
Raborn et al. (2016) Large-scale TSS profiling in D. pulex

Supplemental Computational Methods

Analysis of mapped CAGE tags

TSRs were defined from mapped CAGE tags using the CAGEr package (Haberle et al. 2015) in R

Bioconductor (Huber et al. 2015). Aligned reads from each library were normalized by fitting to a power

law distribution as described (FANTOM Consortium and the RIKEN PMI and CLST (DGT) 2014).

The 5′ coordinate (CAGE adapter-adjacent) of each aligned read was designated as a CTSS, and the

CAGE tag abundance at each genomic position was quantified in tags per million (tpm). CTSSs with

CAGE tag support above 2 tpm (significant CTSSs; sCTSSs) were clustered into TSRs using the distclu

algorithm in CAGEr, which merges sCTSSs below a maximum distance of 20bp apart. Correlation of

sCTSS abundance across biological replicates showed extremely high within-sample concordance (R2

>0.97). TSR width was defined as the length of the genomic segment occupied by sCTSSs within a TSR.

Where specified, we calculated TSR width using the interquantile range using the “quantilePositions”

function in CAGEr (Haberle et al. 2015). We selected the interquantile range between the 10th and 90th

percentile of all CAGE signal within a TSR, where the nth percentile refers to the genomic position

where n% of the CAGE signal is 5′ of the entirety of the CAGE signal within a TSR (Haberle et al.

2015).

Promoter definitions

TSRs were reported for a given condition if the evidence from all replicates were in agreement (n=3 for

sexual females and asexual females, n=2 for males). Consensus promoters are the genomic coordinates

of promoters found in all CAGE datasets and were calculated using interquantile widths (10th - 90th)

using CAGEr (Haberle et al. 2015). CAGE definitions are illustrated in Figure 1.

Classification of promoter shape

We measured promoter shape by calculating the diversity of CTSSs within a given TSR or consensus

promoter. To do this, we applied the Shape Index (SI) as described (Hoskins et al. 2011), which is itself

based on the Shannon entropy (Shannon 1948). The Shape Index is calculated as follows using TSSs

within a given promoter:
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SI = 2 +

L∑
i

pilog2pi,

where p is the probability of CTSS position i being observed among all L CTSS positions within the

TSR (or consensus promoter). TSRs that contain a single unique CTSS position will have a Shape Index

equal to 2, while the Shape Index value becomes more negative as the number of distinct CTSSs within

the TSR increases.

TSRs and consensus promoters were labeled as either broad (SI <-2), peaked (SI >1.5), or unclassified

(all others) according to their associated SI values.

Test for bimodality of TSR shapes

We tested the calculated shape value (in units of SI, as described above) of all consensus promoters for

bimodality. The distribution of shape values was evaluated using the Expectation-Maximization (EM)

algorithm implemented in the Mixtools package (Benaglia et al. 2009) in R. The results support a 2-

component mixture within the distribution. Fitted Gaussian densities of the two components (shaded

in coral and blue, respectively) were plotted against the overall distribution of calculated consensus

promoter shapes (Figure 1A, inset).

Dinucleotide preference at initiation sites

Dinucleotide frequencies were calculated using bedtools nuc (Quinlan 2014) from 2bp intervals (position:

[-1,+1]) created from i) CTSSs and ii) randomly sampled background intervals derived from the D.

pulex genome. A statistical test of the observed dinucleotide preferences was performed by repeating

this procedure iteratively for all consecutive dinucleotides within the the [-1,-100] window (the control)

relative to +1, and evaluating the the resulting dinucleotide frequencies observed for each. Dinucleotide

frequencies within the window [-1,+1] relative to CTSSs were considered significant if they fell in the

top or bottom 5 (0.05) of all control observations. We did not test dinucleotide frequencies downstream

of +1 in our test to avoid the potential confounding effects of codon bias.
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De novo motif discovery

Daphnia core promoter motifs were discovered using hypergeometric enrichment in Homer (Heinz et al.

2010). This procedure was performed as follows: first, CAGE peaks (using the peak-finding algorithm of

Homer) from pooled (i.e. in all three states) alignments were detected using annotatePeaks.pl to create

a peak interval file. Next, we retrieved motifs that were enriched within 150bp sequences ([-100,+50])

surrounding the CAGE peaks relative to background (findMotifsGenome.pl). We searched for motifs of

6, 8, 10 and 12bp, reflecting the typical size range of cis-regulatory motifs.

Statistical validation of predicted de novo motifs

Promoter motifs were determined using 10-fold cross-validation. The CAGE peak position file was

divided into ten folds (subsamples) of equal size. For each round of validation, one of the folds was

labeled as the test set, and the other nine were identified as the training set. This process was iterated

ten times, such that each fold served as the test set exactly once. De novo motif prediction was performed

on each of the ten training sets using Homer as described above.

We evaluated motifs within all ten training sets by measuring the consistency with which a motif is

found within a training set. For example, if a given motif is found only in a handful of the ten training sets,

it is unlikely to be a bona fide core promoter motif. Predicted motifs from each of the ten training sets

were grouped and clustered according to their pairwise distance (Pearson correlation coefficient) using the

Tomtom module (Gupta et al. 2007) of the MEME Suite package (Bailey et al. 2015). To group identical

motifs within the training set, we generated a graph with the python module “NetworkX” (Schult and

Swart 2008) from the significant hits between motifs from the Tomtom output, with each pairwise match

between motifs becoming an undirected edge. We identified connected components containing 8 or more

nodes, and selected all motifs associated with these. Eight groups met this criteria; these were used to

build corresponding 8 motif sets. Finally, PWMs from each motif set were aligned (MotifSetReduce.pl;

see Supplementary Scripts)) to create a single consensus PWM, generating 8 motifs overall. These

consensus PWMs were designated Daphnia (core) promoter motif (Dpm). Motif logos were generated

for each Dpm PWM using the motif2Logo.pl function in Homer. The similarity of the each member of

the Dpm motif set to core promoter elements in D. melanogaster was determined by sequence alignment

STAMP (Mahony and Benos 2007) against the JASPAR database (Portales-Casamar et al. 2009). The
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E-value of the best alignment was recorded for every Dpm motif. The enrichment score of a representative

PWM from the motif set was selected to reflect each Dpm motif in Table 1.

Differential expression analysis

Differential expression of promoters was performed using defined consensus promoters (n=10,665) along

with their normalized expression values (in tpm) observed in each condition. We utilized the most

recent version of the limma package in R (Ritchie et al. 2015) to determine the differentially-expressed

promoters across all three conditions. Limma, which implements a linear modeling algorithm, also

incorporates voom (variance modeling at the observational level), a method that estimates the mean-

variance relationship in a counts-based fashion (Law et al. 2014).

Analysis of mean-variance and linear model

Genomic coordinates and expression values (in tpm) for all consensus promoters within a library were

used to construct an ExpressionSet object (Lawrence and Morgan 2014) in R. Biological replicates

from a given stage were labeled and used to construct a “contrasts matrix” to establish comparisons

between stages (i.e. males - sexual females). Analysis of mean variance (voom) was performed for

every consensus promoter containing more than 25 tags (TSSs) on aggregate across all CAGE libraries.

The log-ratios from the previous step were fit to a linear model (lmFit; (Ritchie et al. 2015)), followed

by a “contrasts fit” using the aforementioned contrasts matrix, which calculates the standard error for

each contrast, or between-stage comparison. An empirical Bayes method (ebayes) was applied to the

model fits from the previous step, generating moderated t- and F-statistics, respectively, and a log-odds

differential expression value for each consensus promoter. A decide test was then performed on this

set of t-statistics, where consensus promoters with p-values below 0.01 (after Benjamini & Hochberg

FDR correction) were deemed to be significantly differentially-expressed (DE). DE promoters from each

comparison were retrieved for subsequent analysis.

Visualization of differentially-expressed genes

Heatmaps: The normalized expression levels (in all CAGE libraries) of promoters classified as differentially-

expressed were extracted and plotted as a hierarchically-clustered heatmaps in R using the gplots package

(Warnes et al. 2015).
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Analysis of functional enrichment

Gene Ontology

Consensus promoters were associated with genes (Frozen Gene Catolog) using their genomic coordinates.

The complete gene ontology (GO) dataset for D. pulex (http://genome.jgi.doe.gov/cgi-bin/ToGo?

species=Dappu1) was downloaded and GO terms were associated with the gene annotation. We applied

the Fisher’s Exact Test in the topGO package (Alexa and Rahnenfuhrer 2010) in R, asking which GO

terms were over-represented among genes shown to have differentially-regulated promoters (see previous

section). Enrichment analysis was performed separately using terms from the GO categories Molecular

Function and Biological Process, respectively. GO Terms with p-values less than 0.01 were classified as

“significantly enriched”.

Pathway Analysis

We extracted the KEGG (Kyoto Encyclopedia of Genes and Genomes; http://www.genome.jp/kegg/)

pathway identifier, using the same promoter-to-gene-annotation dataset described for the GO analysis.

Using the set of terms for differentially-expressed consensus promoters, we performed a test for statistical

enrichment of KEGG pathways using the Python tool PEAT (C. Jackson et al. 2016, In Preparation).

KEGG terms with p-values below 0.01 were considered significantly enriched.
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