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Part I

Detailed Experimental Methods and Data

Processing

1 Distribution of colony-forming units

The goal of this experiment was to test whether the number of viable cells, quantified by CFUs, in

a small volume of highly diluted culture can be described by a Poisson distribution. An overnight

culture was diluted 107-fold in PBS and plated in a 6×8 array of 4µl spots on each of three square

(12cm × 12cm) LB-agar plates, yielding a total of 144 replicate spots. These LB-agar plates were

incubated for the remainder of the day of plating at 37◦C, moved to room temperature overnight,

then returned to 37◦C in the morning until colonies were visible but still separated for counting.

2 Competition experiment

The goal of this experiment was to determine the direction of selection (for resistance vs. sensitiv-

ity) across a range of streptomycin concentrations, by competing resistant and sensitive strains at

reasonably high starting densities (such that demographic stochasticity is negligible).

Experimental protocol: We used the YFP-labelled resistant strain (as usual) and the DsRed-

labelled sensitive strain. Although DsRed does not provide a strong enough fluorescent signal to aid

in discrimination, it ensures that any fitness effect of carrying a fluorescent marker is controlled across
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the strains.

Overnight cultures of each strain were mixed at an initial 20-fold dilution each, then this mixture

was diluted 100-fold further. This yielded an approximately 1:1 mixture of strains each at 2000-fold

dilution, which was inoculated at 20µl per 200µl total culture volume. The total bacterial density at

the start of treatment is thus expected to be around 5 × 105 CFU/ml, as we also used for our MIC

tests at standard inoculation density (see Section 4). For the pure cultures, each strain was diluted

2000-fold alone and then inoculated similarly. That is, we chose to match the density of a given strain

between pure and mixed cultures, rather than the total bacterial density.

At each streptomycin concentration, we inoculated a total of 6 replicate mixed cultures and 2

replicates of each pure culture, split evenly across two treatment plates (arbitrarily labelled A and

B). Test concentrations ranged from 1/16 to 16 × MICS streptomycin in 2-fold steps, as well as

streptomycin-free. Outer wells were also filled with streptomycin-free media and mock-inoculated

with 20µl of PBS to buffer against evaporation and to serve as media-only controls. Treatment plates

were incubated (37◦C, 225rpm), sampled (20µl per well) at 6.5h, then immediately returned to the

incubator and sampled again at approx. 24h. The latter time point provided better resolution at

higher streptomycin concentrations and is thus used for data analysis. The 24h treatment culture

samples (along with media-only controls) were diluted a total of 500-fold in sterile filtered PBS for

flow cytometry (BD Accuri C6 Flow Cytometer with software version 1.0.264.21 – Accuri Cytometers,

Inc.). We sampled 66µl per well with fast fluidics, i.e. 66µl/min, discarding events with forward scatter

FSC-H < 10, 000 or side scatter SSC-H < 8000.

Data processing: To analyze the flow cytometry data, we proceeded as follows.

1. We defined non-overlapping gates ‘S’ and ‘R’ in the FL1 (fluorescence detection) – FSC (forward

scatter) plots (see Suppl. Fig. 2). FL1 is configured with a blue (488nm) laser and 533/30

interference filter, which primarily detects the YFP signal. The S and R gates thus roughly

correspond to DsRed-labelled sensitive cells (lower fluorescence) and YFP-labelled resistant cells

(higher fluorescence), respectively. However, the pure cultures revealed overlap into the opposite

gates, particularly of resistant cells with low fluorescence into the ‘S’ gate, which is accounted for

below. The gates were drawn separately, but similarly, for each treatment plate. In total, these

gates comprised an average of 98% of all detected events on treatment plate A (range across

wells: 95-99%) and an average of 96% (range: 89-98%) on treatment plate B. Events falling

outside both gates were excluded from analysis.

2. We corrected for background events in each well by subtracting the number of events in the

corresponding media-only control from the number of events in the sample of interest, in each

gate. If negative, we set this value to zero.
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3. From the (background-adjusted) number of events in each gate in pure cultures, where we know

only a single strain is present, we calculated the parameters pi,j : the proportion of cells of strain

i that fall into gate j. For example, pS,R is the proportion of sensitive cells that fall into the

“resistant” gate, calculated as:

pS,R =
Gpure S
R

Gpure S
S +Gpure S

R

where Gpure i
j is the number of events falling into gate j in the pure culture of strain i. (Thus,

pS,S + pS,R = 1 from the pure sensitive culture and pR,S + pS,S = 1 from the pure resistant

culture.) These parameters are calculated separately at each streptomycin concentration, but

crucially, we assume below that they are the same for a given strain when it is in a mixed culture

as in a pure culture.

4. In mixed cultures, we want to know the true number of cells of each strain (Nmix
S,tot and Nmix

R,tot),

adding up cells that fall into either gate: that is, for each strain i, Nmix
i,tot = Nmix

i,S +Nmix
i,R . On the

other hand, what we observe in a mixed culture is the total number of cells of either strain that

fall into each gate j, Gmix
j . We can express the relationship between these quantities as:

Gmix
S = pS,SN

mix
S,tot + pR,SN

mix
R,tot

Gmix
R = pS,RN

mix
S,tot + pR,RN

mix
R,tot

where the parameters pi,j were calculated above from the pure cultures. Thus we have two linear

equations in two unknowns, which can be readily solved. We obtain:

N
(mix)
S,tot =

pR,RG
mix
S − pR,SGmix

R

pS,SpR,R − pS,RpR,S

N
(mix)
R,tot = Gmix

S +Gmix
R −N (mix)

S,tot (S1)

5. Equation S1 was generally applied to infer the number of cells of each strain in each mixed culture

after treatment, with the proportion resistant then calculated as N
(mix)
R,tot /

(
N

(mix)
S,tot +N

(mix)
R,tot

)
. A

few special cases required adjustments. At the highest streptomycin concentrations, we observed

no events above background counts in the pure sensitive-strain cultures; thus the parameters pS,j

were undefined. Here we assumed that all events in the mixed cultures at these concentrations

were resistant cells. At intermediate streptomycin concentrations, where sensitive cells were at

low density but not eradicated, the general formula sometimes returned a small negative value for

the number of sensitive cells. This error reflects the imperfect assumption that the proportion

of cells falling in each gate is the same across cultures, whereas it will in reality show some

variation. In these cases, we manually set the number of sensitive cells to zero; this adjustment

had a very small effect relative to the total number of cells.
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3 Seeding experiments

Experimental protocol: Media (LB) containing various concentrations of streptomycin was dis-

pensed onto 96-well plates (180µl/well) using an automated liquid handler (BioTek Precision XS). An

overnight culture of the YFP-labelled resistant strain was serially diluted in PBS up to 106-fold, then

in one further independent step in each case, diluted to 4× 107-fold, 8× 107-fold, and 1.6× 108-fold.

These diluted cultures were used to inoculate the treatment plates at 20µl per well. In parallel, control

plates containing streptomycin-free media were mock-inoculated with 20µl/well of PBS to check for

contamination, since the automated liquid handler is not maintained in a sterile environment. All

plates were incubated (37◦C, 225rpm) for 3d, and removed daily to measure optical density (OD595)

on a BioTek Synergy 2 plate reader. Lids were removed briefly for this reading; again, control plates

served as checks for the extent of contamination.

In this experiment, each 96-well treatment plate corresponded to 96 replicates at the same strepto-

mycin concentration and dilution factor; thus, it is possible that plate effects were confounded with the

treatment conditions. This possible source of error is mitigated by pooling data across three dilution

factors (three separate plates) at each streptomycin concentration in the likelihood-based model fitting

(see Sections 9 and 12). Furthermore, since we obtained similar results in independent experiments

(Suppl. Table 1), we can be fairly confident in the effect of streptomycin as opposed to results being

dominated by random plate effects.

We note that such a seeding experiment has also been used previously, on a much smaller scale,

by Levin-Reisman et al.4 (see their Supplementary Material). However, those authors did not infer a

single-cell establishment probability from the proportion of populations showing growth.

Data processing: As described in the main text Methods, wells were scored as established if their

optical density exceeded 0.1. The number of wells eventually (by Day 3) scored as established on each

plate was taken as data for model fitting (see Part II).

With streptomycin concentrations up to 1/32×MICR, there were no new appearances of growth

after Day 1, except in a single well in each experiment on Day 2. At 1/16×MICR, growth was first

detected on either Day 1 or 2, but there were no further appearances on Day 3. Thus, at these

concentrations, we are fairly confident that we allowed sufficient time for growth to allow detection

of all established populations. At 1/8×MICR, there were still some new appearances on Day 3; thus,

it is possible that we missed rare slow-growing wells that would have crossed the OD threshold even

later. However, our estimates of establishment probability at 1/16×MICR in the seeding experiments

were similar to, and even slightly higher than, our estimates from the later inoculum size effect tests

(Section 5) where we read OD up to 5 days post-inoculation (see Suppl. Table 1). Thus, we do not

expect that potential undetected growth in the seeding experiment substantially affected our results.
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In experiment 2, a partially clogged dispenser needle on the automated liquid handler resulted in

a reduced volume of media in row H of each plate (estimated ∼ 150µl instead of 180µl) and a few

of these wells dried up by Day 3. In one case, this resulted in OD that was above the threshold on

Day 2 but dropped below the threshold on Day 3. This well was checked visually to confirm bacterial

growth and scored as established.

In each of the two experiments, a single well out of two 96-well control plates reached OD > 0.1,

first appearing on Day 2 or 3. This indicates a negligible contamination rate of ∼ 0.5%.

4 MIC tests

For the MIC tests at variable inoculation density, we used an overnight culture diluted 103-, 104-, 105-,

and 106-fold to inoculate test cultures at a further 1 in 10 dilution. The lowest dilution factor yielded

thus final inoculation density around 5 × 105 CFU/ml, as used in a standard MIC test 1. Culture

growth was evaluated at approximately 20h, 2d and 3d, by OD595 > 0.1, as described above for the

seeding experiments.

Actual inoculum sizes were estimated by plating out diluted overnight culture on round LB-agar

plates (20µl diluted culture per plate, spread with glass beads) and counting colony-forming units

after overnight incubation at 37◦C. We averaged the results of 5-6 plates at each of three 5× 106-fold

dilutions of the overnight culture, each taken in one further dilution step from the 106-fold dilution

used for the smallest inoculum size on the test plates.

In the main experiment (Fig. 4 and Suppl. Fig. 3), we used standard 200µl cultures on 96-well

test plates. In the supplementary experiment, where we co-varied absolute inoculum size and density

(Suppl. Fig. 4), we additionally tested 1160µl cultures on 24-well test plates (Falcon flat-bottom non-

treated 24-well cell culture plate with lid, product no. 351147), and 116µl cultures on 96-well test

plates. The 1160µl volume was chosen to match surface area to volume ratio on the standard test

plates. The 116µl volume was then chosen to obtain 10-fold lower volume and hence 10-fold higher

density at matched absolute inoculum sizes.

In both experiments, we tested streptomycin-free positive controls along with streptomycin-containing

media in 2-fold concentration steps from 1/16×MICR to 2×MICR (standard volume experiment) or

up to 1×MICR (varying volumes experiment, in which the capacity was limited by the 24-well plates).

Each experiment scored growth in 6 independent cultures per test condition.

In the standard volume experiment, the four inoculation densities were distributed across four

test plates to control for any plate effects. Outer rows on each test plate filled with streptomycin-free

media and mock-inoculated with PBS served as negative controls; no contamination was detected over

the course of the experiment. In the varying volume experiment, on 96-well test plates, there were two
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replicates at each inoculation density along with negative controls on each of three plates; again, no

contamination was detected over the course of the experiment. On 24-well test plates, one replicate

per inoculation density was tested on each of six plates, while an additional plate processed in parallel

served as a negative control and showed no contamination.

Occasionally, a replicate showed no growth at a given streptomycin concentration, but did grow at

the next highest concentration step, before growth was abolished. (This occurred in the experiment

presented in Fig. 4 and Suppl. Fig. 3 for one replicate at estimated inoculum size 1.28e3 CFU evaluated

at 20h, and one replicate at 1.28e4 CFU evaluated at 3d.) This effect can arise through stochastic

effects leading to growth in some cultures but not others at any given streptomycin concentration.

Furthermore, cultures at successive streptomycin concentrations grew independently of one another,

and were grouped simply by plate position as one replicate for MIC evaluation. In these ambiguous

cases, we score MIC for the replicate as the higher concentration, at and beyond which no growth

occurred.

5 Testing the null model of the inoculum size effect

In this experiment, we evaluated the probability of population growth at a given streptomycin con-

centration as a function of inoculum size (main Fig. 5 and Suppl. Fig. 5-6). In each experiment, we

tested growth in streptomycin-free media in parallel, in order to estimate inoculum size (see Sections

8-9). We made a single dilution series of an overnight culture to inoculate test plates, but selected

a different subset of these diluted cultures to use at different streptomycin concentrations (see Table

S1). Thus, any inaccuracy in individual steps of the dilution series is a possible source of discrepancy

between streptomycin-free and streptomycin-containing cultures. We did not factor this possible error

into our model (rather, assumed that dilution steps were perfect), but we minimized the possibility of

compounding errors in the experimental protocol by taking dilutions in parallel rather than in series

wherever possible (e.g. 1e6- through 2e7-fold dilutions would each be prepared in a single independent

step from a common 2e5-fold dilution). To control for possible plate effects, different inoculum sizes

at a given streptomycin condition were distributed across test plates. All test plates included edge

wells as negative controls to check for contamination.

Growth of streptomycin-free cultures was scored (by OD595 > 0.1) after one day, which was

determined to be sufficient for stabilization of detectable OD. (In the main and first supplementary

experiments, no new appearances of growth occurred after the first day. In the second supplementary

experiment, there were two new appearances of growth, but also several contaminated wells on the

second day; thus, we did not count these new appearances.)

Growth of streptomycin-treated cultures was scored daily up to five days post-inoculation. This
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Table S1: Testing the null model of inoculum size effect: experimental set-up

Experiment [Strep] Dilution factors inoculated∗ # reps.

(×MICR) per dil. fac.

main 0 2e9, 5e8, 2e8, 1e8, 5e7 54

1/16 5e9, 2e9, 1e9, 5e8, 2e8, 1e8, 5e7, 2e7, 1e7 54

1/8 5e8, 1e8, 2e7, 5e6, 1e6, 2e5 54

suppl. 1 0 2e9, 5e8, 2e8, 1e8, 5e7 48†

1/16 2e9, 5e8, 2e8, 1e8, 5e7, 2e7, 1e7, 5e6, 2e6 54

suppl. 2 0 2e9, 5e8, 2e8, 1e8, 5e7 54

1/8 5e8, 2e8, 1e8, 5e7, 2e7, 1e7, 5e6, 2e6, 1e6, 2e5 54

* Dilution factors applied to the overnight culture, inoculated at 20µl per 200µl total culture volume.

† Number of replicates reduced because one test plate was dropped early in the experiment.

extended protocol was chosen since previously in the seeding experiments we observed some new

appearances of growth on the third day at the highest streptomycin concentration (1/8×MICR).

Although we generally scored growth appearing up to Day 5 here, we observed few new appearances

beyond Day 3. Occasionally a well dried up due to evaporation by Day 5; in these cases, we counted

culture growth if it appeared earlier. In supplementary experiment 2, a cluster of four wells on one

plate hovered just below the threshold OD of 0.1, with one of these wells just crossing the threshold

on two of the five measurements. However, there did not appear to be bacterial growth in these wells

and thus they were not counted.

Contamination was generally rare, and when it did appear, it was usually late in the experiment

(likely due to contamination during OD measurements with lids removed) and judged unlikely to have

affected our results. There was one possible exception in supplementary experiment 2, in which there

were four new appearances of growth in test cultures on Day 5, but also two cases of contamination

appearing in adjacent wells on one plate. In this case, we repeated the model fitting on growth data

assessed at Day 4 instead of Day 5, and still found an acceptable fit of the null model (D = 11.5,

p = 0.24, cf. Table S2).

6 Fraction of dead cells (live-dead staining and flow cytometry)

The goal of this experiment was to assess the proportion of dead cells induced by sub-MICR strepto-

mycin treatment of the resistant strain.
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Experimental protocol: We used the resistant strain without any fluorescent label, so as not to

interfere with the fluorescent signal from the live-dead stain. Treatment cultures on 96-well plates

were inoculated (20µl per 200µl total culture volume) with a 103-fold diluted overnight culture, as in

the MIC tests at standard density. Media-only controls were mock-inoculated with the same volume of

PBS. We tested streptomycin-free, 1/64, 1/32, 1/16, and 1/8 × MICR streptomycin with six replicate

cultures per concentration. The treatment plate was incubated (37◦C, 225rpm) for 7h, then cultures

were immediately diluted 10-fold into sterile filtered PBS. One additional streptomycin-free culture

was sampled and heat-killed (10min at 70◦C) before likewise diluting 10-fold.

Live-dead staining and flow cytometry were carried out with one set of replicates at a time in

order to avoid having samples exposed to the stain for too long. Each of the six replicate sets

included a media-only control, a heat-killed control, and a culture treated at each tested streptomycin

concentration; the streptomycin-free culture was also repeated as the last sample in order to check

for an effect of time exposed to the stain before sampling. For each replicate set, the 10-fold diluted

samples were diluted a further 10-fold into pre-warmed, sterile filtered 1mM EDTA in PBS and

incubated for 10min at 37◦C. Then 2µl each of thiazole orange [TO] and propidium iodide [PI] (BD

Cell Viability Kit, product no. 349483) was added per 200µl sample and incubated 5min further at

room temperature. We then sampled 50µl per sample using flow cytometry (BD Accuri C6 Flow

Cytometer; fast fluidics; discarding events with forward scatter FSC-H < 10,000 or side scatter SSC-H

< 8000).

Data processing: To analyze the flow cytometry data, we proceeded as follows.

1. Cell densities in treated and diluted cultures were sometimes low, especially at higher strepto-

mycin concentrations. In order to better discriminate cells from background, we first defined

a gate (labelled “cells”) in the FSC/SSC (forward/side scatter) plot that incorporated the ma-

jority of events in the sampled cultures, but excluded the majority of events in the media-only

controls (see Suppl. Fig. 7a). Further analysis was limited to events within this gate.

2. We then defined gates around events in the FL1/FL3 plot that clustered according to their

fluorescence (see Suppl. Fig. 7b). TO (live stain) is primarily detected in the FL1 channel

(488nm laser with 533/30 filter), while PI (dead stain) is primarily detected in FL3 (488nm

laser with 670LP filter). Thus a cluster appearing with higher FL1 and lower FL3 was labelled

“intact” and a cluster appearing with lower FL1 and higher FL3 was labelled “dead”. Nearly

all events in the heat-killed controls fell within the “dead” gate. Together, these two gates

incorporated the majority of events in the sampled cultures, but only a minority of events in the

media-only controls, providing further discrimination from background events.
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3. Finally, to correct for any remaining background, within each replicate set we subtracted the

number of events in the media-only control from the number of events in each sampled culture,

within each of the two gates (“dead” and “intact”).

4. The proportion of dead cells in sampled cultures was defined as the number of events falling

within the “dead” gate divided by the total number falling in either the “dead” or the “intact”

gate (after background correction).

TO has toxic effects on cells, and thus the order of sampling the diluted cultures by flow cytometry

within each replicate set (hence time exposed to the stain before sampling) could potentially have been

confounded with the effect of streptomycin treatment. However, by comparing the streptomycin-free

culture sampled earlier vs. later within each replicate set, we found that the proportion of dead cells on

average actually decreased (mean of six replicates: 0.040 in first sample vs. 0.026 in second), though

this difference is not significant (two-sided paired t-test: p = 0.09). Thus, changes in the proportion

of dead cells can be attributed to streptomycin treatment rather than duration of staining.

7 Viable cell population dynamics

In this experiment, we tracked the dynamics of viable cells over time by plating out samples of cultures

treated with various concentrations of streptomycin.

Experimental protocol: Treatment plates were split into Set A (containing 1/32×MICR and

1/16×MICR streptomycin treatments as well as streptomycin-free controls) and Set B (1/8×MICR and

1/4×MICR and streptomycin-free controls). Importantly, we inoculated multiple treatment plates in

order to sample a separate plate at each time point; thus, all replicates are independent of one another

over time.

An overnight culture was diluted 5 × 105-fold and used to inoculate treatment plates (20µl per

200µl total culture volume), with six independent replicate cultures at each streptomycin concentration

(twelve in streptomycin-free media) on each plate. Treatment plates were incubated at 37◦C, 225rpm.

In each treatment set (A/B), one plate was taken for sampling immediately after inoculation to give a

time point close to 0h, in order to assess initial population size using the same method as at all later

time points. Subsequent target sampling times were chosen differently for Set A (1h, 2h, 2h 20min, 2h

40min, 3h, 3h 30min, 4h) and Set B (hourly from 1h to 8h, and at approx. 24h) to account for slower

growth at higher streptomycin concentrations. In total, we thus had 8 treatment plates in Set A and

10 in Set B. Actual sampling times (time elapsed between inoculation and plating) were recorded in

the course of the experiment.
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Upon sampling, the treated cultures were plated undiluted in 4µl spots on each of five square

(12cm × 12cm) LB-agar plates, for a total sampling volume of 20µl out of each 200µl culture. After

sampling, treatment plates were returned to the incubator for later OD reading (after approx. 1,

2, and 3 days) to assess eventual growth in all the sampled plates, as in our previous experiments.

Contamination was rare (one non-inoculated edge well on each of two plates showed contamination

first appearing on Day 2, out of a total of 36 edge wells/plate × 18 plates).

LB-agar plates were immediately moved to 37◦C for the rest of the day, then removed to the bench

(room temperature) overnight to prevent overgrowth of colonies, then returned to 37◦C the following

day for several hours until colonies were visible, but still separated, for optimal counting by eye. Total

colony counts from the five plates were used to estimate viable population size in the treated cultures

at time of sampling (scaling up by a factor 10 from sampled to total volume). Later plated time points

were excluded if colonies became too dense to count at a given streptomycin concentration.

Data processing: For the purpose of statistically testing the effects of streptomycin, time, and their

interaction on population size (ANOVA and post-hoc Dunnett’s test), we counted sampling times from

Sets A and B that were within approximately 10min of each other as the same categorical sampled

time. However, precise sampling times were used for plotting in Fig. 6b.

Part II

Mathematical modelling and model fitting

Here we describe the models that we fit to population growth data in the seeding experiments and

the tests of the inoculum size effect. We note that our modelling approach and fitting methods are

not entirely novel, but present them here in full for clarity. Connections to previous work are briefly

discussed at the end (Section 8.2).

8 Theoretical model of population growth

We treat the number of populations showing growth, across independent biological replicates in a

given test condition, as binomially distributed with number of trials equal to the number of replicate

cultures and ‘success’ probability pw, the probability of population growth in a replicate culture. The

parameter pw will depend on the inoculum size, whose expected value N̄ is controlled by varying

dilution factors of the inoculating culture; and the environmental (media) conditions on the test

plates, x. In our case, environment x represents the concentration of streptomycin, but the model and

methods are equally applicable to any other environmental factor(s) being tested.
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Our fundamental assumption is that population growth will be observed if and only if at least one

individual in the inoculum establishes a surviving lineage. (Here we equate ‘individual’ with ‘cell’,

but generally an individual could be a clump of cells; see Section 8.1 below.) Furthermore assuming

that the number of individuals that establish is Poisson distributed with mean α, we can express our

model in its most general form as:

pw(N̄ , x) = 1− e−α(N̄,x) (S2)

(corresponding to Eqn. 1 in the main text). In support of this assumption, on solid media (streptomycin-

free LB-agar), we find that the number of colony-forming units is indeed well described by a Poisson

distribution (Suppl. Fig. 1). Note that Equation S2 defines a one-to-one mapping between pw and α,

and thus maximum likelihood estimates and boundaries of confidence intervals on pw can be trans-

formed to the corresponding results on α.

The “full model” (statistically speaking) involves estimating a separate parameter pw, or equiv-

alently α, for each (N̄ , x) condition tested in the experiment. In this case, the maximum likelihood

estimate of pw is simply the proportion of replicates that show growth (a standard results for the

binomial model). The number of parameters in the full model is equal to the number of test condi-

tions, i.e. |{(N̄ , x)}|. We refer to this full model in the original (α) parameterization as Model A (see

Figure S1).

It is useful to define the relative establishment probability, p̃c, in a focal environment x (at mean

inoculum size N̄i), as the mean number of established cells in that environment, normalized by the

result in some baseline environment (for our purposes, streptomycin-free media), defined as x = 0:

p̃(i)
c (x) :=

α(N̄i, x)

α(N̄i, 0)
(S3)

Note that it is possible for p̃c to exceed one, if α in environment x exceeds that in environment 0;

thus p̃c is not a true probability. In practice, estimating {p̃(i)
c (x)} in the full model requires that we

have tested growth in both baseline and focal environments at the same mean inoculum size N̄i. (This

is the case in the “seeding” experiments, but not in the tests of the inoculum size effect.) We can

then rewrite the full model in terms of the transformed parameters {α(N̄i, 0), {p̃(i)
c (xj)}sj=1}mi=1, where

m = |{N̄}| and 1 + s = |{x}|. Note that the total number of parameters remains the same, with a

one-to-one mapping between the original and transformed parameterizations. We call this rewritten

version of the full model Model A′.

Using these transformed parameters, we can also make the reasonable simplifying assumption that

only α(N̄i, 0) varies with N̄i, while the relative establishment probability p̃c(xj) is constant in a given

test environment xj (Model B′). That is, we jointly estimate {α(N̄i, 0)}mi=1 and {p̃c(xj)}sj=1 from the

results pooled across all test conditions. Note that this model still requires us to have tested growth in
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every environment at the same inoculum sizes. The number of parameters to be estimated is reduced

from m · (s+ 1) in Model A′, to m+ s in the nested Model B′. Similarly, one could pool data across

multiple experiments using such a framework, by supposing that α(N̄i, 0) varies by experiment, but

p̃c(x) in a given environment remains the same.

Finally, we introduce our null model of the inoculum size effect, i.e. the relationship between

pw and N̄ . Here we invoke the key assumption that each individual acts independently, i.e. the

outcome of establishing a surviving lineage is not affected by other individuals in the inoculum.

(This independence assumption is very common when modelling dynamics at low population density,

for instance using branching processes; here we will rigorously test the validity of this assumption.)

Suppose that the number of individuals in the inoculum is Poisson-distributed with mean N̄ and

the fate of each individual is an independent Bernoulli trial with success probability pc (“per-cell

establishment probability”), which depends only on the environment, x. Then we arrive at the number

of established lineages being Poisson-distributed,1 consistent with our earlier assumption, and can

write the mean very simply as:

α(N̄ , x) = N̄ · pc(x) (S4)

This leads to Eqn. 2 in the main text, which we call the null model, relating pw to N̄ . Under this

model, inoculum size cancels out in the definition of relative establishment probability (Equation S3)

and we have simply:

p̃c(x) =
pc(x)

pc(0)
(S5)

giving the intuitive interpretation that p̃c(x) represents the per-cell establishment probability in envi-

ronment x, normalized by that in the baseline environment.

Note that according to this model, we cannot obtain estimates of absolute establishment probability

(pc) since this parameter plays a symmetrical role to inoculum size (N̄) and thus their effects cannot

1 The number of cells in the inoculum, N , is Poisson-distributed with mean N̄ and thus has probability generating

function (PGF) gN (z) = e−N̄(1−z). Each cell independently has probability pc of establishing a surviving lineage.

Letting Y denote the number of established lineages, Y |N is the sum of N independent Bernoulli(pc) trials, and thus

has a Binomial(N, pc) distribution with PGF gY |N (z) = (1 − pc + pcz)
N . We can then derive the distribution of Y via

its PGF, gY (z), as follows:

gY (z) := E
[
zY

]
= EN

[
E
[
zY |N

]]
= EN

[
(1− pc + pcz)

N
]

= gN (1− pc + pcz)

= e−N̄pc(1−z)

This is the PGF of a Poisson random variable with mean N̄pc.
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be separated. That is, if we observe a higher proportion of established populations in an experiment,

we cannot tell whether this was due to higher inoculum size or higher establishment probability.

This limitation is not unique to our experimental protocol. Quantifying cell density by counting

colony-forming units on agar implicitly assumes that the establishment probability of a “viable cell” is

one. Likewise, we will refer to the mean number of established cells in our baseline (growth-optimal)

environment, i.e. α(N̄ , 0) = N̄pc(0), as the effective mean inoculum size, and estimate establishment

probabilities in all other environments relative to this. The relative establishment probability in

environment x, p̃c(x), generally provides an upper bound on the absolute establishment probability

pc(x), and if pc(0) is close to one, as we expect in benign conditions, then p̃c(x) will be close to pc(x).

For the purposes of parameter estimation, we pool results across inoculum sizes by supposing that

we do not make any experimental error in culture dilution steps, and so the mean inoculum size is

inversely proportional to the dilution factor applied to the inoculating culture.That is, the ith inoculum

size is:

N̄i = N̄∗/(di/d
∗)

and thus

α(N̄i, x) = α(N̄∗, x)/(di/d
∗)

where N̄∗ is the mean inoculum size at a chosen normalizing dilution factor d∗, and di is the ith dilution

factor. This assumption can be applied either to the parameterization in terms of α(N̄∗, x) (giving

Model C) or the transformed parameterization in terms of α(N̄∗, 0) and {p̃c(x)} (giving Model

C′), resulting in |{x}| parameters to estimate. Since we have now defined a scaling relationship

between inoculum sizes, we are no longer constrained to using the same set of inoculum sizes in

every environment in order to estimate p̃c. Note that any deviations of the data from this model fit

could reflect not only lack of independence among individuals (the null model assumption), but also

experimental errors in the dilution steps.

8.1 Heterogeneous establishment probability

In the above model, we assumed that establishment probability pc is the same for every individual.

However, in reality it may well be the case that cells are in variable physiological states (metabolism,

gene expression levels, phases of the cell cycle, etc.) that could affect their division and/or death

rates. Furthermore, bacterial cells may aggregate6, such that the individual units are actually clumps

containing variable numbers of cells. Both of this issues imply that the establishment probability

should vary among individuals. Here we show mathematically that these issues do not affect our

modelling approach and simply require the appropriate interpretation of the parameter pc.

The key requirement of our model is simply that the number of individual units – regardless of

13
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Figure S1: Flow chart summarizing the relationships among models fit to population growth data across multiple

inoculum sizes (indexed by i) and environmental conditions (indexed by j). For short, we write m for the number of

inoculum sizes tested, i.e. m = |{N̄}|, and s for the number of non-baseline environments, i.e. s = |{x}|−1. Mathematical

equivalence of two models is denoted by a double arrow, while a nesting relationship is indicated by a triangle pointing

towards the nested model. Note that fitting Model A′ or B′ requires that we have tested every inoculum size ×

environment combination, while the other models allow different inoculum sizes in different environments.
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whether these are single cells or aggregates – is Poisson-distributed. (Recall that we have shown

that the number of colony-forming units indeed appears to be Poisson-distributed: Suppl. Fig. 1.)

Suppose each of these individuals establishes with probability P , now treated as a random variable

drawn independently for each individual from any given distribution with probability density function

fP . For instance, the distribution of P could reflect differences in the phenotypic level of resistance

based on intracellular state, or variation in cell aggregate size (with aggregates of more cells likely

corresponding to higher establishment probability).

Denoting the number of established lineages derived from an individual as Y (taking on a value of

0 or 1), we have Y |P ∼ Bernoulli(P ). The distribution of Y can then be derived as:

Pr(Y = 1) =

∫
fP (p) Pr(Y = 1|P = p) dp

=

∫
fP (p) pdp

≡ E [P ]

Thus, Y is overall a Bernoulli trial with success probability equal to the mean establishment probability,

and in turn, the sum of N such independent trials yields a binomial distribution. Therefore, our

previous mathematical results still hold if we simply interpret pc as the mean establishment probability

among individual units behaving independently.

8.2 Comparison to previous work

Our theoretical model of population growth is not unique. Indeed, the form of the null model of

inoculum size effect,

pw = 1− e−N̄ ·pc

arises very generally under the assumptions that the number of individuals is Poisson-distributed

and the fate of each individual lineage is independent5. Martin et al.5 used this general equation

to describe the probability of evolutionary rescue in a variety of scenarios (their Equation 3.1). In

this case, pc (or θ∗R in their notation) represents “rate of rescue per inoculated individual” (ref.5,

p. 4), which captures different processes depending on the scenario. For instance, in the case of

rescue relying on de novo mutations, θ∗R accounts for the mutation rate as well as the establishment

probability of mutants. In the case of rescue relying of pre-existing (but rare) mutations, θ∗R is simply

the per-individual establishment probability, as in our interpretation. However, we note that this

probability could generally differ for a rescue (resistant) variant establishing in isolation, as we tested

here, compared to establishment in the presence of an initially large but declining wild-type (sensitive)

population, as in the rescue situation.
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Importantly, Martin et al.5 also fit this equation to experimental data using similar methods to ours

(cf. Sections 9-10 below). They likewise assess the goodness of fit of this model according to deviance

from the full model (our Model C vs. A), but do not include our additional Model B. Our approach

moreover differs in that we estimate effective inoculum size from growth in control conditions in

parallel with test conditions, rather than treating inoculum size as an independently known value; and

we thus derive confidence intervals on the estimated establishment probability relative to the control

conditions, that take into account the uncertainty in both measures. As mentioned above, provided

establishment is more likely in control than in test conditions, relative establishment probability will

remain less than one (up to experimental variation); and provided establishment is very likely in

control conditions, relative establishment probability will be close to true establishment probability

(which is not separately identifiable in this model).

9 Likelihood-based parameter estimation and model comparison

Basic binomial likelihood: The fundamental model is that the number of populations showing

growth at a given test condition, ngrow, is binomially distributed with number of trials equal to the

total number of populations, ntot, and success probability pw, the parameter we want to estimate.

That is,

Pr(ngrow|(ntot, pw)) =

(
ntot

ngrow

)
p
ngrow
w (1− pw)ntot−ngrow

and so the log likelihood function of pw given the data (ngrow, ntot) can be written (up to a constant

that can be dropped) as:

logL(pw|(ngrow, ntot)) =


ngrow log(pw) + (ntot − ngrow) log(1− pw) , 0 < ngrow < ntot

ntot log(1− pw) , ngrow = 0

ntot log(pw) , ngrow = ntot

(S6)

We have the simple analytical result for the maximum likelihood estimate (MLE):

p̂w = ngrow/ntot

To obtain likelihood-based confidence intervals, we use the test statistic:

D(pw) = 2(logL(p̂w)− logL(pw))

i.e. twice the difference in log likelihood between the MLE and any test value of pw, and solve for

the boundaries p∗w such that D(p∗w) = D∗, the critical value for a chosen significance level in the

chi-squared test with one degree of freedom. The MLE and confidence interval boundaries for pw can

simply be transformed to those for α using α = − log(1− pw).
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Pooling dilution factors: Recall that under the null model of inoculum size effect, and assuming

perfect dilution steps, we have

α(N̄i, x) = α(N̄∗, x)/(di/d
∗)

where di is the ith dilution factor, normalized by a chosen dilution factor d∗, taken as fixed values.

This leaves a single parameter α∗(x) := α(N̄∗, x), the mean number of established cells scaled to the

chosen dilution factor, to be estimated in each environment by pooling data across all dilution factors.

We thus optimize the likelihood:

logLpool (α∗(x)|{(ngrow, ntot)}mi=1) =
m∑
i=1

logL
(

1− e−α
∗(x)/(di/d

∗)|(ngrow, ntot)i

)
(S7)

where logL is the binomial log likelihood defined in Equation S6. Note that we can have different dilu-

tion factors di (and a different number of them, m) in each environment x. Using the parameterization

in terms of α (Model C), each environment can be treated separately.

Working with relative establishment probability: Recall that we can transform the model

from a parameterization in terms of {α(N̄ , xj)} in all environments xj , to one in terms of α(N̄ , 0) in

the baseline environment (x = 0) along with {p̃c(xj)} in environments xj 6= 0. To obtain MLEs on p̃c,

we could simply substitute MLEs from the original parameterization in terms of α: ˆ̃pc(x) = α̂(x)/α̂(0).

However, the confidence intervals must take into account the uncertainty in both the numerator and

denominator. This requires running the inference jointly across multiple environments.

We write the joint log likelihood across all conditions, given the data ngrow and ntot as arrays

indexed by inoculum size (i) and environment (j), as:

logLjoint

(
{α(N̄i, 0), {p̃(i)

c (xj)}sj=1}mi=1|ngrow, ntot

)
=

m∑
i=1

logL(1− e−α(N̄i,0)) +
s∑
j=1

logL
(

1− e−α(N̄i,0)p̃
(i)
c (xj)

) (S8)

Proceeding further depends on the particular model (cf. Fig. S1):

• Model A′ (full model): We estimate α(N̄i, 0) and p̃
(i)
c (xj) for each inoculum size i separately.

For any given value of α(N̄i, 0), we can simply rescale all p̃
(i)
c (xj) to obtain the same optimal

likelihood. Therefore the estimate of α(N̄i, 0) can be computed for the single condition (N̄i, 0) in

isolation. However, estimating each p̃
(i)
c (xj) requires simultaneous consideration of the baseline

environment (0) and the focal environment (xj) at the ith inoculum size.

• Model B′ (fixed environmental effect): We estimate α(N̄i, 0) for each i, but assume that p̃c(xj)

is the same for every i. Adjusting the value of p̃c(xj∗) in any single environment xj∗ affects the

optimized values of α(N̄i, x0) for all i, which in turn affects the optimized values of all other
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p̃c(xj). Thus, we must conduct joint inference on all parameters using the entire data set (i.e. all

inoculum sizes and environments) simultaneously.

• Model C′ (null model of inoculum size effect): We estimate a single parameter α∗0 := α(N̄∗, 0)

in the baseline environment at some normalizing dilution factor d∗, under the assumption that

α(N̄i, 0) = α∗0/(di/d
∗); as well as p̃c(xj) in each non-baseline environment. We can again estimate

α∗0 for the baseline environment in isolation (since all p̃c(xj) can be adjusted to obtain the same

likelihood in environment xj for any value of α∗0). We can estimate p̃c(xj) for each environment

xj using only the data from the baseline and single focal (jth) environments. As in Model C,

we do not require the same dilution factors to be used in each environment, but since the data

in the baseline and focal environments are used simultaneously, the dilution factors should be

normalized by the same factor d∗ in both.

When likelihood is a function of more than one parameter, we use the concept of profile likelihood

confidence intervals. The profile likelihood function of a given focal parameter is defined as the

likelihood when holding this parameter fixed to a given value. The focal parameter’s confidence

interval is in turn defined by the limits of its fixed values that allow its profile likelihood, optimized

over all other parameters, to attain an optimum within a critical difference below the maximum

likelihood, as optimized over all parameters including the focal. The critical difference is defined by a

chi-squared test with one degree of freedom, since we have fixed one parameter in the profile likelihood.

Model selection: To compare nested models, we use the likelihood ratio test. The test statistic is

the deviance (D), equal to twice the difference in maximized log likelihood between the more complex

model and the simpler model (i.e. the nested one with fewer parameters). Significance of the deviance

is evaluated using a chi-squared test with degrees of freedom equal to the difference in number of

model parameters; if non-significant, we accept the simpler model.

Code: Likelihood calculations and numerical optimization were implemented using custom scripts

in R, version 3.3.1 (The R Foundation for Statistical Computing, 2016).

10 Generalized linear model for analyzing seeding experiments

10.1 Model description and interpretation

To assess the impact of experimental variables on the seeding experiments, particularly the signifi-

cance of the streptomycin concentration effect, we fit a generalized linear model (GLM) to observed

population growth in wells, treated as binomial data. The fitting is carried out using the built-in R
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function ‘glm’. The response variable (probability of well growth, pw) is modelled as a function of the

following explanatory variables:

• natural logarithm of the dilution factor applied to the inoculating culture (treated as either

continuous or categorical)

• streptomycin concentration on the treatment plates (categorical)

• experiment date when pooling data from more than one experiment (categorical)

We use a complementary log-log (cloglog) link function. The linear predictor then takes the form:

cloglog(pw) = Xβ

where X contains the explanatory variables (i.e. the numerical value of any continuous variable and

an indicator for each categorical variable) and β contains the coefficients to be fit.

The rationale for choosing the cloglog link function is that it gives a clean relationship to our

theoretical model (Section 8). Under the basic assumption that the number of established cells per

well (α) is Poisson-distributed, we have

pw = 1− e−α

which leads to the simple relationship

cloglog(pw) := log(− log(1− pw)) = log(α)

If we further suppose that the number of cells inoculated per well is Poisson-distributed with mean N̄

and each cell independently has probability pc of establishing a surviving lineage (i.e. Model C, the

null model of inoculum size effect), we can substitute α = N̄pc and thus

cloglog(pw) = log(N̄) + log(pc)

such that any explanatory variables expected to affect only inoculum size (i.e. the dilution factor

applied to the inoculating culture) are separated from those expected to affect only establishment

probability (i.e. streptomycin concentration) in the linear predictor. Specifically, suppose that in

the nth observation, N̄ = N̄∗/dn where N̄∗ is a baseline culture density and dn is the normalized

dilution factor. Further write pc,n = p0 · p̃c(xn) where p0 is the per-cell establishment probability in

baseline conditions and p̃c is the relative establishment probability (cf. Equation S5) in streptomycin

concentration xn. Then we have

cloglog(pw(n)) = log(N̄∗) + log(p0)− log(dn) + log(p̃c(xn))
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This leads to the prediction that, if we treat the logarithm of the dilution factor as a continuous

explanatory variable, we expect a fitted coefficient close to -1. The baseline culture density (which

may for instance vary from experiment to experiment) and the absolute establishment probability in

baseline conditions (which is unknown) will be incorporated into the intercept term of the model fit.

On these theoretical grounds, we treat the logarithm of dilution factor as a continuous explanatory

variable in our main analysis. In support of the theoretical model, we indeed find a fitted coefficient

close to -1 (see Section 12.2). However, we also conduct an analysis in which dilution factor is treated

as a categorical variable, and thus remove any assumptions derived from the theoretical model above.

Our conclusions are robust to this choice (see Section 12.2).

Part III

Additional Statistical Results

11 Colony-forming units are Poisson-distributed

We tested whether the number of CFUs in a small volume of highly diluted culture can be described

by a Poisson distribution, using colony counts in plated 4µl spots (Section 1). A Poisson distribution

was fit using the sample mean. To conduct a goodness-of-fit test, the data (colony count in each spot)

were grouped into categories according to the guideline that there should be an expected number of

at least five observations per category (ref.3 p. 540). Deviation from the Poisson distribution was

determined at a 5% significance level using a chi-squared test with degrees of freedom equal to the

number of categories minus two3. We carried out two separate experiments, each with 144 plated

spots. In both cases, we could use categories of 0, 1, 2, 3, 4, and 5 or more colonies per spot.

• Experiment 1 (Suppl. Fig. 1a): The sample mean is 1.97 (and variance is 1.68). According to the

goodness-of-fit test, the deviation from a Poisson distribution is not significant (χ2
4: p = 0.10)

and thus we accept the null model that a Poisson distribution is sufficient to describe the data.

• Experiment 2 (Suppl. Fig. 1b): The sample mean is 1.96 (and variance is 1.77). We again accept

the null model (χ2
4: p = 0.73).

12 Seeding experiments

12.1 Theoretical model fitting

Here we report the complete results of fitting our theoretical models of population growth (Sections

8-9) to seeding experiment data. Recall that Model A (equivalently, Model A′ in the transformed
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parameterization) is the full model, with the number of estimated parameters equal to the number

of tested conditions: (# inoculating dilution factors) × (# streptomycin concentrations) = 15 in our

experiments. Model B′ allows a separate estimate of mean number of established cells in streptomycin-

free media (α(0)) at each dilution factor, but assumes relative establishment probability (p̃c(x)) at

each streptomycin concentration (x 6= 0) is common to all dilution factors, for a total number of

parameters equal to (# dil. factors) + (# non-zero Strep. conc.) = 7 in our experiments. Finally,

Model C (or C′), the null model of the inoculum size effect, additionally assumes that the number of

established cells scales proportional to inoculum size (inversely proportional to inoculating dilution

factor), leaving 1 + (# non-zero Strep. conc.) = 5 parameters to estimate. We fit each model to the

data, i.e. number of replicate cultures showing growth, using maximum likelihood estimation of the

parameters. Since these models are nested, we then use the likelihood ratio test (LRT) to compare

their fits to the data (Section 9). If the deviance (D) between the more complex and the simpler nested

model is non-significant, we accept the simpler model. (We sum the contributions to D from each

tested streptomycin concentration here, to get an overall model choice for the entire data set.) We

use the estimates of p̃c from the best-fitting model as selected by the LRT for plotting (main Fig. 3)

and comparisons among experiments (Suppl. Table 1). However, the maximum likelihood estimate of

p̃c tended to be quite consistent among models.

Experiment 1:

• Model A′ vs. B′: D = 3.56, p = 0.89 ⇒ accept B′

• Model B′ vs. C′: D = 15.8, p = 3.6e− 4 ⇒ reject C′

Further analysis suggests that one of the three inoculating dilution factors (4e7-fold) primarily con-

tributed to the deviation of Model C′ in this experiment, suggesting an inaccuracy in preparation

of this particular dilution that resulted in lack of proportionality in inoculum sizes as assumed by

this model. Indeed, if the data from this dilution factor are excluded from the analysis, Model C′

is accepted (D = 0.210, p = 0.65 compared to Model B′). For comparison, dropping either of the

other single dilution factors still results in rejection of Model C′, suggesting that the test is not simply

under-powered on the reduced data set, but rather that the identified dilution factor is the source of

error. Nonetheless, we obtain similar point estimates for p̃c either with or without this dilution factor;

for consistency, we report results including all dilution factors.

Experiment 2:

• Model A′ vs. B′: D = 8.99, p = 0.34 ⇒ accept B′

• Model B′ vs. C′: D = 1.65, p = 0.44 ⇒ accept C′
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Thus, in this experiment, we accept the Model C′ as the best fit.

12.2 Generalized linear model fitting

Here we report the complete results of fitting the generalized linear model, as described in Section

10, to population growth data from the seeding experiments. Recall that the explanatory variables

are streptomycin concentration, [Strep] for short; the logarithm of the inoculating dilution factor,

log(dilfac) for short; and experiment date, if applicable.

Experiment 1: Fitting a full model identified that the log(dilfac) and [Strep] main effects were

significant, but their interaction was not. A reduced model including only the main effects was

correspondingly preferred by the Akaike Information Criterion (AIC: 90.2 for the full model vs. 83.7

for the reduced model if log(dilfac) is treated as a continuous variable, or 96.1 vs. 83.7 if treated as a

categorical variable). This result is in qualitative agreement with our theoretical model fit accepting

Model B′, in which the effect of inoculation density is separated from that of relative establishment

probability (the latter expected to depend only on streptomycin concentration). The reduced model

fit indicated that the effect of [Strep] at 1/16×MICR and 1/8×MICR is significant relative to the

streptomycin-free conditions (p = 0.01 and p < 2e-16, respectively, regardless of whether log(dilfac)

is treated as continuous or categorical). As expected, the effect of log(dilfac) is also highly significant

(p <2e-16 when treated as continuous); here, the fitted coefficient of -1.30 is reasonably close to

the theoretical prediction of -1 (see Section 10), but likely skewed by the suspected error in one

dilution factor as mentioned above. The effect of log(dilfac) remains highly significant when treated

as categorical (lowest vs. highest dilution factor: p <2e-16; middle vs. highest: p=3e-10).

Experiment 2: Again, fitting the full model with all explanatory variables indicated that the

log(dilfac) and [Strep] main effects were significant, but their interaction was not; the reduced model

excluding the interaction term was preferred by AIC (86.5 vs. 81.6 with log(dilfac) as continuous; 89.0

vs. 82.0 with log(dilfac) as categorical). The reduced model fit again indicated that [Strep] was sig-

nificant at 1/16×MICR and at 1/8×MICR (p=2e-7 and p <2e-16, respectively, regardless of whether

log(dilfac) is treated as continuous or categorical). The effect of log(dilfac) is also highly significant

(p <2e-16 in all cases), and when treated as continuous, the fitted coefficient of -1.01 is in excellent

agreement with the theoretical prediction, consistent with the acceptance of the theoretical Model C′

in the previous analysis.

Pooling both experiments: Using experiment date as an additional explanatory variable, a hier-

archical search (using the built-in function ‘step’ on the fitted full model) according to minimal AIC

identified a reduced model in which all main effects and the experiment date × log(dilfac) interaction
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effect are retained. This interaction term presumably arises because of the suspected inaccuracy in the

lowest dilution factor (4e7-fold) only in Experiment 1, as described above. Indeed, the interaction is

identified as significant (p = 0.003) with log(dilfac) taken as continuous, while with log(dilfac) taken as

categorical with the highest dilution factor (1.6e8-fold) as the baseline, the interaction between exper-

iment date and the lowest dilution factor (4e7-fold) is significant (p = 0.008) but the interaction with

the middle dilution factor (8e7-fold) is not significant (p = 0.8). Taken together, these results point

to error in a single dilution step as the source of deviating effects; we do not interpret this result as

having biological significance. More importantly, pooling data from two experiments strengthens the

conclusions regarding the effect of streptomycin: specifically, [Strep] at 1/16×MICR or 1/8×MICR has

a highly significant effect relative to the streptomycin-free control (p=2e-8 and p <2e-16, respectively,

regardless of whether log(dilfac) is treated as continuous or categorical).

13 Testing the null model of the inoculum size effect

Here we report the complete results of fitting our theoretical models of population growth (see Sections

8-9) to population growth data, where we are interested in testing the null model for the effect of

inoculum size at a given streptomycin concentration. Specifically, at each streptomycin concentration,

we test whether the null model (Model C or equivalently C′) is accepted, by the likelihood ratio test, in

comparison to the full model (Model A or A′) that allows an arbitrary effect of each separate inoculum

size. The results of the “main experiment” (testing both 1/16×MICR and 1/8×MICR streptomycin, as

well as streptomycin-free conditions) are illustrated in main Fig. 5 and Suppl. Fig. 5; the results of the

two “supplementary experiments” (one testing 1/16×MICR and one testing 1/8×MICR streptomycin,

along with a streptomycin-free control in each) are illustrated in Suppl. Fig. 6; and estimates of

relative establishment probability p̃c from all experiments are summarized in Suppl. Table 1. In Table

S2 we summarize the results of the likelihood ratio test at each streptomycin concentration in each

experiment. In every case, the deviance (D) of the null model from the full model is non-significant

(p > 0.05), and thus we accept the null model.
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Table S2: Testing the null model of inoculum size effect: likelihood ratio test results

Experiment [Strep] # inoc. sizes Deviance∗ p-value∗∗ Effective O/N culture density†

×MICR tested (null from full) (viable cells/ml)

main 0 5 3.08 0.55 7.58× 109

1/16 9 9.74 0.28

1/8 6 2.91 0.71

suppl. 1 0 5 8.57 0.073 7.17× 109

1/16 9 1.02 1.00

suppl. 2 0 5 0.347 0.99 9.10× 109

1/8 10 13.1 0.16

* Deviance (D) of the null model from the full model, defined as twice the difference in maximal log likelihood of each

model (see Section 9).

** p-value in the likelihood ratio test, i.e. a chi-squared test with D as the test statistic and degrees of freedom = (#

parameters in full model – # parameters in nested model) = (# tested inoculum sizes – 1).

† In streptomycin-free conditions, we use the maximum likelihood estimate of α(0) ≡ N̄eff, scaled up by the corresponding

dilution factor applied for the inoculation, to estimate an effective viable cell density in the overnight culture used for

inoculation. This is equivalent to the “most probable number” method for determining bacterial density using multiple

dilution factors2. We use this estimate to calibrate the “effective mean inoculum size” in the x-axis of our plots.
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