Lewy pathology in Parkinson's disease consists of a crowded organellar, membranous medley

Authors: Sarah H. Shahmoradian^{1,§}, Amanda J. Lewis¹, Christel Genoud², Jürgen Hench³, Tim Moors⁴, Paula P. Navarro¹, Daniel Castaño-Díez¹, Gabriel Schweighauser³, Alexandra Graff-Meyer², Kenneth N. Goldie¹, Rosmarie Sütterlin¹, Evelien Huisman⁴, Angela Ingrassia⁴, Yvonne de Gier⁴, Annemieke J.M. Rozemuller⁵, Jing Wang¹, Anne De Paepe⁶, Johannes Erny⁷, Andreas Staempfli⁷, Joerg Hoernschemeyer⁷, Frederik Großerüschkamp⁸, Daniel Niedieker⁸, Samir F. El-Mashtoly⁸, Marialuisa Quadri⁹, Wilfred F.J. van IJcken¹⁰, Vincenzo Bonifati⁹, Klaus Gerwert⁸, Bernd Bohrmann¹¹, Stephan Frank³, Markus Britschgi^{11*}, Henning Stahlberg^{1*}, Wilma D. J. van de Berg^{4*}. Matthias E. Lauer^{6*}

Affiliations:

- ¹ Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Switzerland
- ² Friedrich Miescher Institute for Biomedical Research, Switzerland
- ³ Division of Neuropathology, Institute of Pathology, University Hospital Basel, Switzerland.
- ⁴ Amsterdam Neuroscience, VU University Medical Center, Department of Anatomy and Neurosciences, section Clinical Neuroanatomy, Amsterdam, The Netherlands
- ⁵ Amsterdam Neuroscience, VU University Medical Center, Department of Pathology, Amsterdam, The Netherlands
- ⁶ Roche Pharma Research and Early Development, Chemical Biology, Roche Innovation Center Basel, Basel, Switzerland
- ⁷ Roche Pharma Research and Early Development, Preclinical CMC, Roche Innovation Center Basel, Basel, Switzerland
- ⁸ Department of Biophysics, Ruhr University Bochum, Germany
- ⁹ Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands
- ¹⁰ Center for Biomics, Erasmus Medical Center, Rotterdam, Netherlands
- ¹¹ Roche Pharma Research and Early Development, Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area/Neuroscience Discovery, Roche Innovation Center Basel, Basel, Switzerland
- Switzerland
 Switzerland
 Surrent Address: Department of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
- * Shared senior authors

Correspondence to:

Matthias Lauer (<u>matthias.lauer@roche.com</u>), Wilma van de Berg (<u>wdj.vandeberg@vumc.nl</u>), Henning Stahlberg (<u>henning.stahlberg@unibas.ch</u>), and Markus Britschgi (<u>markus.britschgi@roche.com</u>)

Movies

Movies are available on YouTube, at

https://www.youtube.com/playlist?list=PLteVxMX-rlQu3HIZtObzPRspOr9uvA4s9 and individually at the links provided below.

Movie 1: Reconstructed and color-segmented 3D transmission electron tomogram of aSynimmunopositive inclusion (LB). Corresponds to Fig. 1a. Thickness of tissue section imaged \approx 150 nm. https://youtu.be/StUx7Gxp3tI

Movie 2: Reconstructed and color-segmented 3D transmission electron tomogram of aSynimmunopositive inclusion (LB). Corresponds to Fig. 1b. Thickness of tissue section imaged ≈ 150 nm. https://youtu.be/FwZX3X6QkjQ

Movie 3: Reconstructed and color-segmented 3D transmission electron tomogram of aSynimmunopositive inclusion (LB). Corresponds to Fig. 1c. Thickness of tissue section imaged \approx 150 nm. https://youtu.be/QrX73sGSbt4

Movie 4: Reconstructed and color-segmented 3D transmission electron tomogram of aSynimmunopositive inclusion (LB). Corresponds to Figs. 1d, S5. Thickness of tissue section imaged \approx 150 nm.

https://youtu.be/ROQ6mbj8VIA

Movie 5: Reconstructed and color-segmented 3D transmission electron tomogram of aSynimmunopositive inclusion (LB). Corresponds to Fig. S4a. Thickness of tissue section imaged ≈ 150 nm.

https://youtu.be/7-2CN-V7NKQ

Movie 6: Reconstructed and color-segmented 3D transmission electron tomogram of aSynimmunopositive inclusion (LB). Corresponds to Fig. S4b. Thickness of tissue section imaged ≈ 150 nm. https://youtu.be/c82B7DCBIRE

Movie 7: Reconstructed and color-segmented 3D transmission electron tomogram of aSynimmunopositive inclusion (LB). Corresponds to Fig. S4c. Thickness of tissue section imaged ≈ 150 nm https://youtu.be/ec5BG-ltlxM

Movie 8: Reconstructed and color-segmented 3D transmission electron tomogram of aSynimmunopositive inclusion (LB). Corresponds to Fig. S4d. Thickness of tissue section imaged ≈ 150 nm.

https://youtu.be/iR6985Mp8qc

Movie 9: Reconstructed and color-segmented 3D transmission electron tomogram of aSynimmunopositive inclusion (LB). Corresponds to Fig. S4e. Thickness of tissue section imaged ≈ 150 nm. https://youtu.be/wg7v7l BGsQ

Movie 10: Reconstructed and color-segmented 3D transmission electron tomogram of aSynimmunopositive inclusion in neurite (LN). Corresponds to Fig. S4f. Thickness of tissue section imaged ≈ 150 nm. https://youtu.be/Y0FaBmbWvpQ

Movie 11: Reconstructed and color-segmented 3D transmission electron tomogram of a region inside aSyn-immunopositive inclusion (LB, Fig. 1a) collected at higher magnification. Thickness of tissue

section imaged ≈ 150 nm. <u>https://youtu.be/IwV0-xPiH51</u>

Movie 12: Reconstructed and color-segmented 3D transmission electron tomogram of a region inside aSyn-immunopositive inclusion (LB, Fig. 1a) collected at higher magnification. Tailed membrane stacks are clearly visible, as indicated in Fig. 1a (two yellow arrow-heads on right-hand side). Thickness of tissue section imaged ≈ 150 nm. https://youtu.be/9SDeEs5yJdQ

Movie 13: Reconstructed and color-segmented 3D transmission electron tomogram of region at the edge of the aSyn-immunopositive inclusion (LB, Fig. 1a) collected at higher magnification. A mitochondrion is clearly visible, as indicated in Fig. 2c (white oval). Thickness of tissue section imaged ≈ 150 nm. https://youtu.be/2TwAJcmoH1g

Movie 14: Reconstructed and color-segmented 3D transmission electron tomogram of region at the edge of the aSyn-immunopositive inclusion (LB, Fig. S4a) collected at higher magnification. Thickness of tissue section imaged ≈ 150 nm. https://youtu.be/sgij8doJNzQ

Movie 15: Reconstructed and color-segmented 3D transmission electron tomogram of region inside the aSyn-immunopositive inclusion (LB, Fig. S4a) collected at higher magnification. Cluster of vesicles in separate adjacent compartment to LB is visible as shown in Fig. 2d. Thickness of tissue section imaged ≈ 150 nm. https://youtu.be/lfcvCX133OU

Movie 16: Reconstructed and color-segmented 3D transmission electron tomogram of region within an aSyn-immunopositive Lewy neurite (same as shown in Fig. 3a) collected at high magnification. Thickness of tissue section imaged ≈ 150 nm. https://youtu.be/ogdMLPaz_T0

Movie 17: Reconstructed and color-segmented 3D transmission electron tomogram of region within an aSyn-immunopositive Lewy neurite (same as shown in Fig. 3b) collected at high magnification. Thickness of tissue section imaged ≈ 150 nm. https://youtu.be/D4r2PjtVy80

Movie 18: Reconstructed and color-segmented 3D transmission electron tomogram of region within a 'control' neurite in brain tissue from a non-demented, age-matched donor (same as shown in Fig. 3c) collected at high magnification. Thickness of tissue section imaged ≈ 150 nm. https://youtu.be/YIn15OccuGs

Movie 19: Reconstructed and color-segmented 3D transmission electron tomogram of region within a 'control' neurite in brain tissue from a non-demented, age-matched donor (same as shown in Fig. 3d) collected at high magnification. Thickness of tissue section imaged ≈ 150 nm. https://youtu.be/arL5GfyFgWM

Movie 20: Reconstructed serial block-face scanning electron tomograms depicting three separate Lewy pathological inclusions within the *substantia nigra* of Donor B. Scale bar = 5 μ m. <u>https://youtu.be/O1Xb2LaELMI</u>

Movie 21: Stimulated emission depletion microscopy showing a Lewy pathological inclusion in the same tissues (Donor B, *substantia nigra*) as taken from parallel blocks for the SBFSEM ultrastructural analysis (Fig. 3d). Thickness of tissue section = $20 \ \mu m$.