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1 Background

1.1 Biological preliminaries

Genes, in eukaryotes, comprise of alternating regions called exons and introns. During transcription, a
process called splicing removes the introns and ligates the exons with the help of a complex molecular
machine called spliceosome. Splicing occurs at exon-intron (donor site) and intron-exon (acceptor site)
boundaries called splice sites or splice junctions.

However, more than 90% of multi-exon genes undergo alternative splicing (AS) wherein an intron may
be retained and an exon may be skipped in a preemRNA transcript during splicing [1]. AS results in the
formation of multiple protein isoforms from a single gene, thereby increasing the informational diversity and
functional capacity of a gene. Accurate identification of splice junctions is, therefore, important for unfolding
the gene structure and expression along with providing meaningful insights into its role in alternative splicing.

The spliceosome, during splicing, identifies the splice sites based on splicing consensus residing in the
vicinity of the splice junctions. Splice junctions generally comprise of the canonical splicing pattern GT
and AG at the donor and acceptor sites respectively. Apart from this, the consensus sequence comprises of
an extended donor site consensus 9-mer [AC]AGGTRAGT and an extended acceptor site consensus 15-mer
Y10NCAGG containing a polypyrimidine tract (PY-tract) preceding the acceptor site [2]. There is also
a very weak branch site consensus CTRAY located approximately 30 nucleotides (nt) upstream from the
acceptor site. However, there are evidences of existence of non-canonical splice junctions that do not comply
with the above consensus.

1.2 Preliminaries on model architecture

Recurrent neural networks (RNN) An RNN is a class of artificial neural network that comprises of
a hidden feedback unit which gets repeated each time an input is fed into the network. For a given input
sequence ¢ = (21, Za,...,Z1), any x; where t € 1,2, ..., T, can be considered as a time step. An RNN can be
unrolled along time steps, as shown in Figure 1, to form a directed graph along the input sequence. This
allows it to exhibit dynamic temporal behavior for a sequence.

The weights Wy, Why and W, of the input, hidden and output layers respectively, are the same across
every time step. This suggests that an RNN performs the same task on every element of an input sequence,
with dependency on the previous time step. The hidden state h; at time step ¢ of an RNN behaves as the
memory of the network that is computed based on previous hidden state h;_; and current input state x;.
This can be represented by the following recurrence formula:

he = f(hi—1,2¢)
where f is any non-linearity function of the hidden layer. This can be further expanded as:
he = f(Whnhe—1 + Wanat)

The output at time step ¢ is computed by:
Yt = Whyht

Long short-term memory (LSTM) units Training a vanilla RNN involves updating the input, hidden
and output weights, using backpropagation through time, to reduce the total error of the network. Weight
of each time step of an unrolled RNN is updated in proportion to the derivative of the error with respect to
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Figure 1: An unrolled RNN.

the weight. As we move along the time steps, the backward flow of the gradient results in either exploding or
diminishing of the gradient exponentially. This occurs because a portion of the weight matrix gets multiplied
by itself at each step of backpropagation. Hence, the vanilla RNN architecture was not capable of accessing
long-term dependencies.

LSTM units are a type of building blocks, for the layers of an RNN, that are capable of memorizing
long-term dependencies. LSTM units behave like memory cells comprising of input, output and forget gates.
Figure 2 illustrates a single LSTM unit. The backpropagation passes through only the cell state which is
controlled by the three gates. The activation vectors is, o, ft, and ¢}, for the input gate, output gate, forget
gate and candidate cell state at time step ¢, can be represented by the following equations:

iy = o(Whihe—1 + Waizy)

O = U(Whoht—l + Wroxt)
fi = o(Whphi—1 + Wysay)
¢, = tanh(Whehi—1 + Weery)

The actual cell state value (C}) at time step ¢ is computed by:
Cy = fiCr1 +ivcy
Finally, the output (h;) of the unit at time step ¢ is given by:

ht = ottanh(Ct)

Bidirectional long short-term memory (BLSTM) networks A limitation of traditional RNN is that
it makes decisions based on previous context only. However, language translation and speech recognition
systems, where whole input is transcribed at once, exploiting future context is expected to improve predictive
performance.

A BLSTM network is the bidirectional variant of an RNN that employs an LSTM unit in the hidden
layer. Figure 3 shows a BLSTM network. It comprises of two identical hidden LSTM layers. One of the
layers is fed with the input as-is whereas the other layer is fed with the reversed copy of the same input.
Output frogl both the hidden layers is then C(zglbined and sent to the output layer. The forward hidden
sequence ( h ), the backward hidden sequence ( h ), and the output y; at time step ¢ is given by:

— -
ht = f(WwﬁfEt =+ Wﬁﬁ h tfl)
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Figure 2: An LSTM cell.

Attention mechanism Attention based neural networks are successful in diverse tasks like speech recog-
nition [3] and language translation [4], where the neural network finds it difficult to comprehend the fixed
length vector representation of a very long input sequence. We implemented the traditional attention mech-
anism proposed in [4]. For an input sequence of length n, the importance of each nucleotide position i is
accessed by calculating o for i = 1,2,...,n using the formula

af _ neasp(eij)
Y ey exp(eir)

where e;; is the tanh activations of the dot products of hidden layer representations (h;), generated by
the BLSTM layer, with the attention layer weights. Based on the importance o of each hidden state h;
generated for input nucleotide i, a context vector c is generated as

n
= %y
cj = E ol by
i=1

for predicting the output at time step j. At each time step, a new set of attention weights and hidden states
are generated. We use the attention weights generated at the n** time step.

2 Experimental Setup

2.1 Efficient implementation of occlusion

Instead of naively iterating through each sequence and then iterating through each window, we prepared the
modified sequences for each input sequence beforehand. Thus, for a single input sequence of length n, we
obtained the modified n sequences corresponding to each occluded window. We concatenated the n modified
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Figure 3: A BLSTM network.

sequences, resulting in a n X n matrix corresponding to each input sequence. Finally, upon concatenation of
all the modified sequences of the B input sequences in a batch, we obtain a (B % n) X n matrix which is fed
in a single batch to the model, to directly predict the probabilities, resulting in a (B *n) x 1 matrix. This
is reshaped to get the required B x n matrix of deviation values.

2.2 Data generation

Figure 4 is a pictorial representation of the Type-1 and Type-2 dataset.
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Figure 4: A pictorial representation of the Type-1 and Type-2 dataset.
For simplicity of representation, the entire extracted DNA region for the positive samples and the Type-2
negative samples are displayed using the dashed circles. These samples are truncated to 40 nt upstream and
downstream regions before feeding into the learning model.

2.3 Variation in length of flanking region

We vary the length of flanking region in the input sequences to find the optimal region that provides best
predictive performance of the model. The flanking region is varied from 10 nt to 50 nt in the upstream and
downstream sequences of both the donor and acceptor splice junctions. Results shown are for the Type-2
dataset.



The performance of the model improves with increase in the flanking region, displaying the best perfor-
mance with 40 nt flanking region. All the analysis produced in the paper are performed with a flanking
region of 40 nt. The performance of the model with varying flanking region is shown in Table 1.
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Table 1: Performance of the model with variation in flanking region

Flanking region Performance measures
Ac, Pr, Re, F1(%)

50 nt 97.97, 98.91, 97.00, 97.95

40 nt 98.38, 99.38, 97.38, 98.37

30 nt 97.18, 99.03, 95.29, 97.13

20 nt 96.45, 97.26, 95.60, 96.42

10 nt 95.06, 95.71, 94.35, 95.03

Variation in model architecture

Table 2 shows the variation in the performance of the model with variation in the number of hidden layers
(HL). Results are shown for Type-1 dataset. We show the performance with both LSTM and BLSTM as
the units of the hidden layer. We see that the model is invariant to the number of hidden layers as well as
the type of units in the hidden layer. All the analysis produced in the paper are performed with a model
having one hidden layer of BLSTM units.

2.5

2.6

Table 2: Performance of the model with variation in architecture

Model Performance measures
Ac, Pr, Re, F1(%)

LSTM with 1 HL  98.24, 99.70, 96.77, 98.21
LSTM with 2 HL  98.28, 99.57, 96.97, 98.25
BLSTM with 1 HL  98.24, 99.66, 96.81, 98.21
BLSTM with 2 HL  98.24, 99.66, 96.81, 98.21

Hyperparameters of the various baselines

Vanilla LSTM: We consider a batch size of 128, dropout rate as 0.5, recurrent dropout rate as 0.2, and
number of epochs as 50.

LSTM with attention: We consider a batch size of 128, dropout rate as 0.5, recurrent dropout rate as
0.2, and number of epochs as 10.

SpliceVec-MLP [5]: We consider one hidden layer with 2500 hidden nodes. We used a batch size of 128
and the learning rate of the Adam optimizer as 0.001.

DeepSplice [6]: We consider a batch size of 160, dropout keep probability as 0.8 and the Adam optimizer
learning rate as 0.001.

Input formation for SpliceVec-MLP

This model extracts the complete intronic sequence, along with the flanking upstream and downstream
region, converts it into an N-dimensional feature representation, and then feeds it into the learning model.
In Type-1 dataset, the negative splice junctions are generated by extracting a continuous sequence of 164



nt from the middle of each intron. Unlike Type-2 dataset, Type-1 dataset has a fixed length negative input
samples.

Hence, to access the performance of SpliceVec-MLP on Type-1 dataset, we have truncated the positive
splice junction sequences to 40 nt upstream and downstream region of both the donor and acceptor splice
junctions. The 82 nt sequences obtained from both the splice junctions of a junction pair were concatenated
to obtain a 164 nt sequence representing a true splice junction.

3 Results

3.1 t-SNE plots of feature representation

Figure 5: t-SNE plots of 4 different sets of 1000 true and 1000 decoy splice junctions. Points in blue represent
true whereas points in yellow represent decoy splice junctions.

3.2 Heat maps for various visualizations

For each of the visualization techniques, we generate heat maps for each set. The heat maps are generated
from the corresponding matrix of deviation values, named deviation matriz. Further, each set is sampled to
obtain a final heat map comprising of random sequences from all the sets. Each sequence in the heat map
is 164 nt long. The first 82 nt of a sequence are the upstream and downstream regions of the donor site
whereas the next 82 nt are the upstream and downstream regions of the acceptor site of a junction pair. The
heat map consists of true test sequences only.

Figure 6 shows the final heat map obtained by sampling all the 15 sets of canonical sequences for all the
four types of visualizations employed. The vector positions are colored according to the deviation values for
each of the 164 sequence indices ranging from -40D to 40D and -40A to 40A.



Figure 6: Heat maps generated by the various visualization techniques for canonical sequences. Each sequence
length is 164 nt where the first 82 nt represent the donor site and the next 82 nt represent the acceptor site
of a splice junction pair. The heat maps represent: (a) Attention weights (b) Smooth gradients (¢) Omission
scores (d) 3-mer occlusion weights.

Figure 7 shows the final heat map obtained by sampling all the 7 sets of non-canonical sequences for all
the four types of visualizations employed.



(d)

Figure 7: Heat maps generated by the various visualization techniques for non-canonical sequences. Each
sequence length is 164 nt where the first 82 nt represent the donor site and the next 82 nt represent the
acceptor site of a splice junction pair. The heat maps represent: (a) Attention weights (b) Smooth gradients
(¢) Omission scores (d) 3-mer occlusion weights.

3.3 Occurrence-frequency graph of various visualizations
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Figure 8: Occurrence-frequency graph based on attention weights of top 20 indices among all the non-
canonical true sequences across the 7 sets.



700

600

Frequency

D2 -1A 4D -3A -4A 1A -5A -6A -8A 2A -10A -7A -12A-11A -9A -13A-14A-15A -2A 5D
Top 20 indices

Figure 9: Occurrence-frequency graph based on smooth gradients of top 20 indices among all the canonical
true sequences across the 15 sets.
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Figure 10: Occurrence-frequency graph based on smooth gradients of top 20 indices among all the non-
canonical true sequences across the 7 sets.
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Figure 11: Occurrence-frequency graph based on omission scores of top 20 indices among all the canonical
true sequences across the 15 sets.
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Figure 12: Occurrence-frequency graph based on omission scores of top 20 indices among all the non-canonical
true sequences across the 7 sets.

10



700

600

Frequency

-2A 4D -1A 3D -2D -5A -7A -8A -6A -4A -9A -10A 2D -11A-12A -3A 39D -13A 5D 14D
Top 20 indices

Figure 13: Occurrence-frequency graph based on 3-mer occlusion of top 20 indices among all the canonical
true sequences across the 15 sets.

300 o

250 o

N

o

o
!

Frequency

-

@

o
L

100 A

50 o

14D 13D 15D 16D 12D 11D 10D 17D 40A -2D -1A 19D -2A 4D 2D 3D D1 -1D -5A -4A
Top 20 indices

Figure 14: Occurrence-frequency graph based on 3-mer occlusion of top 20 indices among all the non-
canonical true sequences across the 7 sets.
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Table 3: The indices and sequence patterns obtained from the top 5 sequences for each visualization. A ‘-’
in the sequence pattern signifies a gap of one nucleotide position whereas a ‘*’ signifies a gap of two or more
nucleotide positions.

Visualization Sequence pattern Indices
C*TC*GGGCGT*C -2D 2D 3D 34D 35D 36D 37D 38D 39D -1A
C*CC*GCTGGC*C -2D 2D 3D 34D 35D 36D 37D 38D 39D -1A

Attention weights A*GA*CACAGT*G -2D 2D 3D 34D 35D 36D 37D 38D 39D -1A
G*GG*CTTTCT*A -2D 2D 3D 34D 35D 36D 37D 38D 39D -1A
G*GG*TCCCGG*G -2D 2D 3D 34D 35D 36D 37D 38D 39D -1A
C*C*C*C*C*C*C*C*C*C -39D -35D -23D -20D -16D -5D 17D 24D 32D A2
C*C-C*C*C*C*T*T*T*C -24D D1 1D 10D 13D 26D 35D -22A -17A 1A

Smooth gradients  T*T*T*T*T*T*T*T*T*T -30D D1 8D 35D -35A -28A -10A -7A -2A A2
C*C*CC*C*C*C*C*C*C -9D -4D D1 D2 19D -40A -21A -12A -9A A2
C*C*C*T*C*C*C*C-C*T -30D -16D -7D D2 5D 39D -17A -1A A2 3A
AXT*G*C*C*G*C*C*A*A -23D -11D 2D 19D 40D -34A -15A -7TA -1A 4A
C*C*G*C*GT-A*AG*A -34D -30D -16D -32A -13A -12A -10A -1A A1 12A

Omission scores A*A-C-GA*G*G*G*C*G -20D -1D D2 2D 3D 19D 26D -31A -19A 13A
T*GT*A*G*T*G*A*G-A -31D -22D -21D -3D -31A -19A Al 14A 28A 30A
C*G*C*C*G*T*A*C*C*C -40D -16D -9D -6D -2D 2D 23D -27A 3A 36A
GGTA*G-TG-TG*T -2D -1D D1 D2 -21A -19A -18A -16A -15A -1A
AG-T*CTTC*AGG 19D 20D 22D 26D 27D 28D 29D -1A A1 A2

3-mer occlusion ACCTTATG*GG 7D 8D 9D 10D 11D 12D 13D 14D 12A 13A
AGTG*A*T*AGT*G -2D -1D D1 D2 21D 34D -32A -31A -30A -26A
TTTATT*CTAT -13A -12A -11A -10A -9A -8A -5A -4A -3A -2A
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