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1 NFBC

Supplementary Table 1 : Tabular summary of significant associations in the NFBC datasets
identified using alternative LMM methods. This file is included as separate supplementary file (sup-
plementary Table1.xls).
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(a) Any effect test (b) Common effect test

(c) CRP specific effect test (d) HDL specific effect test

(e) LDL specific effect test (f) Trigl specific effect test

Supplementary Figure 1 Q−Q-plots for the multi-trait association tests on the NFBC dataset.
Shown are Q−Q-plots for the any effect test, common effect test and specific effect test for each of the four
phenotypes (CFP,HDL,LDL and TRIGL).

2 Geuvadis

Supplementary Table 2 : Tabular summary of cis associations identified in the Geuvadis
dataset considering alternative multi-trait LMMs and tests. This file is included as separate
supplementary file (supplementary Table2.xlsx).
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Supplementary Figure 2 Sample covariance matrices used in mixed model analyses, either
estimated from genetic kinship or using the PANAMA model in the human eQTL dataset.
Shown is the genetic Kinship covariance estimated using a linear kernel (a) and an equivalent matrix
estimated using the PANAMA model (b). The panama model uses both genotype data and expression
levels for the covariance estimate, thereby accounting for hidden confounding factors. Samples are grouped
by population (CEU, FIN, GBR, TSI, YRI).
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Supplementary Figure 3 Power comparison among different trait design tests on the human
eQTL dataset. Compared were the any effect test, common effect test and specific effect test for individual
isoforms as well as marginal analysis. Shown are the number of genes with at least one significant eQTL of
a particular type and for increasing false discovery rate cutoffs (x-axis).
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Supplementary Figure 4 Distribution of genomic control for the cis eQTL association analyses
in the human eQTL dataset. Histogram show λGC estimates obtained for tests considered in the human
eQTL analysis, either using a sample covariance inferred from genotype kinship (pop) or using the PANAMA
model (pan). a, histograms for any effect test, common effect test, specific effect tests and single trait
association test (anyEff, commEff,specEff,singleTrait respectively) while b shows histograms for steps 1-4
of multi trait multi locus analysis (anyEffSW ). The results show that both the PANAMA and the standard
kinship-based sample covariance yield calibrated test statistics, as do the multi-locus association analyses
carried out.
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Supplementary Figure 5 Distribution of the relative position of eQTLs identified using alter-
native multi-trait LMMs in the human eQTL dataset. The histograms show the position of the most
associated variant relative to the transcription start site of the corresponding gene for significant eQTLs
(FDR ≤ 1%), considering alternative methods and tests. a, different association steps in the multi-locus
multi-trait model when considering the any effect test. Shown are histograms for the primary association
(step 1), secondary association (step 2) or higher-order association signals (step 3,4). b, primary associ-
ations of the multi-trait model, considering either the any effect test (as in a, step 1), gene-level effects
(common effect test) or genetic effects that are specific to individual isoforms (specific effect test). In sum,
eQTLs identified by all methods tended to occur in the vicinity of the transcription start site, suggesting
the associations are genuine. Specific effect tests and higher-order association signals (step 4) tended to be
slightly more likely to occur in distal regions.
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3 Yeast

Supplementary Table 3 : Tabular summary of the average variance contribution in yeast
pathways estimated using the variance decomposition model. This file is included as separate
supplementary file (supplementary Table3.xlsx).

Supplementary Table 4 : Tabular summary of significant associations on the lysine bios. yeast
pathway. This file is included as separate supplementary file (supplementary Table4.xlsx).

Supplementary Figure 6 Power comparison of regularized and unregularized multi-trait LMMs
for the analysis of the lysine bios. pathway in the yeast eQTL dataset. Shown are Manhattan
plots for the optimally regularized LMM (top panel) and a standard unregularized LMM (lower panel) using
an any effect association test applied to the 22 traits (11 genes, 2 environments) of the lysine bios. pathway
in yeast.

Step Pval)MT Pval)GxE Pval)Common SNP)pos SNP)chrom closest)gene)in)the)pathwaytype closest)gene gene)TSS dist)(Kb) Pval)ST
1 1.72E&21 4.90E&03 1.39EE21 477206 2 YBR115C CIS YBR117C 476431 0.775 2.47E&21
2 6.10E&14 4.69E&04 3.38EE12 486861 14 YNR050C TRANS YNL076W 483557 3.304 9.87E&11
3 5.51E&12 2.87E&02 2.39EE12 92013 3 & TRANS YCR027C 167995 75.982 7.27E&06
4 2.10E&11 9.40E&01 6.02EE15 98231 7 YGL208W CIS YGL208W 97342 0.889 7.93E&10
5 5.04E&12 2.18EE07 1.38EE06 174364 15 & TRANS YOL077W&A 185438 11.074 &
6 6.08E&08 4.66E&03 7.62EE07 217351 4 YDL131W CIS YDL137W 216529 0.822 1.34E&05
7 1.13E&06 3.40E&03 2.76E&05 579459 2 YBR115C TRANS YBR170C 578081 1.378 &
8 4.22E&07 1.03EE08 4.04E&01 446685 11 & TRANS YKR003W 445024 1.661 &
9 6.18E&06 1.10E&01 2.34EE06 242417 9 YIL094C CIS YIL064W 241940 0.477 &
10 1.48E&07 3.53E&01 4.02EE09 403134 9 YIR034C CIS YIR024C 403488 0.354 &

Supplementary Table 5 : Tabular summary of significant associations identified in the lysine
bios. pathway in the yeast dataset using alternative LMM methods. This file is in addition
provided as separate supplementary .xls file (SupplementaryResultsYeast.xls).
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Supplementary Figure 7 Model selection approach to determine optimal regularization of the
multi-trait LMM applied to the lysine bios. pathway in the yeast eQTL dataset. Model selection
is carried out using out-of-sample prediction (10-fold cross validation). Shown are out-of-sample correlation
coefficients (top panel) and mean-squared errors (lower panel) for the corresponding selection experiments.
The ideal model is determined by minimizing the prediction error, which is lower than those obtained from
a fully unregularized multi-trait model (far left) or a single-trait model (far right).
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Supplementary Figure 8 Illustration of the step-wise inclusion of fixed effects used for multi-
trait multi-locus LMMs applied to the lysine bios. pathway in the yeast eQTL dataset.
Considered was the multi-trait multi-locus model at different iterations of the stepwise inclusion of fixed
effect SNPs (from top to bottom). Alternative tests using the multi-trait LMM were considered, a, any
effect test, b, common effect test and c, GxE effect test. Stepwise inclusion of individual loci was carried out
using the any effect test, whereas the alternative tests were used to annotated loci included in the model.
The GxE analysis corresponds to a specific effect-test for the ethanol condition (one of two environments),
where this 11 degrees of freedom test couples the 11 genes. Briefly, while the majority of identified eQTLs
were significant under the common effect test (suggesting persistence across environments), there were two
significant GxE effects on chromosomes XI and XV.
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Supplementary Figure 9 Multi-trait LMM analyses of 24 genes in the glycine, s. and t.
metabolism pathway across two environments (48 traits) in the yeast eQTL dataset. a, model
selection using model out-of-sample prediction, yielding an optimally regularized model for genetic analysis
(see also Supplementary Fig. 7). b, multi-locus analysis, showing the first 10 significant associations identi-
fied by the optimally regularized multi-trait LMM. Upper panel: step 1, corresponding to a multirait-LMM;
lower panel: step 10. c, equivalent results using a single-trait multi-locus model, where only 7 significant
associations are found. In sum, these results confirm the benefits of the multi-trait multi-locus analysis on
a second independent pathway.
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4 Validation and prediction
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Supplementary Figure 10 Assessment of alternative LMMs for out-of-sample prediction on the
NFBC dataset. Model comparison using out-of-sample prediction (ten repeats of 5-fold cross validation).
Compared were a BLUP-based single-trait model (ST), a multi-trait equivalent model (MT) and multi-locus
equivalents (STML and MTML), where in addition to the random effect term, individual SNPs have been
iteratively selected as fixed effects (Methods). All model parameters were fit on the training data alone,
including the selection of fixed effect SNPs for the multi-locus models. Multi-locus LMMs (single trait or
multi trait) performed consistently better than the corresponding LMMs without fixed effects (STML vs ST
& MTML vs MT). On the whole, multivariate models were found to make more accurate predictions than
univariate approaches, where the combination of multi-locus and multi-trait LMM achieved best prediction
performance overall.
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Supplementary Figure 11 Assessment of alternative LMMs for out-of-sample prediction of
genes in the lysine bios. pathway in the yeast eQTL dataset. Compared were a BLUP-based single-
trait model (ST), a multi-trait equivalent model (MT) and multi-locus equivalents (STML and MTML),
where in addition to the random effect term, individual SNPs have been iteratively selected as fixed effects
(Methods). All model parameters were fit on the training data alone, including the model-selection for
optimal regularization (see Supplementary Figure 7) and the selection of fixed effect SNPs for the multi-
locus models. For comparison, an unregularized mixed model was also considered (unreg MT), where the
model selection step was omitted. a, average out-of-sample Pearson correlation coefficient for 10 repeat
experiments of 10-fold cross validation, using the considered models for prediction. b, scatter plot of
Pearson correlation coefficients for individual genes (between predicted and real gene expression levels),
comparing alternative methods pairwise. The results show that multi-trait modeling is superior to single-
trait models (MT vs ST) and that multi-locus models yield improved prediction accuracy (STML versus
ST and MTML versus MT). Unregularized multi-trait models (unreg MT) perform worse than single-trait
models, demonstrating the need for appropriate model selection.
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Supplementary Figure 12 Assessment of alternative LMMs for out-of-sample prediction of
isoform and gene expression levels in the human eQTL dataset. Prediction experiments were
carried out using 10-fold cross validation for out-of-sample prediction. For each gene, the average Pearson
correlation coefficient (between predicted and measured isoform expressions) across isoforms of each gene is
reported. All genes expressing 2-10 transcript isoforms (9,246 total) were considered for analysis. Compared
were a BLUP-based single-trait model (ST), a multi-trait linear mixed model model (MT) and multi-
locus equivalents (STML and MTML), where in addition to the random effect term, individual SNPs have
been iteratively selected (Online Methods). For comparison, we also considered classical gene expression
estimates as phenotype for prediction (in c). Here, the full set of 15,220 genes with at least one expressed
isoform was used for analysis (Online Methods). a, prediction accuracy of different methods, comparing
genome-wide out-of-sample prediction accuracy; b, identical results, stratified by estimated heritability of
individual genes. c, prediction accuracy stratified by the number of expressed isoforms for each gene and d,
showing cumulative fractions of genes with decreasing prediction accuracies. The differences in prediction
performance for gene-level expression estimates and transcript-level prediction even for genes with a single
expressed transcript (c,d) arise from the filtering procedure applied to remove unexpressed transcripts
(Online Methods).
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