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Online Methods  

Participants  

Participants were customers of 23andMe, a personal genetics company. The 23andMe 

cohort has been described in detail elsewhere1,2. All participants included in the analyses 

provided informed consent and answered surveys online according to a human subjects 

research protocol, which was reviewed and approved by Ethical & Independent Review 

Services, an AAHRPP-accredited private institutional review board 

(http://www.eandireview.com). All participants completed the online version of the 

questionnaire on the 23andMe participant portal. The number of participants and participant 

overlap is provided in Table 1. Only participants who were primarily of European ancestry 

(97% European Ancestry) were selected for the analysis using existing methods3. Unrelated 

individuals were selected using a segmental identity-by-descent algorithm4.  

 

Table 1: Number of participants for each measure. 

 

Measure All Female Male 

EQ 46,861 24,543 22,318 

SQ-R 51,564 25,501 26,063 

SQ-R and EQ overlap 38,889 20,127 18,762 

 

Measures 

Two online questionnaires were used in this study. The first, the Empathy Quotient 

(EQ)5, is a self-report measure of empathy, and includes items relevant to both cognitive and 

affective empathy. It comprises 64 questions and has a good test-retest reliability6. In this study, 

participants scored a maximum of 80 and a minimum of 0. The second measure is the 

http://www.eandireview.com/


Systemizing Quotient-Revised (SQ-R), which is self-report measure of systemizing drive, or 

interest in rule-based patterns7. There are 75 items on the SQ-R, with a maximum score of 150 

and a minimum score of 0.   

 

 

Genotyping, imputation and quality control 

DNA extraction and genotyping were performed on saliva samples by the National 

Genetic Institute. Participants were genotyped using one of four different genotyping 

platforms. Participants were genotyped on one of four different platforms – V1, V2, V3 and 

V4. The V1 and V2 platforms have a total of 560,000 SNPs largely based on the Illumina 

HumanHap550+ BeadChip. The V3 platform has 950,000 SNPs based on the Illumina 

OmniExpress+ Beadchip and has custom content to improve the overlap with the V2 platform. 

The V4 platform is a fully customized array and has about 570,000 SNPs. All samples had a 

call rate greater than 98.5%.  A total of 1,030,430 SNPs (including Insertion/Deletion or 

InDels) were genotyped across all platforms. Genotyped SNPs were filtered for quality control. 

Imputation was performed using the September 2013 release of the 1000 Genomes Project.  

SNPs present only on platform V1, or in chromosome Y and mitochondrial 

chromosomes were excluded due to small sample sizes and unreliable genotype calling 

respectively. Next, using trio data, where available, SNPs that failed a parent offspring 

transmission test were excluded. SNPs were also excluded if they failed the Hardy-Weinberg 

Equilibrium Test at p < 10-20, or had a genotype rate of less than 90%. Phasing was performed 

using Beagle4 (V3.3.1) in batches of 8000-9000 individuals with chromosomal segments of no 

more than 10,000 genotyped SNPs. SNPs were excluded if they were not in Hardy-Weinberg 

equilibrium (P < 10-20), had a call rate less than 95%, or had discrepancies in allele frequency 

compared to the reference European 1000 Genomes data (chi-squared P < 10-15). Imputation 

was performed using Minimac25 using the September 2013 release of the 1000 Genomes Phase 

1 reference haplotypes. phased using Beagle4 (V3.3.1). We restricted the analyses to only SNPs 

that had a minor allele frequency (MAF) of at least 1%. After quality control, 9,955,952 SNPs 

were analysed. Genotyping, imputation, and preliminary quality control were performed by 

23andMe.  

 



Genetic association 

We performed a linear regression assuming an additive model of genetic effects. Age 

and sex along with the first five ancestry principal components were included as covariates. 

Additionally, for each trait, we performed a male-only and a female-only linear regression 

analysis to identify sex-specific loci. Since we were performing three tests for each trait (male-

only, female-only, and males and females combined with sex as a covariate), we used a 

threshold of P <1.66x10-8 to identify significant SNPs for each trait. Leading SNPs in each loci 

were identified after pruning for LD (r2 > 0.8) using SNAP8. 

 

Genomic inflation factor, heritability, genetic correlation and functional enrichment 

We used Linkage Disequilibrium Score regression coefficient (LDSC) to calculate 

genomic inflation due to population stratification9 (https://github.com/bulik/ldsc). The 

intercept for the SQ-R GWAS was 0.998 and the intercept for the EQ GWAS was 0.993 

indicating that there was no unaccounted population stratification. Heritability and genetic 

correlation was performed using extended methods in LDSC10. Summary GWAS data for 

schizophrenia11,12, bipolar disorder11, autism11, anorexia13, and depression11 were downloaded 

from the Psychiatric Genomics Consortium website 

(http://www.med.unc.edu/pgc/downloads). Summary GWAS data for educational attainment 

measured through number of college years14 was downloaded from the Social Science Genetic 

Association Consortium website (http://ssgac.org/Data.php). The rationale for choosing these 

conditions for genetic correlation were two fold. First, summary data were easily available for 

these conditions with effect sizes and standard errors reported, which is needed for the analyses. 

Second, LDSC works best when used for studies with sample sizes greater than 4,000. For 

schizophrenia, we first performed the genetic correlation with the smaller Caucasian only 

GWAS dataset (N= 17115 cases and controls)11. Later, to confirm the genetic correlation, we 

conducted the analysis with the larger dataset which also includes data from East Asian 

cohorts12 (schizophrenia-2 in the results; N=79845 cases and controls). This was possible as 

there are two large, overlapping publicly available datasets for schizophrenia, which, to our 

knowledge, is not present for the other conditions tested. The North West European LD scores 

were used in the analysis, and the intercepts were not constrained as the extent of participant 

overlap was unknown. Supplementary Table S1 provides the sample sizes for GWAS data used 

for genetic correlation. Due to the correlation between several of the traits tested, Bonferroni 

http://www.med.unc.edu/pgc/downloads
http://ssgac.org/Data.php


correction would be too stringent. Accordingly, we used a False Discovery based approach and 

report significant correlations if they had an FDR q-value below 0.05. We identified enrichment 

in genomic functional elements for the traits using extended methods in LDSC15. 

 

 

Gene-based analysis and sex-difference analysis 

Gene based analysis was performed using MetaXcan16 

(https://github.com/hakyimlab/MetaXcan). We used tissue weights provided in the MetaXcan 

implementation, that uses data from the GTEx project17. To identify significant genes for the 

two traits, we used the non-stratified GWAS as they had the largest sample sizes. For each trait, 

we ran gene-based analysis for ten neural tissues: anterior cingulate cortex (BA24), caudate 

basal ganglia, cerebellar hemisphere, cerebellum, cortex, frontal cortex (BA9), hippocampus, 

hypothalamus, nucleus accumbens basal ganglia, and putamen basal ganglia. We filtered out 

genes where there were 0 SNPs from our dataset, and genes that correlated poorly with 

predicted models of gene-expression (R2 < 0.01) as implemented in the software. We used FDR 

correction to correct for the multiple tests for each trait (correcting for more than 50,000 tests 

for each trait).  

For sex-difference analysis, we ran MetaXcan on the sex-stratified analyses for cortex. 

We focussed on the cortex as it was relevant for the two traits investigated and we had access 

to the list of sex-differentially expressed genes from the cortex18. To check for overlap, we ran 

hypergeometric tests. We identified nominally significant genes (P < 0.05) in the two sexes 

separately and checked for overlap among these lists after pruning the background gene-lists 

to a common set of genes for both the sexes. For the differential gene-expression study, we 

downloaded the list of differentially expressed genes in the cortex from Werling et al., 201618. 

We used the two adult datasets available from Supplementary Data 1 from the article. We ran 

the test for all the four stratified analyses (males : SQ-R and EQ; females SQ-R and EQ) using 

the first adult dataset, which is the larger of the two, and replicated the significant findings 

using the second adult dataset. We divided the differentially expressed list of genes into higher-

expressed in males (male-expressed) and higher expressed in females (female-expressed) and 

included all the autosomal genes with a fold-difference greater than 1 in the lists. We looked 

for enrichment in both the male-expressed and the female-expressed gene lists separately in all 

four stratified analyses.  
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