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S1 Food web and local population dynamics1

We use an allometric trophic network model (ATN model) based on the work of Schneider et al. [1] & Kalinkat et al.2

[2] to simulate the feeding dynamics of local populations. The topological network model is an extension of the niche3

model originally introduced by Williams & Martinze [3] and accounts for allometric degree distributions and recent4

data on scaling relationships for species body mass and trophic levels [4]. In this model framework, each species i is5

completely characterised by its body mass mi , i.e. body masses determine presence/absence and strength of feeding6

links as well as the species’ metabolic rates. The log10 body masses of animal species are drawn at random from the7

inclusive interval (2, 12) and the log10 body masses of plant species are drawn from the inclusive interval (0, 6), both8

with uniform probability density. This step makes the model inherently stochastic, but from hereon, all other steps are9

completely deterministic.10

Data from empirical feeding interactions are used to parametrise the functions that characterise the optimal prey11

body mass and the location and width of the feeding niche of a predator. From each mi a unimodal attack kernel, called12

feeding efficiency, Li j , is constructed which determines the probability of consumer species i to attack and capture an13

encountered resource species j. We model Li j as an asymmetrical hump-shaped Ricker’s function (Equation T1-4) that14

is maximised for an energetically optimal resource body mass (optimal consumer-resource body mass ratio Ropt = 100)15

and has a width of γ = 2. The maximum of the feeding efficiency Li j equals 1.16
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Table S1: Ordinary differential equations extracted from Schneider et al. [1] describing the local population dynamics driven by feeding interactions. We use the same
allometric constraints and parameter ranges.

Equation No. Model equations Description

Equation T1-1 Animal population dynamics
dAi,z

dt
= eP Ai,z

∑
j

Fi j,z + eAAi,z

∑
k

Fik,z

−
∑
k

Ak,zFki,z − xi Ai,z

Rate of change of biomass density of animal species i on patch z; with conversion efficiency eP = 0.45

typical for herbivory; conversion efficiency eA = 0.85 typical for carnivory; feeding rate Fi j,z of

consumer i on resource j on patch z; metabolic demands per unit biomass for animals xi = xAm−0.25i

with scaling constant xA = 0.314. The first sum goes over all plant resources j, the second over all

animal resources k and the third over all animal predators k of animal species i.

Equation T1-2 Functional response

Fi j,z =
ωibi, jR

1+q
j,z

1 + cAi,z + ωi
∑

k bikhikR1+q
k,z

·
1

mi

Per unit biomass feeding rate of consumer i as function of its own biomass density, Ai , (taking

interference competition c, which is the time lost due to intraspecific encounters, sampled from a

normal distribution with mean µc = 0.8 and s.d. σc = 0.2 for each food web), and biomass density of

the resource Rj (either animal Aj or plant species Pj); with bi j , resource specific capture coefficient

(Eq. T1-3); hi j , resource-specific handling time (Eq. T1-5); ωi = 1/(number of resource species of i),

relative consumption rate accounting for the fact that a consumer has to split its consumption if it has

more than one resource species.

Continued on next page



Table S1 – continued from previous page

Equation No. Model equations Description

Equation T1-3 Capture coefficient

bi j = b0mβi
i mβ j

j Li j

Resource specific capture coefficient of consumer species i on resource species j scaling the feeding

kernel Li j by a power function of consumer and resource body mass, assuming that the encounter

rate between consumer and resource scales with their respective movement speed. We sample the

exponents βi and β j from normal distributions (mean µβi = 0.47, s.d. σβi = 0.04; µβ j = 0.15, s.d.

σβ j = 0.03, respectively). We assume a constant scaling factor for all capture coefficients of b0 = 50.

For plant resources, mβ j

j was replaced with the constant value 20 (as plants do not move).

Equation T1-4 Feeding efficiency

Li j =

(
mi

m jRopt
e
1−

mi
mj Ropt

)γ The probability of consumer i to attack and capture an encountered resource j (which can be either

plant or animal), described by an asymmetrical hump-shaped curve (Ricker’s function), with width γ

= 2 centered around an optimal consumer-resource body mass ratio Ropt = 100.

Equation T1-5 Handling time

hi j = h0mηi
i mη j

j

The time consumer i needs to kill, ingest and digest resource species j, with scaling constant h0 = 0.4

and allometric exponents ηi and η j drawn from normal distributions with means µηi = −0.48 and

µη j = −0.66, and standard deviations σηi = 0.03 and σηi = 0.02, respectively [5].

Equation T1-6 Plant population dynamics
dPi,z

dt
= riGiPi,z −

∑
k

Ak,zFki,z − xiPi,z

Rate of change of biomass density of plant species i on patch z; with predation loss Fki,z summed

over all consumer species k feeding on plant species i; metabolic demands per unit biomass for plants

xi = xPm−0.25i with xP = 0.138; intrinsic growth rate ri = m−0.25i ; species specific growth factor Gi

(Eq. T1-7).

Continued on next page



Table S1 – continued from previous page

Equation No. Model equations Description

Equation T1-7 Growth factor for plants

Gi = min
(

N1

Ki,1 + N1
,

N2

Ki,2 + N2

) Species-specific growth factor of plants determined dynamically by the most limiting nutrient l ∈ 1, 2;

with Ki,l , half-saturation densities determining the nutrient uptake efficiency assigned randomly for

each plant species i and nutrient l (uniform distribution within (0.1, 0.2)). The term in the minimum

operator approaches 1 for high nutrient concentrations.

Equation T1-8 Nutrient dynamics
dNl,z

dt
= D(Sl − Nl) − νl

∑
i,z

riGiPi,z

Rate of change of nutrient concentration Nl of nutrient l ∈ {1, 2} on patch z, with global turnover rate

D = 0.25, determining the rate at which nutrients are refreshed; supply concentration Sl , determining

the maximum nutrient level of each nutrient, l, drawn from normal distributions with mean µS = 10

and standard deviation σS = 2 (provided Sl > 0); relative nutrient content in plant species biomass νl

(ν1 = 1, ν2 = 0.5).
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S2 Generating landscapes18

We generated differently fragmented landscapes, represented by random geometric graphs [6], by randomly drawing19

the locations of Z patches from a uniform distribution between 0 and 1 for x- and y-coordinates respectively. We20

created landscapes of different size by scaling the maximum dispersal distance of all organisms δmax with a factor, Q,21

to represent landscape sizes with edge lengths between 0.01 and 10. We obtained the number of patches, Z , by using22

a stratified random sampling approach, i.e. we added a random number drawn from an integer uniform distribution23

between 0 and 9 to a series of numbers of 10, 20, . . . , 60. Similarly, we set the landscape size, Q, by adding a random24

number drawn from a uniform distribution between 0 and 1 (respectively 0 and 0.1 for landscape sizes below 1) to a25

series of numbers of 0.01, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9, 1, 3, 5, 7, 9.26

S3 Emigration27

We implemented emigration as an adaptive process depending on the net growth rate rather than the population density28

as the dependent variable. With this approach we could integrate the local food web dynamics into the dispersal process,29

i.e., dispersal depends on both intra- and interspecific interactions [7]. Similar approaches have been used by e.g.30

Abrams & Ruokolainen [8] and Ims & Andreassen [9]31

Animal dispersal rate Assuming animals to disperse from their habitat when local conditions are poor, the rate of32

dispersing animal biomass increases, e.g. due to resource constraints, predation pressure or intra- and interspecific33

competition [10]. We thus used the net growth rate of a species on a particular patch to integrate such emigration34

triggers. Consequently, animal species emigrate at a higher rate when the net growth rate is low (figure S2a).35

Plant dispersal rate For plants, we also assumed an additional scenario as there are examples of different life history36

strategies. There are for example plant species which disperse from their local habitat when they are doing well, i.e.37

they have a high net growth rate, as they can allocate more resources into reproduction resulting in higher seed dispersal38

[11]. However, there are also examples where plants reallocate resources into reproduction when they are doing poorly39

[12] (figure S2b) .40
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S4 Maximum dispersal distance41

For animal species, the body mass mi determines how fast and how far they can travel through the matrix before needing42

to rest and feed in a habitat patch. Thus, each animal species perceives its own dispersal network dependent on its43

species-specific maximum dispersal distance,44

δi = δ0mε
i , (1)

where the exponent ε = 0.05 determines the slope of the body mass scaling of δi . We chose a positive value for ε to45

account for a higher mobility of animals with larger body masses. The intercept δ0 = 0.1256 was chosen such that the46

animal species with the largest possible body mass of mi = 1012 had a maximum dispersal distance of δi = 0.5. Thus,47

the animal species with the smallest possible body mass of mi = 102 had a maximum dispersal distance of δi = 0.158.48

As plants disperse passively, i.e. it is the seed that disperses primarily driven by e.g. winds, there is no clear49

relationship between plant body mass and dispersal distance [13]. Thus, for plant species, we model a random maximum50

dispersal distance, δi , independent of body mass. We sampled δi for each plant species from a uniform probability51

density within the interval (0, 0.5). Thus, the best plant disperser can potentially have the same maximum dispersal52

distance as the largest possible animal species.53

Hence, each species forms its own dispersal network which depends on the distribution of habitat patches in the54

landscape and its species-specific maximum dispersal distance, δi . This means a species can potentially disperse55

between two patches n and m if the distance between the two patches is smaller than its species-specific maximum56

dispersal distance.57

S5 Maximum trophic level58

S6 Additional simulations with a constant maximum dispersal distance59

We repeated all simulations with a constant maximum dispersal range for all species of δconst . = 0.5, i.e. all species60

have the same spatial network, to understand the effect of the dispersal advantage of larger animals. The results from61

these simulations are very similar to the results with the species-specific scaling of dispersal ranges, showing the same62

biomass density drop of larger animals at low mean distances (figure S3).63
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S7 Additional simulations of the two extreme cases64

To explore the extreme cases of fragmentation in our model framework, we conducted additional simulations with65

emigration but no immigration on patches to represent completely isolated patches (disconnected), and landscapes66

with patches containing all species of the meta-food-web and neither emigration nor immigration to represent one joint67

landscape with no fragmentation (joint). For the disconnected scenario we simulated 6 replicates for each of the 30 food68

webs covering in the same stratified random way as our main simulations a gradient of patch numbers between 10 and69

69 and were also initialised with a subset of species (see the methods section in the paper). For the joint scenario we70

simulated 20 replicates for each food web containing 3 patches.71

(1) Joint scenario with no dispersal mortality α-diversity is on average 28.34, γ-diversity 29.64 and β-diversity72

1.10.73

(2) Fully isolated scenario with 100% dispersal mortality α-diversity is on average 4.85, γ-diversity 6.50 and74

β-diversity 1.09.75

S8 Sensitivity analysis76

We tested the effect of randomly drawn dispersal parameters (maximum dispersal rate, a, and the shape of the dispersal77

function, b; see the manuscript, equation 3) on mean α-, β- and γ-diversity for consumers and plants respectively.78

We used generalised additive mixed models (GAMM) from the mgcv package in R for all sensitivity analyses. To79

fit the model assumptions, we logit-transformed α-diversity, and log-transformed β- and γ-diversity.The emigration80

parameters were separately used as fixed effects and the ID of the food web (1 - 30) as random factor (with normal81

distribution for α- and β-diversity, and binomial distribution for γ-diversity). Both parameters show no strong effect in82

all tested cases (figure S4 - S6). Only the maximum emigration rate a of consumers shows a small negative effect on83

γ-diversity (figure S6). As a higher maximum emigration rate results in an overall larger loss therm due to dispersal,84

which fits to our general findings.85
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S9 Initial and post-simulation β-diversity86

To see how the initialised β-diversity (see Methods) influenced the post-simulation β-diversity we performed a87

generalised additive mixed model (GAMM) from the mgcv package in R with the initial β-diversity as fixed effect and88

the post-simulation β-diversity as the response variable. Both were log-transformed to fit model assumptions. The89

post-simulation β-diversity and initial β-diversity were not correlated. This suggests that the initial β-diversity which is90

due to initialising the patches in the landscape with only a subset of species from the regional species pool does not91

influence the post-simulation β-diversity delectably (approximate p-value: 0.367) (figure S7).92
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Figure S1: Heatmap visualising the maximum trophic level within a food web (colour-coded; z-axis) in response to
habitat isolation and habitat availability, i.e. the mean patch distance (τ, log10-transformed; x-axis) and the number of
habitat patches (Z; y-axis). The heatmap was generated based on the statistical model predictions (see the methods
section in the manuscript). The loss of species diversity driven by habitat isolation also translates into a loss of the
maximum trophic level.
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Figure S2: Functions illustrating the dispersal rate di for animal (a) and plant species (b), where xi marks the inflection
point for each species i determined by the metabolic demands per unit biomass of species i (see Table S1). The colours
blue and red represent different dispersal strategies and the respective colour gradients depict the parameter range of b,
which determines the slope of the dispersal rate (see equation 3 in the manuscript). For the purpose of illustration, we
set the maximum dispersal rate to a = 0.1 and for animals and plants xiA = 0.314 and xiP = 0.1384, respectively.
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Figure S3: Top row: Mean biomass densities of consumer (a)and plant species (b) over all food webs (Bi , log10-
transformed; y-axis) in response to habitat isolation, i.e. the mean patch distance (τ, log10-transformed; x-axis). Each
colour depicts the biomass density of species i averaged over all food webs: (a) colour gradient where orange represents
the smallest, red the intermediate and blue the largest consumer species; (b) colour gradient where light green represents
the smallest and dark green the largest plant species. Bottom row: Mean species-specific landscape connectance (ρi;
y-axis) for consumer species (c) and plant species (d) over all food webs as a function of the mean patch distance (τ,
log10-transformed; x-axis), using the same maximum dispersal distance for all species, δconst = 0.5.
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Figure S4: α-diversity (y-axes) of consumers and plants in dependence of the maximum emigration rate, a, and the
shape of the emigration function, b respectively (x-axes).
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Figure S5: β-diversity (y-axes) of consumers and plants in dependence of the maximum emigration rate, a, and the
shape of the emigration function, b respectively (x-axes).
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Figure S6: γ−diversity (y-axes) of consumers and plants in dependence of the maximum emigration rate, a, and the
shape of the emigration function, b respectively (x-axes).
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Figure S7: The post-simulation β-diversity (y-axis) and the initial β-diversity (x-axis) were not correlated.
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