055	 1.23	 0.021	 1.22	 0.020	 1.22	 0.020	 1.25	 0.020	 0.048	 0.004	 0.53	 0.93	

MOA	 6.07	 0.049	 6.09	 0.050	 1.01	 0.001	 1.00	 0.001	 1.00	 0.001	 1.00	 0.001	 0.002	 4e-4	 0.11	 0.98	
MOMENT	 5.48	 0.054	 5.45	 0.053	 1.01	 0.001	 1.01	 0.001	 1.01	 0.001	 1.001	 0.001	 0.004	 5e-4	 0.08	 0.95	

#$%%%:	mean	chi-squared	value.	
s.e.m.:	standard	error	of	the	mean.	

#&'($%%%%%%:	mean	chi-square	value	adjusted	by	the	genome	inflation	factor	of	the	null	SNPs	on	the	even	chromosomes.	
)̅:	mean	genome	inflation	factor.	
!" :		Kolmogorov-Smirnov	statistic	to	measure	deviation	of	the	p-value	distribution	from	the	expected	distribution	under	the	null.	
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Supplementary	Table	3	Genome-wide	significant	DNAm	probes	identified	by	MOA	for	three	traits	in	LBC	

Trait	 CHR	 Probe	 bp	 Gene	 +	 SE	 P	 #Methods	
BMI	 17	 cg11202345	 76976057	 LGALS3BP	 4.50	 0.74	 1.07E-09	 9	
BMI	 22	 cg20496314	 39759864	 SYNGR1	 3.78	 0.69	 5.29E-08	 5	

Lung	Function	 5	 cg05575921	 373378	 AHRR	 2.76	 0.28	 1.69E-22	 8	
Lung	Function	 2	 cg05951221	 233284402	 ALPPL2	 4.19	 0.44	 2.83E-21	 8	
Lung	Function	 19	 cg03636183	 17000585	 F2RL3	 4.00	 0.44	 1.50E-19	 7	
Lung	Function	 2	 cg01940273	 233284934	 ALPPL2	 4.19	 0.51	 2.57E-16	 7	
Lung	Function	 6	 cg06126421	 30720080	 IER3	 2.67	 0.35	 4.27E-14	 7	
Lung	Function	 15	 cg00310412	 74724918	 SEMA7A	 4.86	 0.75	 1.16E-10	 6	
Lung	Function	 6	 cg15342087	 30720209	 IER3	 5.51	 0.88	 3.08E-10	 6	
Lung	Function	 1	 cg09935388	 92947588	 GFI1	 2.18	 0.35	 3.34E-10	 6	
Lung	Function	 6	 cg24859433	 30720203	 IER3	 4.74	 0.77	 6.46E-10	 6	
Lung	Function	 17	 cg19572487	 38476024	 RARA	 2.74	 0.47	 5.05E-09	 6	
Lung	Function	 14	 cg13525276	 81426012	 TSHR	 -2.40	 0.43	 2.22E-08	 6	
Lung	Function	 11	 cg11660018	 86510915	 PRSS23	 3.24	 0.61	 1.04E-07	 4	
Lung	Function	 11	 cg20886049	 76493545	 TSKU	 2.93	 0.56	 1.46E-07	 4	
Lung	Function	 17	 cg18181703	 76354621	 SOCS3	 3.15	 0.60	 1.91E-07	 6	
Walk	Speed	 20	 cg05232694	 48809539	 CEBPB-AS1	 -1.66	 0.30	 3.58E-08	 5	

#Methods:	number	of	methods	(out	of	a	total	of	9)	by	which	the	probe	was	identified	at	a	genome-wide	significance	level.	

	



	 38	

Supplementary	Table	4	Number	of	genome-wide	significant	DNAm	probes	identified	

by	different	MWAS	methods	with	smoking	status	fitted	as	a	covariate	for	lung	function	

	
Lung	Function	

Lambda	
Number	of	significant	

associations	
Unadj	 0.891	 1	
5PCs	 1.064	 1	

ReFACTor	 1.049	 3	
FaST-LMM-EWASher	 0.996	 1	

MOA	 0.893	 1	
CTCs	 0.945	 0	

Unadj:	linear	regression	with	smoking	status	fitted	as	a	covariate.	5PCs:	linear	

regression	with	the	top	5	PCs	and	smoking	status	fitted	as	covariates.	ReFACTor:	linear	

regression	with	5	sparse	PCs	from	ReFACTor	and	smoking	status	fitted	as	covariates.	

FaST-LMM-EWASher:	FaST-LMM-EWASher	with	smoking	status	fitted	as	a	covariate.	

MOA:	MOA	with	smoking	status	fitted	as	a	covariate.	CTCs:	linear	regression	with	

smoking	status	and	5	cell	types	fitted	as	covariates.	
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Supplementary	Table	5	The	accuracy	of	predicting	smoking	status	by	DNAm	probes	in	

the	LBC	cohorts.		

	 3	probes	identified	by	
MOMENT	

89	probes	identified	
	by	MOA	

149	probes	identified	by	linear	
regression	

AUC	 0.895	 0.843	 0.801	

Note:		1)	The	LBC1936	cohort	(n	=	906)	was	used	as	the	training	set	and	the	LBC1921	

cohort	(n	=	436)	as	used	as	the	test	set.	2)	The	numbers	of	probes	detected	by	the	three	

methods	in	the	training	set	were	smaller	than	those	in	the	whole	set	because	of	the	

smaller	sample	size	of	the	training	set	than	the	whole	set.	3)	The	area	under	the	ROC	

curve	(AUC)	for	the	categorical	phenotype	(coded	as	0,	1	or	2)	was	computed	using	the	

R	package	pROC	[5].	
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Supplementary	Table	 6	Estimated	proportion	of	variance	 in	a	phenotype	captured	by	all	DNAm	probes	by	OSCA-OREML	from	500	simulations	

based	on	the	LBC	data	

	
		

NULL	 uni	(0.1)	 multi50	(0.2)	 multi500	(0.5)	

Mean	!"#	 s.e.m.	 Mean	!"#	 s.e.m.	 Mean	!"#	 s.e.m.	 Mean	!"#	 s.e.m.	
Probes	

standardised		
0.0051	 0.0008	 0.098	 0.0023	 0.198	 0.0022	 0.501	 0.0024	

Probes	
centralised		

0.0048	 0.0009	 0.106	 0.0024	 0.210	 0.0023	 0.511	 0.0024	

Probes	standardised:	each	probe	is	standardised	across	all	individuals	to	compute	the	ORM.	

Probes	centralised:	each	probe	is	centralised	across	all	individuals	to	compute	the	ORM.	

NULL:	the	phenotype	was	simulated	from	a	standard	normal	distribution	with	no	probe	effects.	

uni	(0.1):	randomly	sample	1	probe	as	the	causal	probe	to	simulate	the	phenotype	with	!# = 0.1.	
multi50	(0.2):	randomly	sample	50	probes	as	the	causal	probes	to	simulate	the	phenotype	with	!# = 0.2.	
multi500	(0.5):	randomly	sample	500	probes	as	the	causal	probes	to	simulate	the	phenotype	with	!# = 0.5.	
s.e.m.:	standard	error	of	the	mean.	
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Supplementary	Table	7	Proportion	of	phenotypic	variance	explained	by	all	the	DNA	methylation	probes	estimated	by	OSCA-OREML	for	height	and	

BMI	in	LBC.	

		 Height	 BMI	
		 ℎ+,-.# 	 !"/0# 	 Joint	ℎ+,-.# 	 Joint	!"/0# 	 ℎ+,-.# 	 !"/0# 	 Joint	ℎ+,-.# 	 Joint	!"/0# 	

Probes	standardised		
0.39	(0.25)	

-0.0050	(0.0086)	 0.39	(0.25)	 -0.0056	(0.0083)	
0.42	(0.25)	

0.065	(0.038)	 0.40	(0.24)	 0.065	(0.038)	
Probes	centralised		 0.0068	(0.02)	 0.39	(0.25)	 0.0063	(0.02)	 0.075	(0.044)	 0.39	(0.24)	 0.074	(0.044)	

ℎ+,-.# :	estimate	of	the	proportion	of	variance	explained	by	all	the	SNPs	(i.e.	SNP-based	heritability).	

!"/0# :	estimate	of	the	proportion	of	variance	captured	by	all	the	DNAm	probes.	

Joint	ℎ+,-.# :	proportion	of	variance	explained	by	all	the	SNPs	estimated	when	the	GRM	and	MRM	are	fitted	jointly	in	OSCA-OREML.	

Joint	!"/0# :	proportion	of	variance	captured	by	all	the	DNAm	probes	estimated	when	the	GRM	and	MRM	are	fitted	jointly	in	OSCA-OREML.	
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Supplementary	Table	8	Summary	descriptive	of	phenotypes	for	the	unrelated	

individuals	in	LBC	

		 LBC1936	 LBC1921	
Sample	size	 906	 436	
Age	(years)	 69.60	(0.58)	 79.14	(0.83)	
Percentage	of	Female	 49.45%	 60.32%	
BMI	(kg/m2)	 27.75	(4.37)	 26.18	(4.05)	
Height	(cm)	 166.37	(8.96)	 163.00	(9.25)	
Lung	Function	(L)	 2.36	(0.69)	 1.87	(0.63)	
Walk	Speed	(seconds)	 3.86	(1.22)	 4.75	(1.98)	
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Supplementary	Table	9	A	summary	of	the	sample	sizes	used	in	different	analyses	in	

LBC	

	 LBC1936		
(n	=	920)	

LBC1921	
(n	=446)	

Unrelated	individuals	 1,342	
Sample	size	for	Height	 1,338	
Sample	size	for	BMI	 1,337	
Sample	size	for	lung	function	 1,336	
Sample	size	for	walk	speed	 1,332	
Number	of	individuals	with	CTC	data	 1,319	
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Supplementary	Table	10	Associations	of	the	5	cell	types	(x)	with	the	4	traits	(y)	in	LBC		
	 	

BMI	 Height	 Lung	Function	 Walk	Speed	

	 !	 SE	 "#$%&'(#	
)*	 n	 !	 SE	 "#$%&'(#	

)*	 n	 !	 SE	 "#$%&'(#	
)*	 n	 !	 SE	 "#$%&'(#	

)*	 n	

	
Neutrophils	 -0.032	 0.02	

0.016	 1315	

0.009	 0.02	

0.0011	 1316	

-0.059	 0.02	

0.047	 1314	

0.034	 0.02	

0.0139	 1310	
Lymphocytes	 0.027	 0.02	 -0.030	 0.02	 -0.032	 0.02	 -0.016	 0.02	

Monocytes	 0.403	 0.16	 -0.224	 0.16	 -0.657	 0.16	 0.46	 0.16	

Eosinophils	 0.276	 0.19	 -0.206	 0.19	 -0.489	 0.19	 0.27	 0.19	

Basophils	 2.31	 0.72	 0.38	 0.72	 -0.939	 0.70	 0.58	 0.72	
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Supplementary	Table	11	Descriptive	summary	of	each	wave	of	the	LBC	data	

	 Total	

sample	size	

Female	

sample	size	

Male	

sample	size	
Mean	age	 Median	age	

LBC21_WAVE1	 436	 263	 173	 79.1	 79.2	

LBC21_WAVE3	 174	 94	 80	 86.7	 86.6	

LBC21_WAVE4	 82	 44	 38	 90.1	 90.1	

LBC36_WAVE1	 906	 448	 458	 69.6	 69.6	

LBC36_WAVE2	 801	 381	 420	 72.5	 72.6	

LBC36_WAVE3	 619	 296	 323	 76.3	 76.3	
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