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S1 Appendix 

 

Supporting Methods 

 

Principal component analysis (PCA) of the covariance matrix computed from MD 

trajectories 

Proteins in the snapshots were iteratively superimposed onto their mean structure, <R>, and the 

covariance matrix, <∆R∆RT>, is constructed using a deviation matrix Q and decomposed into its 

corresponding eigenvalues and eigenvectors such that: 

 

< ∆𝐑∆𝐑T > = (𝑀 − 1)−1𝐐𝐐𝑇 = 𝐕𝚲𝐕𝑻                                 
(S1) 

 

∆R is the 3N-dimensional deviation vector, and Q is the 3N  M matrix, where N and M are, 

respectively, the number of protein atoms in the analysis and the number of snapshots. Each 

column in Q represents the deviation of a given snapshot from the mean structure, while each 

element in that column is the deviation of a given atom in the x-, y- or z-dimension. V3N3N is the 

eigenvector matrix containing 3N eigenvectors (or principal components, PCs), each of which is 

3N-dimensional. 𝚲 is the 3N  3N diagonal matrix of rank-ordered eigenvalues (from large to 

small). 

 

The snapshots of a trajectory are then projected onto the principal components to form a projection 

matrix U3NM as 

 

𝐔 = 𝐕𝑻𝐐  

(S2) 

 

where the row k in U, uk = [uk,0, uk,1, …, uk,M-1], contains the projections of M snapshots onto a 

given PC eigenvector Vk for the k’th PC mode. Each snapshot of the protein structure is a scalar 

value (PC mode coordinate) on the mode k. 

 

 

Wiener–Khintchine theorem (WKT) 

In this section, we show the detailed derivations and implementations of the autocorrelation 

functions from the PC modes, obtained from MD simulations, using the Wiener–Khintchine 

theorem. For the kth mode and a trajectory containing M snapshots, we can express the trajectory 

as a discrete function of time s as 𝑢𝑘(𝑠) = {𝑢𝑘0, 𝑢𝑘1, … 𝑢𝑘𝑀−1}. Our goal here is to obtain the 

autocorrelation for the ‘particle motion’ (the projections of the MD snapshots) at the nth time point. 

In statistical mechanics, it is, by definition, the ensemble average of the correlation of particle 

positions at a time shift 𝑡 ≡ 𝑛∆𝑡 , where ∆𝑡  is the time step. For long-enough equilibrium 

simulation, the ensemble average can be replaced by the time average under the ergodic hypothesis 

such that 

 

𝐶𝑘(𝑡) ≡ < 𝑢𝑘(𝑠)𝑢𝑘(𝑡 + 𝑠) >  
= < 𝑢𝑘(𝑠)𝑢𝑘(𝑛∆𝑡 + 𝑠) > 
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≈
1

𝑀 − 𝑛
∑ 𝑢𝑘(𝑠𝑖)𝑢𝑘(𝑠𝑖 + 𝑛∆𝑡)

𝑀−𝑛

𝑖=1

 

(S3) 

 

where si is the time point when we start to calculate the time-correlation between the uk at si and 

the uk after n time-steps; n goes from 0 to (M – 1). The summation runs from 1 to (M – n) time 

point since we are only interested in a n-time-step shift. The computation time of such a calculation 

grows with O(M2) for all the possible t to be obtained. Long computation time is inevitable 

especially for a long trajectory, repeated for many modes (3N – 6, where N is the degrees of 

freedom being analyzed). For our purpose here as well lessening the computational burden, we 

want to obtain the time-correlation function by first Fourier transforming snapshot projections on 

a given mode into their counterparts in the frequency domain, and then inverse transform the power 

spectrum back to obtain the 𝐶𝑘(𝑡). This mathematical treatment is known as Wiener–Khintchine 

theorem [1] in statistical mechanics, which proves that the autocorrelation function is equal to the 

inverse Fourier transformation of the power spectrum of the trajectories such that 

 

𝐶𝑘(𝑡) =  
1

2𝑀
∑ 𝑆𝑘(𝑓)

2𝑀−1

𝑓=0

𝑒
2𝜋𝑖𝑓𝑡

2𝑀  

(S4) 

 

where power spectrum 𝑆𝑘(𝜔)  is defined as the magnitude of the Fourier transformation of 

snapshot projections on the kth PC mode 𝑢𝑘̃(𝜔) = {𝑢𝑘0̃, 𝑢𝑘1,̃ … 𝑢𝑘2𝑀−1̃ } , such that 𝑆𝑘(𝜔) =
 {|𝑢𝑘0̃|2, |𝑢𝑘1̃|2, … |𝑢𝑘2𝑀−1̃ |2}. There are 2M components in 𝑢𝑘(𝑠) instead of M components after 

we pad M zeros after the original M uk projections such that 𝑢𝑘(𝑠) =
{𝑢𝑘0, 𝑢𝑘1, … 𝑢𝑘𝑀−1, 01, 02, … 0𝑀}. This is to make sure that we obtain M positive frequency values. 

 

In addition, one can notice that in the last line of eq S3, termed as brute force method herein, for 

the nth value of correlation function, the summation goes from 1 to (M – n), leading to less addends 

in the summation as n increases. Therefore, we need to pad enough zeros at the end of the time 

series as the input of DFT in order to make sure the Fourier transformation reproduces correct 

results. In our case, we pad M zeros in the end of the sequence so that after the inverse 

transformation we get back a sequence of length 2M. For our needs, we only take the sequence in 

the positive time domain, with M time points. The comparison between Wiener–Khintchine 

theorem and the brute force method shows that Wiener–Khintchine theorem can indeed reproduce 

correct time correlation functions, evident that our method is applicable in computing 

autocorrelation functions with a time complexity of O(M lnM). 

 

 

Intensity-Weighted Period (IWP), Relaxation Time and Characteristic Time 

The IWP for a specific PC mode k is computed as 

 

𝜏𝑤,𝑘 =   
2𝜋 ∑ 𝑆𝑘(𝜔𝑖)𝜔𝑖

−1𝑀
𝑖=1

∑ 𝑆𝑘(𝜔𝑗)𝑀
𝑗=1

 

(S5) 
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where Sk(ωi) is the power for the angular frequency, ωi. 

 

While, the relaxation of Ck(t) is modeled as an exponential function 

 

𝐶𝑘(𝑡) = 𝐴 exp (−
𝑡

𝜏𝑟
)  

(S6) 

 

The values of Ck(t) from unity (when t = 0) to the first instance that the function reaches zero (<10-

5) were used to fit the exponential and obtain τr. 

 

The characteristic time is defined as 

 

𝜏𝑐 =
∑ 𝐶𝑘(𝑡𝑖)Δ𝑡𝑀

𝑖=1

𝐶𝑘(0)
 

(S7) 

 

where Δt = 0.1 ps is the time interval between two consecutive snapshots. 

 

Fluctuation Profile Matching (FPM) 

FPM takes 2 profiles of the same dynamics variable and assesses their degree of agreement via 

Pearson’s correlation coefficient [2], which ranges from -1 to 1. 

 

 

Theoretical Covariance Matrix from MD with Removed PC Modes 

The eigenvectors and eigenvalues are obtained as per eq S1 with the first k-1 modes (lower PC 

modes have larger variances or eigenvalues) removed such that 

 

< ∆𝐑∆𝐑𝑻 >𝑀𝐷,𝑘 = ∑ 𝜆𝑎𝐕𝑎𝐕𝑎
𝑻

3𝑁−6

𝑎=𝑘

 

(S8) 

 

where Va is the eigenvector with its corresponding eigenvalue, a, taken from the diagonal of  in 

eq S1 for the a’th PC mode. 

 

 

RMSF and ADP Profiles for Ubiquitin from X-ray Structure, NMR Structures and MD 

The RMSFexp profile was calculated by treating the ensemble of 32 NMR-determined conformers 

(PDB ID: 1G6J) of ubiquitin (Cα atoms only) as snapshots and obtaining the <∆R∆RT>exp,1G6J 

matrix by eq S1. Then the RMSF of each residue is the square-root of the sum of the x-, y- and z-

dimension variances for the respective residues taken from the diagonal of <∆R∆RT>exp,1G6J. The 

RMSFMD,k profile is computed using the same method but with their respective <∆R∆RT>MD,k 

matrix in eq S8. 
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To obtain ADPexp, the Cα atoms of the ubiquitin X-ray structure PDB ID: 2GBJ (chain B) is 

superimposed onto the mean structure of MD snapshots. The rotation matrix R’33 used to remove 

rotational differences between the 2 structures is obtained. Then, the ADP matrix, U’33, for each 

residue is rotated to obtain the superimposed ADP matrices (R’U’R’T) [3]. From the ADP matrix, 

the ADP dynamical variable of each residue consisting of 3 variance components and 3 unique 

covariance components (the xy- and yx- components are the same and so are xz- and zx- 

components, etc.) are extracted to form the 6N-dimensional ADPexp profile. 

 

While, the ADP matrix from MD for each Cα atom is the atom’s x-, y- and z-dimension covariance 

matrix extracted from the full <∆R∆RT>MD,k matrix. The component of this matrix was extracted 

exactly as above to form the ADPMD,k profile. 

 

 

Order Parameter Profiles derived from NMR-determined structural ensemble and MD 

snapshots 

S2 describes the order of the backbone -NH bond vector rij = (xij, yij, zij) pointing from atom i to j 

(herein, i is N, and j is H) which can be approximated as [4–6] 

 

𝑆𝑖𝑗
2 =

3

2
(< 𝑥𝑖𝑗

2 >2+< 𝑦𝑖𝑗
2 >2+< 𝑧𝑖𝑗

2 >2+ 2 < 𝑥𝑖𝑗𝑦𝑖𝑗 >2+ 2 < 𝑥𝑖𝑗𝑧𝑖𝑗 >2+ 2 < 𝑦𝑖𝑗𝑧𝑖𝑗 >2) −
1

2
 

(S9) 

 

Here, the length of rij is normalized to unity. The angular brackets denote averages taken over the 

M snapshots; herein M = 6,000,000 or 1,200,000 are for the 600 ns and 120 ns trajectories, 

respectively. 

 

To obtain the MD-derived S2
MD,k profile for all the PC modes ≥ kth mode, the protein structure in 

each snapshot is rebuilt using all the PC modes ≥ kth mode which is then used to obtain the -NH 

bond vectors for calculating S2
MD,k,ij with eq S9. 

 

The method used to rebuild the structures as a function of constituent modes is as follows, for 

ubiquitin’s structure in snapshot m, the coordinates of its atoms (Rm) can be expressed as 

 

 

𝐑𝑚 = < 𝐑 > + ∑ ((𝐑𝑚− < 𝐑 >) ∙ 𝐕𝑎)𝐕𝑎

3𝑁−6

𝑎=1

 

(S10) 

 

Then, the atom coordinates of snapshot m rebuilt using all the PC modes ≥ kth mode can be obtained 

by the following equation 

 

𝐑𝑚,𝑘 =  < 𝐑 > + ∑ ((𝐑𝑚− < 𝐑 >) ∙ 𝐕𝑎)𝐕𝑎

3𝑁−6

𝑎=𝑘

 

(S11) 
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where <R> represents the mean coordinate of the structure over M snapshots, and Va is the ath PC 

eigenvector. 

 

Now, for each snapshot Rm,k, we compute the normalized NH bond vector rij for every residue 

(except for prolines). The averages of xij
2, yij

2, zij
2, xijyij, xijzij and yijzij over the whole trajectory 

were calculated and used to obtain S2
MD,k,ij. 

 

The experimental order parameters, S2
exp, for ubiquitin were taken from Tjandra et al [7]. 

 

 

Derivation of General Elastic Network Model (ENM) – the relation between covariance and 

Hessian 

In the equilibrium state, the protein system is harmonically approximated and assumed to have the 

Hamiltonian 

 

𝐻0 =  
1

2
𝐩𝑇𝐌−1𝐩 + 

1

2
∆𝐑𝑇𝐇∆𝐑  

(S12) 

 

Where p is the 3N1 momentum vector in the Cartesian coordinate system, and M-1 is the inverse 

of a 3N3N diagonal mass matrix comprising elements of triplicate mass of every node [8–10]. 

The superscript T denotes matrix transposition. ΔR is a 3N1 displacement vector and H is the 

symmetric Hessian matrix, or, the force constant tensor of the system, and have the meaning of 

coupling force constants in each pairwise connected degrees of freedom. 

 

Here we note that since H is diagonalizable, for the ease of the following derivations of the 

ensemble average of positional covariance, we transform H in normal-mode space, such that 

 

∆𝐑𝑇𝐇∆𝐑 =  𝚫𝐑𝑇(𝐔𝐃𝐔𝑇)𝚫𝐑 
=  (𝐔𝑇𝚫𝐑)𝑇𝐃(𝐔𝑇𝚫𝐑) 
= 𝐪𝑇𝐃𝐪  

(S13) 

Where D is the diagonal eigenvalue matrix, U is the unitary eigenvector matrix and q is the 

displacement vector in normal-mode space with the relationship 𝐪 =  𝐔𝑇𝚫𝐑. 

Since unitary transformation conserves length so that we can change the integration to normal-

mode space, which is readily solvable. 

 

Now, from eqs S12 and S13, we write H0 in the expanded form as 

 

𝐻0 =
1

2
𝐩𝑇𝐌−1𝐩 +  

1

2
𝐪𝑇𝐃𝐪 =  

1

2
∑

𝑝𝑘
2

𝑚𝑘

3𝑁

𝑘=1

 +  
1

2
∑ 𝜆𝑘′𝑞𝑘′

2

3𝑁

𝑘′=1

 

(S14) 

 

In the above expression, k and k’ represent the index through all 3N degrees of freedom, and mk is 

the mass elements in M with N triplicates. 
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In canonical ensemble we write down the partition function with phase space formulation and 

solve it by expanding all the terms 

 

𝑍0 =  ∬ 𝑒−𝛽(
1
2

𝐩𝑇𝐌−1𝐩 + 
1
2

𝐪𝑇𝐃𝐪) 𝑑3𝑁𝐩 𝑑3𝑁𝐪 

=  ∫ 𝑒−
𝛽
2

𝐩𝑇𝐌−1𝐩  𝑑3𝑁𝐩 ∫ 𝑒−
𝛽
2

𝐪𝑇𝐃𝐪 𝑑3𝑁𝐪 

=  ∫ … ∫ 𝑒
−

𝛽
2

∑
𝑝𝑘

2

𝑚𝑘

3𝑁
𝑘=1

∞

−∞

𝑑𝑝1𝑑𝑝2 … 𝑑𝑝3𝑁

∞

−∞

∫ … ∫ 𝑒−
𝛽
2

∑ 𝜆
𝑘′𝑞

𝑘′
23𝑁

𝑘′=1

∞

−∞

𝑑𝑞1𝑑𝑞2 … 𝑑𝑞3𝑁

∞

−∞

 

=  ∏ [(∫ 𝑒
−

𝛽𝑝𝑛
2

2𝑚𝑛

∞

−∞

𝑑𝑝𝑛)

3

] ∏ [∫ 𝑒−
𝛽𝜆

𝑘′𝑞
𝑘′
2

2

∞

−∞

𝑑𝑞𝑘′]

3𝑁

𝑘′=1

𝑁

𝑛=1

 

=   ∏ [(
2𝜋𝑚𝑛

𝛽
)

3
2

]

𝑁

𝑛=1

√
(2𝜋)3𝑁

𝛽3𝑁(𝜆1𝜆2 … 𝜆3𝑁)
 

= (
2𝜋

𝛽
)

3𝑁
2

(𝑚1𝑚2 … 𝑚𝑁)
3
2√

(2𝜋)3𝑁

𝛽3𝑁det𝐇
 

(S15) 

 

where β=1/kBT; kB is the Boltzmann constant and T is the absolute temperature. 

In the equation above we use the property that for a symmetric matrix the product of its eigenvalues 

is the determinant of itself. 

 

To calculate the positional covariance, we note one derivative 

 

𝜕(∆𝐑𝑇𝐇∆𝐑)

𝜕𝐻𝑖𝑗
=  

𝜕[∑ ∆𝑅𝑘(∑ 𝐻𝑘𝑙∆𝑅𝑙
3𝑁
𝑙=1 )3𝑁

𝑘=1 ]

𝜕𝐻𝑖𝑗
 

=  ∆𝑅𝑖

𝜕(∑ 𝐻𝑖𝑙∆𝑅𝑙
3𝑁
𝑙=1 )

𝜕𝐻𝑖𝑗
 

=  ∆𝑅𝑖

𝜕𝐻𝑖𝑗

𝜕𝐻𝑖𝑗
∆𝑅𝑗 

=  ∆𝑅𝑖∆𝑅𝑗 

=  (∆𝐑∆𝐑𝑇)𝑖𝑗  

(S16) 

 

Now 

 

〈∆𝐑∆𝐑𝑇〉 =  
∬ ∆𝐑∆𝐑𝑇𝑒−𝛽(

1
2

𝐩𝑇𝐌−1𝐩+ 
1
2

∆𝐑𝑇𝐇∆𝐑) 𝑑3𝑁𝐩 𝑑3𝑁∆𝐑

𝑍0
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=  
∬ ∆𝐑∆𝐑𝑇𝑒

−𝛽(
1
2

𝐩𝑇𝐌−1𝐩+ 
1
2

∆𝐑𝑇𝐇∆𝐑)
𝑑3𝑁𝐩 𝑑3𝑁∆𝐑

∬ 𝑒−𝛽(
1
2

𝐩𝑇𝐌−1𝐩+ 
1
2

∆𝐑𝑇𝐇∆𝐑) 𝑑3𝑁𝐩 𝑑3𝑁∆𝐑

 

(S17) 

 

For each element in the covariance matrix 

 

〈∆𝐑∆𝐑𝑇〉𝑖𝑗 =  
∬(∆𝐑∆𝐑𝑇)𝑖𝑗𝑒−𝛽(

1
2

𝐩𝑇𝐌−1𝐩+ 
1
2

∆𝐑𝑇𝐇∆𝐑) 𝑑3𝑁𝐩 𝑑3𝑁∆𝐑

∬ 𝑒−𝛽(
1
2

𝐩𝑇𝐌−1𝐩+ 
1
2

∆𝐑𝑇𝐇∆𝐑) 𝑑3𝑁𝐩 𝑑3𝑁∆𝐑
 

=  −
2

𝛽

𝜕

𝜕𝐻𝑖𝑗
ln 𝑍0 

=  −
2

𝛽

𝜕

𝜕𝐻𝑖𝑗
(

3𝑁

2
ln

2𝜋

𝛽
+

3

2
ln(𝑚1𝑚2 … 𝑚𝑁)

+
3𝑁

2
ln

2𝜋

𝛽
−

1

2
ln det𝐇) 

=  
1

𝛽

1

det𝐇

𝜕det𝐇

𝜕𝐻𝑖𝑗
 

=  
1

𝛽

1

det𝐇

𝜕(∑ 𝐻𝑖𝑘𝐶𝑖𝑘
3𝑁
𝑘=1 )

𝜕𝐻𝑖𝑗
 

=  
1

𝛽

1

det𝐇
∑ 𝛿𝑗𝑘𝐶𝑖𝑘

3𝑁

𝑘=1

 

=  
1

𝛽

1

det𝐇
𝐶𝑖𝑗  

=  
1

𝛽

1

det𝐇
[(adj𝐇)𝑇]𝑖𝑗 

=  
1

𝛽

1

det𝐇
[det𝐇 ∙ (𝐇−1)𝑖𝑗

𝑇 ] 

=  
1

𝛽
(𝐇−1)𝑖𝑗  

(S18) 

 

Where Cik in the above derivation is the ik-element of the cofactor matrix of the Hessian. Here we 

use Laplace formula to expand the Hessian determinant and using the properties that (1) the 

adjugate matrix is the transpose of cofactor matrix, (2) inverse of any nonsingular matrix A is 

𝐀−1 =  
1

det𝐀
adj𝐀  and (3) the inverse of any symmetric matrix, in our case Hessian, is still 

symmetric. 

 

Finally, in matrix form we write 

 

〈∆𝐑∆𝐑𝑇〉 =  
1

𝛽
𝐇−1  
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(S19) 

 

which is the expected result by analogy to one-dimensional harmonic oscillator system.  

 

This result holds true for all types of ENMs as long as the system is harmonically approximated. 

For ENMs that have translational and/or rotational invariance [10], which makes the rank of H 

less than its dimension, H-1 is solved by eigenvalue decomposition followed by removing the terms 

containing zero eigenvalues. 

 

 

The Anisotropic Network Model (ANM) 

The Anisotropic Network Model (ANM) is a type of ENM with the following potential energy 

function 

 

𝑈𝐴𝑁𝑀 =  ∑
𝛾

2
(𝐿𝑖𝑗 − 𝐿𝑖𝑗

0 )
2

𝜃(𝑟𝑐 − 𝐿𝑖𝑗
0 )

𝑁

𝑖.𝑗=1

=  
1

2
∆𝐑𝑇𝐇∆𝐑  

(S20) 

 

where the index i and j represents the nodes (Cα atoms) that runs from 1 to N. The γ represents the 

universal spring constant of the system. Lij is the current distance between the ith and jth nodes 

while Lij
0 is the equilibrium distance between i and j. When Lij

0 is ≤ rc, the cut-off distance, then 

these two nodes are treated as connected. This is expressed as a Heaviside-step function θ in eq 

S20. 

 

All the elements of the Hessian matrix H can be calculated as the second derivative of the potential 

energy function. Details of this can be found in the supplementary information of our previous 

work [10]. The eigenvector (VANM) and eigenvalue (ANM) of each ANM mode is calculated from 

the eigen-decomposition of H such that 

 

< ∆𝐑∆𝐑𝑻 >𝐴𝑁𝑀 =
𝑘𝐵𝑇

𝛾
∑ 𝜆𝑎

−1𝐕𝑎𝐕𝑎
𝑻

3𝑁

𝑎=6

 

(S21) 

 

ANM analysis can be performed on the DynOmics Portal 1.0 [11]: 

http://dyn.life.nthu.edu.tw/oENM/. 

 

 

Theoretical Covariance Matrix, RMSF and ADP from ANM With Removed Modes 

The ANM derived covariance matrix for all ANM modes ≥ l (lower ANM modes have lower 

frequencies or smaller eigenvalues) can be calculated as follows 

 

< ∆𝐑∆𝐑𝑻 >𝐴𝑁𝑀,𝑙 =
𝑘𝐵𝑇

𝛾
∑ 𝜆𝑎

−1𝐕𝑎𝐕𝑎
𝑻

3𝑁

𝑎=𝑙+6

 

(S22) 
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where Va and a are the eigenvector and eigenvalue of the a’th ANM mode. 

 

The RMSFANM,l and ADPANM,l profiles were computed from the <∆R∆RT>ANM,l matrix with the 

same methods used for MD-derived profiles of RMSF and ADP. 

 

 

ANM Mode Time Scale Assignment Through ANM-PCA Mode Mapping 

Every ANM mode l was mapped to a PC mode k* from MD by comparing the RMSFANM,l with 

the RMSFMD,k profiles for different k’s using FPM to identify the k = k* with the highest 

correlation. Every ANM mode l was then assigned the IWP (τw,k*) of the mapped PC mode k*. 

 

The ANM-PCA mode mapping might result in a PC mode getting mapped to multiple ANM 

modes. The ANM mode with the highest correlation with the PC mode was kept while the rest 

were removed. This filtered set of ANM-PCA mode mapping was used to fit the power laws. 

 

 

Fitting the Time Power Laws 

The relationship between an ANM mode’s eigenvalue (ANM) and mapped time scale (tANM) was 

modeled as a power law in the form of tANM = c  ANM
d, with the constants c and d to be found 

through the fitting procedure described below. 

 

The natural log of the power law, ln (tANM) = ln (c) + d ln (ANM), was used to get a linear function 

of ln (tANM) with respect to ln (ANM). Least squares fitting was then used to obtain the parameters 

c and d. 

 

 

Fitting the Variance Power Law 

Given the mapping between ANM modes and PCA modes, the ANM and PCA (PC mode’s 

eigenvalue/variance) were used to fit a variance power law such that PCA = a  ANM
b, where a 

and b are constants. The constants were found by following the same procedure used to fit the time 

power laws. 

 

 

Identifying the Functional Modes Corresponding to Ribosomal Body Rotation (Ratcheting) 

and Head Swiveling Motions 

The ribosomal ratcheting motion is the relative body rotation between the 30S and 50S subunits 

of the ribosome. The axis of rotation, rB, is assumed to be the vector connecting the COMs of the 

2 subunits as observed in the non-rotated x-ray crystallographically resolved conformation (PDB 

ID: 4V6F). While for the head swiveling motion’s axis of rotation, rH, it is the vector between the 

COMs of the 30S body and 30S head. Where the 30S head is defined as the residues 921-1396 of 

the 16S rRNA complexed with the ribosomal proteins S3, S7, S9, S10, S13, S14, S19 and Thx. 

While, the 30S body is defined as residues 5-920 and 1399-1543 of the 16S rRNA complexed with 

ribosomal proteins S2, S4, S5, S6, S8, S11, S12, S15, S16, S17, S18 and S20. 
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ANM analysis was performed on the non-rotated x-ray solved conformation. The kth ANM 

eigenvector (Vk) was used to deform the non-rotated conformation by 

 

𝐑𝑘 = 𝐑0 ± √𝑘𝐵𝑇/𝛾𝐕𝑘  

(S23) 

 

where R0 is a 3N vector containing the coordinates of the N atoms in the non-rotated conformation 

and Rk is the conformation deformed from R0 along the kth ANM mode by setting 𝑘𝐵𝑇/𝛾 to be 

unity. For the purpose of obtaining axis of rotation, the results do not change as long as 𝑘𝐵𝑇/𝛾 is 

set to be a small value. 

 

The ratcheting motion is relative to the 50s subunit and therefore the deformed conformation was 

first superimposed at the 50S subunit. To capture the head swiveling motion, we superimposed the 

deformed conformation at the 50S subunit and 30S’ body part to avoid capturing the ratcheting 

motion and examined the rotation of 30S head. 

 

Considering the transition from non-rotated (R0) to deformed conformation (Rk) takes place at a 

time interval t (in seconds), the angular momentum vector (Lk) for the kth mode is the cross 

product between the mass-weighted position of atoms and atom velocity, such that 

 

𝐋𝑘 = ∑ 𝑚𝑖𝐑0,𝑖 × 𝐯𝑘,𝑖

𝑖

 

(S24) 

 

where R0,i is the ith atom’s position vector in the non-rotated conformation, mi is the atom mass of 

i and the velocity vector vk,i = (Rk,i – R0,i)/t where Rk,i is the position vector of atom i in the 

conformation deformed along the kth mode. 

 

Lk is related to the angular velocity vector (ωk) by 

 

𝐋𝑘 = 𝐈𝛚𝑘 
𝛚𝑘 = 𝐈−𝟏𝐋𝑘 

𝛚𝑘𝑡 = 𝐈−𝟏𝐋𝑘𝑡 =  𝐈−𝟏 ∑ 𝑚𝑖𝐑0,𝑖 × (𝐑𝑘,𝑖 – 𝐑0,𝑖)

𝑖

 

(S25) 

 

The direction of ωk is the axis of rotation for mode k while |ωk| is the angular velocity in the unit 

of radians/second and therefore |ωk|t gives us the angle of rotation in radians (the length of t 

does not change the result). 

 

The deviation angle   between rB or H and rotation axis ωk from mode k were computed for the 

slowest 50 ANM modes, where cos 𝜃 = (𝐫𝐵 𝑜𝑟 𝐻 ∙ 𝛚𝑘) (‖𝐫𝐵 𝑜𝑟 𝐻‖‖𝛚𝑘‖)⁄ . The mode with the 

smallest angle deviating from rB (or rH) was chosen as the functional mode (kf) for the ratcheting 

(or for swiveling) motion. 



11 

 

 

 

Predicting the Conformation of the Ribosome After the Ratcheting and Head Swiveling 

Motions 

After identifying the ANM mode (kf) that corresponds to the body rotation/head swiveling motion, 

the conformation of the ribosome could be obtained by 

 

𝐑𝑘𝑓 = 𝐑0 ± √𝜎𝑘𝑓
2𝐕𝑘𝑓  

(S26) 

 

where variance ( 𝜎
𝑘𝑓
2 ) of mode kf can be predicted by the variance power law σ

𝑘𝑓
2 =

46.0538 𝑘𝑓
−2.5085

 with 𝑘𝑓, the eigenvalue of mode kf.  

 

 

Identifying the Functional Modes and Conformations Corresponding to the L1 Stalk Closing 

Motion 

To identify the L1 stalk’s functional mode and conformation, the non-rotated ribosome (PDB ID: 

4V6F) was first deformed along all 50 modes using the variance power law as in eq S26. The 

deformed conformations were then superimposed at the 50S subunit as described above. Finally, 

we identify the mode with the shortest distance between the COM of the deformed L1 stalk and 

the E-site in the non-rotated ribosome. The L1 stalk is defined as the helices 76-78 (residues 2093-

2196) of the 23S rRNA complexed with L1 protein and the COM of E-site is defined by the COM 

of E-site tRNA as observed in the non-rotated ribosome (PDB ID: 4V6F). 
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