S1 Appendix
Supporting Methods

Principal component analysis (PCA) of the covariance matrix computed from MD
trajectories

Proteins in the snapshots were iteratively superimposed onto their mean structure, <R>, and the
covariance matrix, <ARART>, is constructed using a deviation matrix Q and decomposed into its
corresponding eigenvalues and eigenvectors such that:

< ARART > = (M —1)71QQT = VAVT
(S1)

AR is the 3N-dimensional deviation vector, and Q is the 3N x M matrix, where N and M are,
respectively, the number of protein atoms in the analysis and the number of snapshots. Each
column in Q represents the deviation of a given snapshot from the mean structure, while each
element in that column is the deviation of a given atom in the x-, y- or z-dimension. Vanxan is the
eigenvector matrix containing 3N eigenvectors (or principal components, PCs), each of which is
3N-dimensional. A is the 3N x 3N diagonal matrix of rank-ordered eigenvalues (from large to
small).

The snapshots of a trajectory are then projected onto the principal components to form a projection
matrix Uanxm as

U=V7Q
(S2)

where the row k in U, ux = [uko, Uk, ..., Ukm-1], contains the projections of M snapshots onto a
given PC eigenvector Vi for the k’th PC mode. Each snapshot of the protein structure is a scalar
value (PC mode coordinate) on the mode k.

Wiener—Khintchine theorem (WKT)

In this section, we show the detailed derivations and implementations of the autocorrelation
functions from the PC modes, obtained from MD simulations, using the Wiener—Khintchine
theorem. For the ki mode and a trajectory containing M snapshots, we can express the trajectory
as a discrete function of time s as u, (s) = {uyg, Ugq, - Urp—13- Our goal here is to obtain the
autocorrelation for the ‘particle motion’ (the projections of the MD snapshots) at the n' time point.
In statistical mechanics, it is, by definition, the ensemble average of the correlation of particle
positions at a time shift t = nAt, where At is the time step. For long-enough equilibrium
simulation, the ensemble average can be replaced by the time average under the ergodic hypothesis
such that

Cr,(t) =< u(Su(t +s) >
= < Ui (s)u, (nAt + s) >
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where s; is the time point when we start to calculate the time-correlation between the ux at si and
the uk after n time-steps; n goes from 0 to (M — 1). The summation runs from 1 to (M — n) time
point since we are only interested in a n-time-step shift. The computation time of such a calculation
grows with O(M?) for all the possible t to be obtained. Long computation time is inevitable
especially for a long trajectory, repeated for many modes (3N — 6, where N is the degrees of
freedom being analyzed). For our purpose here as well lessening the computational burden, we
want to obtain the time-correlation function by first Fourier transforming snapshot projections on
a given mode into their counterparts in the frequency domain, and then inverse transform the power
spectrum back to obtain the C, (t). This mathematical treatment is known as Wiener—Khintchine
theorem [1] in statistical mechanics, which proves that the autocorrelation function is equal to the
inverse Fourier transformation of the power spectrum of the trajectories such that
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where power spectrum S, (w) is defined as the magnitude of the Fourier transformation of
snapshot projections on the k'™ PC mode iy (w) = {tiro, U1, - Uizm—1}, Such that S,(w) =
{rol?, 11112, .. [uiam—11%}. There are 2M components in u, (s) instead of M components after
we pad M zeros after the original M ux projections such that wu,(s)=
{Uko» Wier, - Ukp—1, 0%, 02, ... 0™}, This is to make sure that we obtain M positive frequency values.

In addition, one can notice that in the last line of eq S3, termed as brute force method herein, for
the n" value of correlation function, the summation goes from 1 to (M — n), leading to less addends
in the summation as n increases. Therefore, we need to pad enough zeros at the end of the time
series as the input of DFT in order to make sure the Fourier transformation reproduces correct
results. In our case, we pad M zeros in the end of the sequence so that after the inverse
transformation we get back a sequence of length 2M. For our needs, we only take the sequence in
the positive time domain, with M time points. The comparison between Wiener—Khintchine
theorem and the brute force method shows that Wiener—Khintchine theorem can indeed reproduce
correct time correlation functions, evident that our method is applicable in computing
autocorrelation functions with a time complexity of O(M InM).

Intensity-Weighted Period (IWP), Relaxation Time and Characteristic Time
The IWP for a specific PC mode k is computed as
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where Si(wi) is the power for the angular frequency, wi.

While, the relaxation of C(t) is modeled as an exponential function

Cr(t) = Aexp (— TL)

r
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The values of Ck(t) from unity (when t = 0) to the first instance that the function reaches zero (<10
%) were used to fit the exponential and obtain zr.

The characteristic time is defined as

XL C(t)At
fe = Ci(0)
(S7)

where At = 0.1 ps is the time interval between two consecutive snapshots.

Fluctuation Profile Matching (FPM)
FPM takes 2 profiles of the same dynamics variable and assesses their degree of agreement via
Pearson’s correlation coefficient [2], which ranges from -1 to 1.

Theoretical Covariance Matrix from MD with Removed PC Modes
The eigenvectors and eigenvalues are obtained as per eq S1 with the first k-1 modes (lower PC
modes have larger variances or eigenvalues) removed such that

3N-6
< ARART >yp = Z AV, V,T
a=k

(S8)

where V is the eigenvector with its corresponding eigenvalue, Aa, taken from the diagonal of A in
eq S1 for the a’th PC mode.

RMSF and ADP Profiles for Ubiquitin from X-ray Structure, NMR Structures and MD
The RMSFx profile was calculated by treating the ensemble of 32 NMR-determined conformers
(PDB ID: 1G6J) of ubiquitin (Ca atoms only) as snapshots and obtaining the <ARAR >exp 1663
matrix by eq S1. Then the RMSF of each residue is the square-root of the sum of the x-, y- and z-
dimension variances for the respective residues taken from the diagonal of <ARAR>eyp 1661. The
RMSFwpk profile is computed using the same method but with their respective <ARAR™>upk
matrix in eq S8.



To obtain ADPeyp, the Ca atoms of the ubiquitin X-ray structure PDB ID: 2GBJ (chain B) is
superimposed onto the mean structure of MD snapshots. The rotation matrix R’3x3 used to remove
rotational differences between the 2 structures is obtained. Then, the ADP matrix, U’s«3, for each
residue is rotated to obtain the superimposed ADP matrices (R’U’R’T) [3]. From the ADP matrix,
the ADP dynamical variable of each residue consisting of 3 variance components and 3 unique
covariance components (the xy- and yx- components are the same and so are xz- and zx-
components, etc.) are extracted to form the 6N-dimensional ADPexp profile.

While, the ADP matrix from MD for each Ca atom is the atom’s x-, y- and z-dimension covariance
matrix extracted from the full <ARART>nmp « matrix. The component of this matrix was extracted
exactly as above to form the ADPwmp profile.

Order Parameter Profiles derived from NMR-determined structural ensemble and MD
snapshots

S? describes the order of the backbone -NH bond vector rij = (Xij, Vij, zij) pointing from atom i to j
(herein, i is N, and j is H) which can be approximated as [4-6]

3 1
Sk = §(< xf S2H< yh >P4< 2l >4 2 < xyjyy > 2 < xgjziy > 2 < iz >?) -3
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Here, the length of rjj is normalized to unity. The angular brackets denote averages taken over the
M snapshots; herein M = 6,000,000 or 1,200,000 are for the 600 ns and 120 ns trajectories,
respectively.

To obtain the MD-derived S?wp profile for all the PC modes > k' mode, the protein structure in
each snapshot is rebuilt using all the PC modes > k™ mode which is then used to obtain the -NH
bond vectors for calculating S%wp x,ij with eq S9.

The method used to rebuild the structures as a function of constituent modes is as follows, for
ubiquitin’s structure in snapshot m, the coordinates of its atoms (Rm) can be expressed as

3N-6
R, =<R>+ Z((Rm—<R>)-Va)Va

a=1

(S10)

Then, the atom coordinates of snapshot m rebuilt using all the PC modes > k™ mode can be obtained
by the following equation

3N-6

Rox= <R>+ (Rp—<R>)-V,)V,

a=k

(S11)



where <R> represents the mean coordinate of the structure over M snapshots, and V, is the a PC
eigenvector.

Now, for each snapshot Rmx, we compute the normalized NH bond vector rij for every residue
(except for prolines). The averages of xi?, ii?, zii?, Xijyij, XiiZij and yijzij over the whole trajectory
were calculated and used to obtain S2wp kij.

The experimental order parameters, S2%xp, for ubiquitin were taken from Tjandra et al [7].

Derivation of General Elastic Network Model (ENM) — the relation between covariance and
Hessian

In the equilibrium state, the protein system is harmonically approximated and assumed to have the
Hamiltonian

1 1
Hy = EpTM—lp + EARTHAR
(S12)

Where p is the 3Nx1 momentum vector in the Cartesian coordinate system, and M is the inverse
of a 3Nx3N diagonal mass matrix comprising elements of triplicate mass of every node [8-10].
The superscript T denotes matrix transposition. AR is a 3Nx1 displacement vector and H is the
symmetric Hessian matrix, or, the force constant tensor of the system, and have the meaning of
coupling force constants in each pairwise connected degrees of freedom.

Here we note that since H is diagonalizable, for the ease of the following derivations of the
ensemble average of positional covariance, we transform H in normal-mode space, such that

ARTHAR = AR (UDUT)AR
(UTAR)"D(UTAR)
=q'Dq

(S13)
Where D is the diagonal eigenvalue matrix, U is the unitary eigenvector matrix and q is the
displacement vector in normal-mode space with the relationship q = UTAR.
Since unitary transformation conserves length so that we can change the integration to normal-
mode space, which is readily solvable.

Now, from eqgs S12 and S13, we write Ho in the expanded form as

1 1 e p? 1w
— _nTm-1 ZaT — _ k. = a2
Hy=5p'M™'p + -q'Dq 2k_lmk+2k§_11qu
(S14)

In the above expression, k and &’ represent the index through all 3N degrees of freedom, and my is
the mass elements in M with N triplicates.



In canonical ensemble we write down the partition function with phase space formulation and
solve it by expanding all the terms
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where B=1/ksT; kg is the Boltzmann constant and T is the absolute temperature.
In the equation above we use the property that for a symmetric matrix the product of its eigenvalues
is the determinant of itself.

3N

(S15)

To calculate the positional covariance, we note one derivative
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Now
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For each element in the covariance matrix
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Where Cix in the above derivation is the ik-element of the cofactor matrix of the Hessian. Here we
use Laplace formula to expand the Hessian determinant and using the properties that (1) the
adjugate matrix is the transpose of cofactor matrix, (2) inverse of any nonsingular matrix A is

A"l = ﬁade and (3) the inverse of any symmetric matrix, in our case Hessian, is still
symmetric.

Finally, in matrix form we write

TN —
(ARART) BH



(S19)
which is the expected result by analogy to one-dimensional harmonic oscillator system.

This result holds true for all types of ENMs as long as the system is harmonically approximated.
For ENMs that have translational and/or rotational invariance [10], which makes the rank of H
less than its dimension, H is solved by eigenvalue decomposition followed by removing the terms
containing zero eigenvalues.

The Anisotropic Network Model (ANM)
The Anisotropic Network Model (ANM) is a type of ENM with the following potential energy
function

N
|4 2 1
Uanm = Z E(Lij —1%)°0(r.— 1Y) = EARTHAR
ij=1
(S20)

where the index i and j represents the nodes (Ca atoms) that runs from 1 to N. The y represents the
universal spring constant of the system. Ljj is the current distance between the i"" and j" nodes
while Lii® is the equilibrium distance between i and j. When Li is < rc, the cut-off distance, then
these two nodes are treated as connected. This is expressed as a Heaviside-step function 6 in eq
S20.

All the elements of the Hessian matrix H can be calculated as the second derivative of the potential
energy function. Details of this can be found in the supplementary information of our previous
work [10]. The eigenvector (Vanwm) and eigenvalue (Aanm) of each ANM mode is calculated from
the eigen-decomposition of H such that

3N
kT
< ARART >,y = %Z AV, VT
a=6

(S21)

ANM analysis can be performed on the DynOmics Portal 1.0 [11]:
http://dyn.life.nthu.edu.tw/oENMY/.

Theoretical Covariance Matrix, RMSF and ADP from ANM With Removed Modes
The ANM derived covariance matrix for all ANM modes > | (lower ANM modes have lower
frequencies or smaller eigenvalues) can be calculated as follows

kyT
< ARART >,yp ) = —— Z A1V, VT

(S22)



where Va and A, are the eigenvector and eigenvalue of the a’th ANM mode.

The RMSFanm, and ADPanwm,i profiles were computed from the <ARART>anm; matrix with the
same methods used for MD-derived profiles of RMSF and ADP.

ANM Mode Time Scale Assignment Through ANM-PCA Mode Mapping

Every ANM mode | was mapped to a PC mode k* from MD by comparing the RMSFanm, with
the RMSFwvpk profiles for different k’s using FPM to identify the k = k* with the highest
correlation. Every ANM mode | was then assigned the IWP (zwk+) of the mapped PC mode k*.

The ANM-PCA mode mapping might result in a PC mode getting mapped to multiple ANM
modes. The ANM mode with the highest correlation with the PC mode was kept while the rest
were removed. This filtered set of ANM-PCA mode mapping was used to fit the power laws.

Fitting the Time Power Laws

The relationship between an ANM mode’s eigenvalue (Aanm) and mapped time scale (tanm) was
modeled as a power law in the form of tanw = ¢ x Aanv®, with the constants ¢ and d to be found
through the fitting procedure described below.

The natural log of the power law, In (tanm) = In (c) + d In (Aanm), was used to get a linear function
of In (tanm) with respect to In (Aanm). Least squares fitting was then used to obtain the parameters
candd.

Fitting the Variance Power Law

Given the mapping between ANM modes and PCA modes, the Aanm and Apca (PC mode’s
eigenvalue/variance) were used to fit a variance power law such that Apca = a x Aanm®, Where a
and b are constants. The constants were found by following the same procedure used to fit the time
power laws.

Identifying the Functional Modes Corresponding to Ribosomal Body Rotation (Ratcheting)
and Head Swiveling Motions

The ribosomal ratcheting motion is the relative body rotation between the 30S and 50S subunits
of the ribosome. The axis of rotation, rg, is assumed to be the vector connecting the COMs of the
2 subunits as observed in the non-rotated x-ray crystallographically resolved conformation (PDB
ID: 4V6F). While for the head swiveling motion’s axis of rotation, ry, it is the vector between the
COM s of the 30S body and 30S head. Where the 30S head is defined as the residues 921-1396 of
the 16S rRNA complexed with the ribosomal proteins S3, S7, S9, S10, S13, S14, S19 and Thx.
While, the 30S body is defined as residues 5-920 and 1399-1543 of the 16S rRNA complexed with
ribosomal proteins S2, S4, S5, S6, S8, S11, S12, S15, S16, S17, S18 and S20.



ANM analysis was performed on the non-rotated x-ray solved conformation. The k™ ANM
eigenvector (Vi) was used to deform the non-rotated conformation by

Ry =Ry x kT /yVy

(S23)

where Ro is a 3N vector containing the coordinates of the N atoms in the non-rotated conformation
and Ry is the conformation deformed from Ro along the k™ ANM mode by setting k5T /y to be
unity. For the purpose of obtaining axis of rotation, the results do not change as long as kgT/y is
set to be a small value.

The ratcheting motion is relative to the 50s subunit and therefore the deformed conformation was
first superimposed at the 50S subunit. To capture the head swiveling motion, we superimposed the
deformed conformation at the 50S subunit and 30S’ body part to avoid capturing the ratcheting
motion and examined the rotation of 30S head.

Considering the transition from non-rotated (Ro) to deformed conformation (Rk) takes place at a
time interval At (in seconds), the angular momentum vector (L) for the k™ mode is the cross
product between the mass-weighted position of atoms and atom velocity, such that

L, = Z mRo,; X Vi i
i
(S24)
where Ry is the i atom’s position vector in the non-rotated conformation, m; is the atom mass of

i and the velocity vector vii = (R« — Ro,i)/At where Ry is the position vector of atom i in the
conformation deformed along the k™ mode.

L is related to the angular velocity vector (o) by

Lk = I(l)k
w;, = I171L,

w At = I71L At = l‘lzmiRO,i X (Rii - Rg;)
i
(S25)

The direction of o« is the axis of rotation for mode k while |«| is the angular velocity in the unit
of radians/second and therefore |@kAt gives us the angle of rotation in radians (the length of At
does not change the result).

The deviation angle 8 between rgor 1 and rotation axis @k from mode k were computed for the
slowest 50 ANM modes, where cos 8 = (rg oy g - )/ (lIrg or mllll®@k ). The mode with the
smallest angle deviating from rg (or ri) was chosen as the functional mode (k) for the ratcheting
(or for swiveling) motion.
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Predicting the Conformation of the Ribosome After the Ratcheting and Head Swiveling

Motions
After identifying the ANM mode (k") that corresponds to the body rotation/head swiveling motion,
the conformation of the ribosome could be obtained by

ka =Ro* /O_kfzka

where variance (a,ff) of mode k' can be predicted by the variance power law cif =
46.0538 A7 °°%° with 4,, the eigenvalue of mode k'

(S26)

Identifying the Functional Modes and Conformations Corresponding to the L1 Stalk Closing
Motion

To identify the L1 stalk’s functional mode and conformation, the non-rotated ribosome (PDB ID:
4V6F) was first deformed along all 50 modes using the variance power law as in eq S26. The
deformed conformations were then superimposed at the 50S subunit as described above. Finally,
we identify the mode with the shortest distance between the COM of the deformed L1 stalk and
the E-site in the non-rotated ribosome. The L1 stalk is defined as the helices 76-78 (residues 2093-
2196) of the 23S rRNA complexed with L1 protein and the COM of E-site is defined by the COM
of E-site tRNA as observed in the non-rotated ribosome (PDB ID: 4V6F).
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