
Appendices

In these supplementary appendices, we develop and discuss the tools used to define and measure our
game assay. The structure is as follows:

A Description of materials used, the experimental method, and time-lapse microscopy. Discussion of
resistance terminology.

B Basic quantification of experimental images and how growth rates and associated error are measured
within each well. This is the definition of fitness used throughout our text. Explains Figures 1 and 2
from the main text.

C Defines parental proportions (p) and contrasts the evolutionary dynamics of proportions (Supple-
mentary Figure 5) with the ecological dynamics of densities (Supplementary Figure 6). Defines the
fitness functions based on lines of best between fitness and proportion from Figure 3 and presents
the actual lines of best fit as equations 1-8. Explains how the linear fitness functions are converted
into gain functions and games; and how those games are plotted in Figure 4b. Justifies the use of
linear functions in terms of explanatory value and presents the model residuals in Supplementary
Figure 7.

D Presentation of interpretable fitness functions wC
S from section ‘Frequency dependence in fitness

functions’ of the main text in the context of regularization. As a visual check of the regularization,
Supplementary Figure 8 shows what the games would look like if based on the regularized fitness
functions wC

S instead of the unregularized fitness functions ŵC
S shown in Figure 4b.

E Experimental interpretation of replicator dynamics as an alternative to exponential model of Figure 4a.

F Generalization of game assay to non-linear fitness functions. Provides the 3rd order fitness functions
(Supplemental Figure 9) or independent mixed order fitness functions (Supplemental Figure 11)
that would be selected by information criteria (Supplemental Figure 10) if one treats the game
assay not as a definition of games but as a model selection problem for parameter fitting. As a
qualitative check, Supplementary Figure 12 shows the agreement in game space between the higher
order games and our measured matrix games.

A Materials and experimental method

A.1 Cell lines

H3122 cell line was obtained from Dr. E. Haura (Mo�tt Cancer Center). Cell line identity was validated
by the Mo�tt Cancer Center Molecular Genetics core facility using short tandem repeats (STR) analysis.
Primary lung cancer associated fibroblasts were obtained from Dr. S. Antonia lab (Mo�tt Cancer
Center), following the protocols approved by the USF Institutional Review Board. CAFs were isolated
as previously described in Mediavilla-Varela et al. [43] and expanded for 3-10 passages prior to the
experiments. The alectinib resistant derivative cell line was obtained through escalating inhibitor
concentration protocol, as described in Dhawan et al. [13]. Alectinib sensitive parental H3122 cells were
cultured in DMSO for the same length of time, as the alectinib resistant derivate.

Stable GFP and mCherry expressing derivative cell H3122 cell lines were obtained through lentiviral
transduction with pLVX-AcGFP (Clontech) and mCherry (obtained from K. Mitsiades, DFCI) vectors,
respectively. We cultured both H3122 cells and CAFs in RPMI media (Gibco brand from Thermo
Scientific), supplemented with 10% FBS (purchased from Serum Source, Charlotte, NC). Regular tests
for mycoplasma contamination were performed with MycoScope PCR based kit from GenLantis, San
Diego, CA.

A.2 Experimental set-up.

The cells were harvested upon reaching 70% confluence and counted using Countess II automatic cell
counter (Invitrogen). CAFs were counted manually to avoid segmentation artifacts. Mixtures of parental
and resistant H3122 cells were prepared at 8 di↵erent ratios: all-resistant, 9:1 resistant to parental, 4:1,
3:2, 2:3, 1:4, 1:9, and all-parental. For the determination of competitive growth rates, 2,000 H3122 cells
from the 8 mixtures were seeded with or without 500 CAF cells in 50 µL RPMI media per well into 384
well plates (Corning, catalogue #7200655), with di↵erent ratios of di↵erentially labelled parental and
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alectinib resistant variants: with 6 wells used for each resistant:parental ratio in each of the 4 conditions.
20 hours after seeding, Alectinib – purchased from ChemieTek (Indianapolis, IN) – or DMSO vehicle
control, diluted in 20 µL RPMI was added to each well, to achieve final Alectinib concentration of 500
nM/L [14]. Time lapse microscopy measurements were performed every 4 hours in phase-contrast white
light, as well as green and red fluorescent channels using Incucyte Zoom system from Essen Bioscience.

A.3 Reductive vs e↵ective definitions of resistance.

In these experiments, we observed (see Figure 2 and Sections ‘Monotypic vs mixed cultures’ and ‘Cost
of resistance’) that even in the absence of drug, resistant cells tend to have a higher growth rate than
parental cells in the same environment (i.e. proportion of parental cells in the co-culture). A reductionist
could rationalize our observations by saying that we actually selected for two di↵erent qualities in our
resistant line: (i) a general growth advantage, and (ii) resistance to Alectinib.

This is a reasonable hypothesis, but it faces a few challenges. First, both parental and resistant
cells were evolved for the same length of time, with escalating dosages of DMSO for the former and
Alectinib for the latter (see Mediavilla-Varela et al. [43] and above). Thus, (i) cannot be due to just
subculturing, but is somehow linked to drug. Second, there is no growth rate advantage of resistant
cells in monoculture (see Figure 1); the advantage is only revealed when parental and resistant cells are
cultured with a common proportion of parental cells. Finally, to even make the distinction between (i)
and (ii), one has to implicitly assume that resistance has to be neutral or costly by definition. For an
oncologist, however, both (i) and (ii) would constitute clinical resistance if they led to a tumour escaping
therapeutic control. By using a definition of clinical resistance that is broad enough to capture both
aspects, we observe resistance that is neither neutral nor costly in DMSO co-culture.

B Measuring population sizes and fitnesses

B.1 Fluorescent area as units of population size

We measured fluorescent area from time-lapse images via python code using the OpenCV package and
used this as our units of size for populations. See Kaznatcheev [15] for a discussion of fitness and
replicator dynamics under various definition of population size. We cleaned images by renormalizing
them (GFP and mCherry intensities vary over di↵erent orders of magnitude), removed vignetting with
CLAHE, and finally thresholded to identify fluorescent regions. We eliminated salt-and-pepper noise
from the thresholded images with the opening morphological transform. See Figures 2a,b,d,e for examples
of the image analysis. The resultant area is then taken as a measure of population size for the purposes
of computing fitnesses.

B.2 Growth rate as fitness.

We use the exponential growth rate (or Malthusian parameter) as our measure of fitness. In order to
minimise the impact of growth inhibition by confluency, we analyzed the competitive dynamics during
the first 5 days of culture, when the cell population was expanding exponentially. See section E for a
discussion of the impact of measurement length. We learned growth rate along with a confidence interval
from the time-series of population size in each well using the Theil-Sen estimator [44, 45]. Since the
Theil-Sen estimator is a rank-based median method (unlike least-squares, which is a numeric-based mean
method), it is more robust to noise and does not need to choose between a linear or log representation
for computing the error-term (since log transforms do not change rank orders). The robustness to rare
but large magnitude noise is useful for our purposes because such errors do not reflect biological function
or noise but are more likely to be due to errors in image processing, for example in response to sudden
condensation on the well plate. See Figures 2c,f for examples of fitting.

The learned parental growth rate and resistant growth rate of each well are used as the y coordinates
in the monoculture experiments of Figure 1 (along with errors on the growth rate) and as the x and y
coordinates of the main part of Figure 2. Due to too much information content, the errors on the growth
rates are omitted in Figure 2, but they are shown explicitly as error-bars in Figure 3. Note that this
means that each point in Figure 1 and the main part of Figure 2 and each pair of points in Figure 3
(one magenta and one cyan at the same x-position) correspond to one biological replicate, with the error
term coming from the confidence interval on the growth-rate estimate from the 30 time-series points
that we recorded for each biological replicate (see section E on how this relates to the accuracy-precision
trade-o↵). Thus, each of the 6 wells corresponding to a given resistant:parental ratio (in each of the
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4 conditions) has its own independent growth rate with associated error. The wells are not averaged
together: each acts as its own data point (with noise) for later analysis (that propagates the noise).

B.3 Other definitions of fitness.

Of course, in the most general case, it is possible to consider other alternatives to the exponential growth
rate or Malthusian parameter as definitions of fitness. Popular alternatives include logistic growth rate
and more general Gompertz growth rate, but many choices are possible. However, there are experimental,
conceptual, and mathematical reasons for why we focus on the exponential growth model.

Experimentally: if the exponential growth model is a poor choice for our game assay pipeline, this
will show up in an unreasonably large error term on the growth rate, which would then propagate to
inconclusive measurements of the game. This is one of the advantages of being able to estimate error
terms for the growth rate of each individual biological replicate (instead of the more common practice of
relying on variance between replicates). In other words, if the error bars are big on the growth rate,
then this will increase the size of error bars on the final game measurement – potentially to the point
that the game cannot be localized with confidence to a given quadrant of game space. For our particular
experimental system, this is not the case, and the error terms on growth rate are su�ciently small to get
conclusive measurements of the game.

Conceptually: an e↵ective game is defined with respect to a choice of idealized population. It is better
if the fitness measure is natural for that idealized population. In our case, both the intuitive presentation
of games in Figure 4a and operational presentation in section E are purely multiplicative models. And
exponential growth is the generator of multiplicative models.

Mathematically: a central advantage of representing evolutionary dynamics as games is to make
qualitative distinctions between types of games. The qualitative nature of a game depends only on the
rank ordering of its payo↵ matrix entries. Any strictly monotonic transform between fitness value will
not change the rank ordering of payo↵ matrix entries and thus preserve the main qualitative conclusions
of a game theoretic analysis. Thus, in the context of the game assay of our experimental system, little is
to be gained from a more complex definition of fitness.

B.4 Figure 2 as map of analysis flow.

Along with showing all the data, Figure 2 serves as a map to the above analysis pipeline. The subfigures
can be understood in the following order:

[a,b,c,d]: Within each image from the series generated by time-lapse microscopy: identify the fluorescent
regions for GFP and mCherry and calculate their areas to serve as units of population size (GFA
and CFA).

[e,f]: For parental (mCherry) and resistant (GFP) plot the population sizes from each image in the
series on a semilog grid as population vs. time. Find the slope of the two lines to serve as parental
and resistant fitness.

[g]: Use the parental fitness as x value and resistant as y value to plot each well as a data-point
according to the above process, and color the point according to its experimental condition (with
opacity for initial parental proportion; see Section C). For ease of viewing: put a convex hull binding
polygon around each well data-point dependent on their experimental condition.

Given the complexity of Figure 2, it is tempting to ask for a simple summary statistic of the data in
the main figure. But it is not reasonable to ask of the “average” growth rate in Figure 2 because each
point di↵ers not only along the four experimental conditions of the environment, but also along the
micro-environmental conditions of the initial parental proportion (represented by the opacity that is
explained in SA C). Averaging over this information would be akin to assuming that the growth rates are
cell-autonomous. It would be attributing the variance in growth rates to noise instead of the independent
variable or initial parental proportion. As such, the game assay developed in rest of the paper can be
viewed as a method for summarizing Figure 2 when the underlying process is non-cell-autonomous. And
the games derived through Figure 3 and presented in Figure 4b are the summary of the data in the main
part of Figure 2.
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Supplementary Figure 5: Evolutionary dynamics of proportion of parental cells versus time for

competition of parental vs. resistant NSCLC. Each line corresponds to the time dynamics of a separate

well. A line is coloured magenta if proportion of resistant cells increased from start (time step 3 to 8) to end (time

step 24 to 29); cyan if proportion of parental cells increased; black if statistically indistinguishable proportions at

start and end.

C Measuring fitness functions and games

C.1 Proportions.

Since raw population sizes have di↵erent units (GFP Fluorescent Area (GFA) vs mCherry Fluorescent
Area (RFA)), we converted them to common cell-number-units (CNU) by learning the linear transform
that scales GFA and RFA into CNU. We defined proportions based on this common CNU as p =
NP /(NP +NR) where N{P,R} is the CNU size of parental and resistant populations. The transform of
GFA to RFA into CNU is associated with an error that is propagated to measures of p as �p. Thus,
although we used 8 di↵erent ratios of resistant to parental cells with 6 wells per condition seeded at
each of the ratios, we do not average over these 6 wells but associated each with its own proportion
p± �p from the initial image. This helps us control for systemic noise from field of view and our image
processing algorithm. The time dynamics of p can be seen in the insets of Figure 4b for DMSO and
DMSO+CAF or in Supplementary Figure 5 for all conditions.

C.2 Neglecting ecological dynamics.

Throughout this report, we focus on evolutionary dynamics: changes in proportion of strategies.
However, one could also consider the ecological dynamics: changes in densities of strategies. It is not
only proportions that are changing in our experimental system but also the densities. These ecological
dynamics are not the focus of our report, but we present them in Supplementary Figure 6 for completeness.
Here, we also compare the prediction of the model based on our measured games and the exponential
growth interpretation in Figure 4a to the observed data. There is overall agreement between data and
model. But this is based on the traditional two track approach on qualitative agreement. Instead,
we prefer to focus on the single track measurement of evolutionary dynamics described in the rest of
these supplementary materials. Future work can aim to extend our approach to also include ecological
dynamics.

C.3 Lines of best fit as fitness functions.

To measure the fitness functions we plotted fitness of each cell-type in each well vs seeding proportion
(p) of parental cells in Figure 3. The x-axis proportion of parental cells (p) was computed from the
first time-point: see section E for an interpretation of this as a measurement of dp/dt or as a series of
competitive fitness assays. We estimated the line of best-fit and error on parameters for this data using
least-squares weighted by the inverse of the error on each data point (i.e. weightp,w = 1/

p
�2
p + �2

w).
This provides the error estimates on the line’s parameters that we use later. The lines of best fit (with
coe�cients rounded to the thousandths for presentation) from weighted least-squares are:
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Supplementary Figure 6: Dynamics of population sizes of resistant cells versus parental cells. Axis

are fold change in CNU normalized from the seeding proportion of each well, with x-axis for parental and y-axis

for resistant. Foreground: raw data. Each line corresponds to the time dynamics of a separate well. A line is

coloured magenta if proportion of resistant cells increased from start to end; cyan if proportion of parental cells

increased; black if statistically indistinguishable proportions at start and end (using the same conventions as

Figure 5). Background: flow diagram for model from Figure 4a. Each coloured point shows the proportion of

parental-resistant (cyan-magenta) at that point. Arrow going from magenta to cyan indicates parental proportion

increased, if from cyan to magenta then resistant proportion increased.

ŵDMSO

P = 0.025� 0.001(1� p) = 0.025p+ 0.024(1� p) (1)

ŵDMSO

R = 0.027 + 0.013p = 0.04p+ 0.027(1� p) (2)

ŵDMSO + CAF

P = 0.026 + 0.009(1� p) = 0.026p+ 0.035(1� p) (3)

ŵDMSO + CAF

R = 0.03 + 0.001p = 0.031p+ 0.03(1� p) (4)

ŵAlectinib

P = �0.01� 0.002(1� p) = �0.01p� 0.013(1� p) (5)

ŵAlectinib

R = 0.023 + 0.02p = 0.043p+ 0.023(1� p) (6)

ŵAlectinib + CAF

P = 0.005� 0.009(1� p) = 0.005p� 0.004(1� p) (7)

ŵAlectinib + CAF

R = 0.024 + 0.014p = 0.038p+ 0.024(1� p) (8)

C.4 Summarizing fitness functions as games.

For the final column of our presentation of ŵC
S in equations 1-8, we rewrote the fitness functions in a

suggestive form of ŵC
P = Ap + B(1 � p) and ŵC

R = Cp +D(1 � p). This is done to show at a glance
where the matrix entries in Figure 4b come from. This is because the p = 0 and p = 1 intercepts of the
fitness functions serve as the entries of the game matrices. Note that in Figure 4b, we multiplied the
entries by 100 for easier presentation. The game point are calculated from the matrices as x := C �A
and y := B �D, and the error is propagated from the error estimates on fitness function’s parameters.

C.5 Gain functions, game space, and fixed points

A particularly important equation for studying two strategy games is the gain function. This represents
the relative fitness di↵erence between two strategies. Thus, it is a measure of selection strength and a
proxy for the rate of evolution. The parental gain function (i.e. gain function for p in Figure 4a and
equation 23) is given by ĝCP (p) = ŵC

P (p)� ŵC
R(p); and the resistant gain function (i.e. gain function for

q = 1�p) is ĝCR(q) = ŵC
R(1�p)�ŵC

P (1�p) = �ĝCP (1�p). The end-points of this gain function determine
the game coordinates in the game space of Figure 4b with (x, y) := (ĝCR(0), ĝCP (0)) = (�ĝCP (1), ĝCP (0)).
These points can be interpreted as the idealized quantities of relative fitness of a resistant invader
in parental monoculture (ĝCP (0)) and relative fitness of a parental invader in resistant monoculture
(ĝCR(0) = �ĝCP (1)). If these two coordinates have the same sign then the gain function has to cross 0 in
getting from p = 0 to p = 1 and thus the dynamics have a fixed point. If the two coordinates are both
positive (top right quadrant of Figure 4b) then the fixed point is stable, if both are negative (bottom left
quadrant of Figure 4b) then the fixed point is unstable. In our experimental system, only the DMSO +
CAF condition has a fixed point at 0.53± 0.14 (rounded to the nearest percent).
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Supplementary Figure 7: Residuals for the fitness functions. The x-axis is proportion and y-axis is

residuals of the lines of best fit from Figure 3 for parental (Cyan,Top) and resistant (Magenta,Bottom).

C.6 Width and height of fixed regions.

Since we propagate the errors on our measurement from the image all the way to the game, we find it
more helpful to think of an experimental fixed point not as a point but as a fixed region p 2 (0.39, 0.67)
of finite width. This can provide an alternative explanation for the apparent slowness of convergence
to the fixed point in Figure 5. Some of the fixed region’s width is noise in measurement, but some
could be due to true variance between wells: in particular, even if the reductive game is the same, the
spatial structure will be slightly di↵erent in each well and thus there will be a slightly di↵erent e↵ective
game. As such, apparent slowness in Figure 5 might be from di↵erent lines being very close to slightly
di↵erent fixed points that are all within the fixed region’s width. An alternative view to width is in
terms of height: a fixed region corresponds not just to the point where ĝDMSO + CAF

P crosses 0 but to
the region where the gain function crosses 0± 0.0014 (rounded to the nearest thousandth). We call this
the fixed region’s height (and use it in section F). This height is due to propagation of error and can be
interpreted as our measurement not being able to distinguish relative growth rates in (�0.0014, 0.0014)
from zero. In the case of the other three conditions (DMSO, Alectinib, and Alectinib + CAF), in going
from p = 0 to p = 1, the gain function do not pass within their fixed region height of zero, and thus no
fixed regions exist.

C.7 Lines and matrix games.

Although slight deviations from a linear fit – that might not be attributable to noise alone – might
be present in the data (see Supplementary Figure 7), we do not think that they justify considering
higher-order fitness functions (although we discuss higher-order functions in section F for completeness).
This is due to the higher explanatory value of linear models and our hope to influence the well-established
study of matrix games in microscopic systems. Some good EGT work has recently been done on
non-linear games [25, 26, 30], but this is very little compared to the immense literature on matrix games.
More importantly, we think that our focus on matrix games is better viewed not from the perspective of
model selection but rather as an operational definition of e↵ective games. We are not aiming to provide
the best or most predictive account of non-small-cell lung cancer in the petri dish, but rather a method
for measuring (matrix) games. If the error of the measured (matrix) games ends up very high – which
is not the case from the error bars in Figure 4b – then we know that this first order approximation of
interactions is not su�cient and higher orders should be pursued. However, we will not know this unless
we first have a robust method for measuring the lower order terms.

D Regularization and interpretable fitness functions

Regularization is a machine learning technique for reducing over-fitting by biasing towards more succinct
models. It is the use of a priori knowledge on what constitutes a simpler or more likely model to
anchor our inference. A classic example of this is preferring lower-order over higher-order polynomials
for describing data unless there is overwhelming evidence otherwise. Of course, what constitutes
overwhelming evidence depends on the goals of the scientists. If the only goal is prediction then
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Supplementary Figure 8: Mapping of the regularized fitness functions for the four conditions into

game space. The x-axis is the relative fitness of a resistant focal in a parental monotypic culture: C �A. The

y-axis is the relative fitness of a parental focal in a resistant monotypic culture: B �D. Games measured in our

experimental system are specified by the bounding boxes corresponding to the range of their errors. The games

corresponding to the regularized fitness functions in equations 9-16 are given as points. Experimental condition is

represented by shape (DMSO: circle; Alectinib: square) and colour (no CAF: red; + CAF: blue).

cross-validation is a good way to test how heavily inference should be regularized. But if the goal is
explanation then accordance with existing theory is another important factor to consider.

As such, our choice of focusing on linear fitness function in section C and Figure 3 can be seen as a form
of regularization. In particular, we can see our inference procedure as either restricted to the hypothesis
class of linear functions, or as considering the hypothesis class of all polynomials but with prohibitively
high costs for non-zero components (l0 regularization) on orders beyond linear. But we prefer to think
of it in terms of operationalization. By introducing a game assay, we are defining the hidden variable of
(matrix) games in terms of the measurement procedure that we described in sections B and C.

D.1 Interpretable fitness functions.

An uncontroversial case of regularization in our report is the presentation of wC
S in section ‘Frequency

dependence in fitness functions’. There, we restrict beyond linear fitness functions to focus on conceptually
simple ones. In particular, we favor cell-autonomous functions over frequency dependent ones (i.e. l0
regularization on the fitness function coe�cients) and we favor coe�cients that are shared between
di↵erent S and C. This results in the following regularized fitness functions:

wDMSO

P = 0.025 (9)

wDMSO

R = 0.025 + 0.015p (10)

wDMSO + CAF

P = 0.025 + 0.01(1� p) (or 0.03� 0.01(
1
2
� p)) (11)

wDMSO + CAF

R = 0.03 (12)

wAlectinib

P = �0.010 (13)

wAlectinib

R = 0.025 + 0.018p (14)

wAlectinib + CAF

P = 0.005� 0.009(1� p) (or 0.009(
1
2
� p)) (15)

wAlectinib + CAF

R = 0.025 + 0.013p (16)

Note that for both P and R strategies, we used the proportion of the other strategy (1� p, p) as the
parameter that captures the non-cell-autonomous contribution. In equations 11,15, we also consider the
parameter 1

2
� p because of the elegant form it provides.
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We can compare these regularized fitness functions wC
S to the non-regularized ŵC

S in equations 1-8.
As can be seen, all wC

S are close to their respective ŵC
S and are actually within the error estimates

on ŵC
S . We can see the regularization in action with a push towards a constant base fitness of 0.025

shared by wDMSO

{P,R} ,w
DMSO + CAF

P , and w{Aletinib,Alectinib + CAF}
R . The absence of frequency dependent

perturbation terms for w{DMSO,Alectinib}
P and wDMSO + CAF

R suggests that these strategies can be explained
in terms of cell-autonomous processes. However, the other strategies in the other contexts ask for a
non-cell-autonomous explanation.

D.2 Games from interpretable fitness functions.

For a visual confirmation that the regularization of wC
S in equations 9-16 are reasonable, we can transform

them into regularized games. We do this in the same way as we did for transforming the non-regularized
ŵC

S in equations 1-8 into the game-points of figure 4b. The results are in Supplementary Figure 8. The
regularized games (points) are within the confidence rectangles of the measured games (boxes), with the
exception of DMSO which is just outside its box. This is reasonable given that the boxes correspond to
error: i.e. around 2/3rds confidence.

E Experimental definition of replicator dynamics

Consider a well that is seeded with an initial number NI
P of parental and NI

R of resistance cells; total
number NI = NI

P +NI
R. Let N

F
{P,R} be the number of {parental,resistant} cells after being grown for

an amount of time �t. From this, the experimental growth rate can be defined based on fold change as:

w{P,R} :=
NF

{P,R} �NI
{P,R}

NI
{P,R}�t

(17)

this can be rotated into a mapping NI 7! NF given by NF
{P,R} = NI

{P,R}(1 + w{P,R}�t).

By defining the initial and final proportion of parental cells as p{I,F} = N{I,F}
P /N{I,F}, we can find

the mapping:

pF =
NF

P

NF
= pI

1 + wP�t
1 + hwi�t

(18)

where hwi = pIwP + (1� pI)wR. This is the discrete-time replicator equation.
We can approximate this discrete process with a continuous one by defining p(t) = pI , p(t+�t) = pF

and looking at the limit as �t gets very small:

ṗ = lim
�t!0

p(t+�t)� p(t)
�t

(19)

= lim
�t!0

pI

�t
(
1 + wP�t
1 + hwi�t

� 1) (20)

= lim
�t!0

p
wP � hwi
1 + hwi�t

(21)

= p(wP � hwi) (22)

= p(1� p) (wP � wR)| {z }
gain f’n for p

(23)

Thus, we recover replicator dynamics as an explicit experimental interpretation for all of our theoretical
terms. Note that we did not make any assumptions about if things are inviscid or spatial; if we are talking
about individual or inclusive fitness; or, if we have growing populations in log phase or static populations
with replacement. All of these microdynamical details are buried in the definition of experimental fitness.
This allows us to focus on e↵ective games [15] and avoid potential confusions over aspects like spatial
structure [16].

E.1 Better estimates of w.

The problem with the definition of w in equation 17 is that it depends on just two time points, and
thus not good for quantifying error. In our experimental system, we are able to peek inside the system
with time-lapse microscopy. This allows us to get more than just the initial and final population sizes
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Supplementary Figure 9: Cubic Fitness functions for competition of parental vs. resistant NSCLC.

For each plot: growth rate with confidence intervals versus initial proportion of parental cells. This is the same

data as Figure 3. Cyan data points are growth rates of parental cells, and magenta for resistant cells. Dotted

lines represent the 3rd-order (cubic) fitness function of the least-squares best fit. The black dotted line is the gain

function for parental (see Figure 4a), it is well below the y = 0 line in the Alectinib conditions (indicating the

strong advantage of resistance) and thus cut out of the figure.

and replace fold-change by the more specific measurements of inferred growth rates for w{P,R} that
we describe in section B. An advantage of this approach is that the goodness-of-fit of the exponential
growth model provides a good estimate of the error associated with each measurement of w. Thus, we
are able to quantify error within each well and not just between experimental replicates in di↵erent wells
with similar initial conditions.

E.2 Accounting for finite �t.

The small time definition of the derivative can be thought of as a way to approximate a function by
local linearizations. It is why for simulations, modelers often use the discrete time replicator dynamics
to represent continuous time replicator dynamics: e↵ectively using the discretization as a simple ODE
solver/plotter. In the limit of �t going to 0, this linearization recapitulates the function. Unfortunately
in practice, our experimental system cannot take the limit as �t goes to 0 because of a precision-accuracy
trade-o↵. Accuracy increases as �t decreases because the continuous dynamics is approximated by more
and more, shorter and shorter straight lines. But – from an experimentalist’s perspective – the precision
decreases because any measurement is noisy: if we measure growth rate over a shorter period of time
then we are less certain whether our measurement reflects reality or noise. For very short measurements,
we might get higher accuracy (assuming biological factors like time from seeding to adherence could
be ignored) but would have incredibly low precision (due to only one, two or three time points from
which to calculate growth rate). As we increase the time of the experiment, the accuracy might decrease
but the precision will tend to increase. This is a classic trade o↵ between random noise (low precision)
and systematic noise (linearization being progressively less accurate over larger �t). Since each of our
growth rate measurements has an associated error term (see section B), we quantify the random and
systematic noise together and propogate it throughout our analysis. Given the biological constraints of
our system, we judged that 5 days was a good trade-o↵ point. This will most likely be di↵erent for other
experimental systems.

Given that w are defined over a finite range of time, we need to pick a particular time-point to
associate each measurement with. As is common for discrete time process, we attribute the value of
the growth rate to the initial point. In particular, this means that when we make w{P,R} a function of
p in the main text, then the values of growth rate are attributed to the initial proportion of parental
cells and not the final one. This customary choice is further reinforced by the fact that we have a less
noisy estimate of initial proportions of cells than of the final, and so other definitions would lead to less
precise measurements. Finally, our procedure can be viewed as standard competitive fitness assays but
with initial ratio of the two types as a varied experimental parameter. Thus, for consistency with both
theoretical and experimental literature, we associated the growth rates with the initial – more controlled
– seeding proportion.

F Generalizing the game assay to non-linear fitness functions

The game assay that we presented above is more interpretable and its output more easily plotted for
matrix games with linear fitness functions. And in the case of our experimental system, the linear fitness
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Supplementary Figure 10: AICs and BICs for best polynomial fits of a given degree (up to additive

o↵set). In cyan are AIC and BIC values for models parental cell fitness functions, while in magenta are AIC and

BIC values for models of resistant cell fitness functions. Circles surround the minimum of AIC and BIC.

functions provide an adequate fit for our purposes. However, that does not mean that the game assay
has to be used only for linear games. Whereas section C used linear functions as the hypothesis class for
fitting the growth-rate vs. proportion, one could use any other class of functions. An obvious candidate is
polynomial fitness functions of orders higher than 1. We provide an example in Supplementary Figure 9
of a 3rd-order (cubic) fit. Visually, the cubic provides a better fit than the linear one in Figure 3, which
is to be expected from the extra degrees of freedom. But qualitatively it provides the same interpretation
as the linear fitness functions, including the same number of fixed points. In particular, DMSO + CAF
has a single fixed point at p = 0.52 and (using the fixed region height from section C) a single fixed
region for p 2 (0.04, 0.668). This is much like the linear fit, but the fixed point region is expanded. The
other three conditions (DMSO, Alectinib, and Alectinib + CAF) have no fixed points and no fixed
regions.

F.1 Information criteria for non-linear fits.

If we treat the game assay not as a measurement and definition of games but as a model selection
problem for parameter fitting then it becomes important to quantify the trade-o↵ between the goodness
of fit and model simplicity. For this, we can use techniques like the Akaike information criterion (AIC),
its small-sample size correction (AICc), or the Bayesian information criterion (BIC) – or any other
statistical model selection procedure. Given that (i) a polynomial of degree d has k = d + 2 degrees
of freedom as a statistical model (+1 for zeroth order term, +1 for noise term); the eight models (4
conditions, 2 fitness functions per condition) are trained on n = 42 data points each; and AIC/BIC
only works reasonablely when n >> d. For example, given our relatively small dataset for each model,
Burnham & Anderson [46] would advocate to always prefer AICc over AIC (they suggest n/k < 40 as the
cut o↵). Hence, we show the results of all three of AIC, AICc and BIC for polynomial fitness functions
for degree d  6 in Supplemental Figure 10. In this figure, a better model corresponds to a lower AIC,
AICc or BIC value (lower on the y-axis). Since constant o↵sets in the information criteria do not matter
for model selection, the axes are set so that the linear model has �{AIC,AICc,BIC} = 0. The leftmost
column of Supplemental Figure 10 considers the joint product model where each fitness function has
the same degree – for the d = 1 model, this would correspond to the linear game assay as presented in
section C. Both AICc and BIC select the 3rd-degree polynomial model that we discussed above. AIC
doesn’t di↵erentiate strongly between the 3rd, 4th, 5th and 6th degree, but prefers slightly the 5th
degree. Too much emphasis should not be placed on AIC however, given the number of parameters
compared to sample size [46]. The four right columns of Supplemental Figure 10 consider independent
models for each of the fitness functions across the 4 di↵erent conditions – so a total of 8 models. At the
cost of extra researcher degrees of freedom, it is possible to look at the fits where the model for each of
the 8 fitness functions is selected independently. Such a fit, as selected by BIC, is shown in Supplemental
Figure 11. Note the two extra crossings of zero by the gain function in the DMSO + CAF case.
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Supplementary Figure 11: Fitness functions for competition of parental vs. resistant NSCLC as

selected by BIC. For each plot: growth rate with confidence intervals versus initial proportion of parental cells.

This is the same data as Figure 3. Cyan data points are growth rates of parental cells, and magenta for resistant

cells. Dotted lines represent the fitness function of the least-squares best fit for models selected by BIC. These are

a linear model for resistant fitness function in Alectinib + CAF; quadratic models for parental fitness function in

Alectinib + CAF, resistant fitness function in Alectinib, and both fitness functions in DMSO; cubic for resistant

in DMSO + CAF, and parental in Alectinib; and quintic for parental in DMSO + CAF. The black dotted line is

the gain function for parental (see Figure 4a), it is identical with the y = 0 line in the DMSO + CAF condition

(indication equal fitness for the two strategies) and well below it in the Alectinib conditions (indicating the strong

advantage of resistance) and thus not visible in the figure.

Supplementary Figure 12: Mapping of the AIC and BIC selected fitness functions for the four

conditions into game space. The x-axis is the relative fitness of a resistant focal in a parental monotypic

culture. The y-axis is the relative fitness of a parental focal in a resistant monotypic culture. Games measured in

our experimental system are specified by the bounding boxes corresponding to the range of their errors. The

games corresponding to joint degree models are given as points, with joint degree labeled nearby. Experimental

condition is represented by shape (DMSO: circle; Alectinib: square) and colour (no CAF: red; + CAF: blue).
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F.2 Plotting nonlinear games.

Just like with the linear games, it is possible to plot nonlinear games in our 2D game space based on
the p = 0 and p = 1 endpoints of the gain function. We do this in Supplemental Figure 12 with each
point labeled by the degree of the corresponding polynomial fitness functions. Unsurprisingly, at a brief
glance there is broad qualitative agreement – all (but one) points are in the same quadrant as the linear
model – although little quantitative agreement with the linear game assay – most points are outside
of the error-box corresponding to the linear game. However for a general nonlinear game, unlike with
linear games, two points in the same quadrant might not correspond to the same qualitative kind of
dynamic. In particular, for a general nonlinear game, a quadrant only tells us the parity of the number
of roots in (0, 1) – where roots are counted by their multiplicity – and the order of alternations on the
flow. For more on discrete flow alternation representation of gain functions, see Peña et al. [31].

Fortunately, for our particular experimental system the above generality is not realized. In particular,
for all degrees of the DMSO, Alectinib, and Alectinib + CAF games the gain functions have no fixed
points – just like the linear case. For DMSO + CAF, degrees d = {1, 2, 3} have one fixed point and
d = {5, 6} have 3 fixed points (although only two fixed regions: p 2 {(0.07, 0.25), (0.38, 0.46)} for d = 5
and p 2 {(0.09, 0.31), (0.44, 0.50)} for d = 6. For d = 0 it is impossible for any model to be in the top
right or bottom left quadrant – since no constant line can be both negative and positive – and there is
no fixed point, but the fitness di↵erence for DMSO is so tiny that there is a single fixed region for the
whole space p 2 (0, 1). The real outlier for DMSO is d = 4 since it has two fixed points (and is thus in
the bottom right quadrant) and two fixed regions at p 2 {(0.07, 0.11), (0.29, 040)}. Thus, the existence
of fixed point(s) in DMSO + CAF and absence of fixed points in the other conditions is robust across
the nonlinear models. The exact position of the fixed point(s) in DMSO + CAF, however, is not as
robust to model choice.
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