

GitHub: https://github.com/biocompute-objects OSF page: https://osf.io/r6s4u/
biocomputeobject.org

Specification Document

BioCompute Object (BCO) specification

document
v1.2.0

2

BioCompute Object Consortium members (BCOC):
FDA: Vahan Simonyan, Mark Walderhaug, Ruth Bandler, Eric Donaldson, Elaine Thompson, Alin
Voskanian, Anton Golikov, Konstantinos Karagiannis, Elaine Johanson, Adrian Myers, Errol Strain,
Khaled Bouri, Tong Weida, Wenming Xiao, Md Shamsuzzaman
GW: Raja Mazumder, Charles Hadley S. King IV, Amanda Bell, Jeet Vora, Krista M. Smith, Robel
Kahsay
Documentation Community: Gil Alterovitz (Boston Children’s Hospital/Harvard Medical School,
SMART/FHIR/HL7, GA4GH), Michael R. Crusoe (CWL), Marco Schito (C-Path), Konstantinos
Krampis (CUNY), Alexander (Sasha) Wait Zaranek (Curoverse), John Quackenbush (DFCI/Harvard),
Geet Duggal (DNAnexus), Singer Ma (DNAnexus), Yuching Lai (DDL), Warren Kibbe (Duke), Tony
Burdett (EBI), Helen Parkinson (EBI), Stuart Young (Engility Corp), Anupama Joshi (Epinomics),
Vineeta Agarwala (Flatiron Health), James Hirmas (GenomeNext), David Steinberg (UCSC), Veronica
Miller (HIV Forum), Dan Taylor (Internet 2), Paul Duncan (Merck), Jianchao Yao (Merck & Co., Inc.,
Boston, MA USA), Marilyn Matz (Paradigm4), Ben Busby (NCBI), Eugene Yaschenko (NCBI), Zhining
Wang (NCI), Hsinyi (Steve) Tsang (NCI), Durga Addepalli (NCI/Attain), Heidi Sofia (NIH), Scott
Jackson (NIST), Paul Walsh (NSilico Life Science), Toby Bloom (NYGC), Hiroki Morizono (CNMC),
Jeremy Goecks (Oregon Health and Science University), Srikanth Gottipati (Otsuka-US), Alex
Poliakov (Paradigm4), Keith Nangle (Pistoia Alliance), Jonas S Almeida (Stony Brook Univ, SUNY),
Dennis A. Dean, II (Seven Bridges Genomics), Dustin Holloway (Seven Bridges Genomics), Nisha
Agarwal (Solvuu), Stian Soiland-Reyes (UNIMAN), Carole Goble (UNIMAN), Susanna-Assunta
Sansone (University of Oxford), Philippe Rocca-Serra (University of Oxford), Phil Bourne (Univ. of
Virginia), Joseph Nooraga (Fred Hutchinson Cancer Research Center)

High-throughput Sequencing Computational Standards for Regulatory Sciences
(HTS-CSRS) Project

Contact: Raja Mazumder (mazumder@gwu.edu) and Vahan Simonyan (vahansim@gmail.com)

3

Table of Contents
BIOCOMPUTE	OBJECT	CONSORTIUM	MEMBERS	(BCOC):	...	2	
High-throughput	Sequencing	Computational	Standards	for	Regulatory	Sciences	(HTS-CSRS)	Project	2	

1	INTRODUCTION	...	5	
1.1	MISSION	OF	THE	BIOCOMPUTE	PROJECT	...	5	
1.2	MOTIVATION	..	6	
1.2.1	Limitations	of	the	initial	effort	...	6	

1.3	AUDIENCE	FOR	THIS	DOCUMENT	..	7	
1.4	POTENTIAL	STAKEHOLDERS	FOR	THE	BIOCOMPUTE	PROJECT	..	7	
1.5	BCO	USER	STORIES	..	7	
1.6	BCO	COMMUNITY	...	9	

2	BIOCOMPUTE	OBJECT	EXPLAINED	..	9	
2.0	TOP	LEVEL	FIELDS	..	9	
2.0.1	BioCompute	Object	Identifier	"BCO_id"	..	10	
2.0.2	Type	“type”	...	10	
2.0.3	Digital	signature	"digital_signature"	...	10	
2.0.4	BCO	version	“bco_spec_version”	..	10	

2.1	PROVENANCE	DOMAIN	"PROVENANCE_DOMAIN"	..	10	
2.1.1	Name	"name"	..	10	
2.1.2		Structured	name	“structured_name”	..	11	
2.1.3	Version	"version"	...	11	
2.1.4	Review	"review"	...	11	
2.1.5	Inheritance/derivation	“derived_from”	..	12	
2.1.6	Obsolescence	“obsolete”	...	12	
2.1.7	Embargo	‘embargo’	...	13	
2.1.8	Created	‘created’	...	13	
2.1.9	Modification	‘modified’	...	13	
2.1.10	Contributors	"contributors"	..	13	
2.1.11	License	“license”	..	14	

2.2	USABILITY	DOMAIN	"USABILITY_DOMAIN"	...	14	
2.3	EXTENSION	DOMAIN	"EXTENSION_DOMAIN"	..	14	
2.3.1	Extension	to	External	References:	SMART	on	FHIR	Genomics	..	15	
2.3.2	Extension	to	External	References:	GitHub	...	16	

2.4	DESCRIPTION	DOMAIN	"DESCRIPTION_DOMAIN"	...	16	
2.4.1	Keywords	"keywords"	...	16	
2.4.2	External	References	"xref"	..	17	
2.4.3	Pipeline	tools	"pipeline_steps"	...	17	

2.5	EXECUTION	DOMAIN	"EXECUTION_DOMAIN"	..	20	
2.5.1	Script	Access	Type	"script_access_type"	..	21	
2.5.2	Script	"script"	...	21	
2.5.3	Pipeline	Version	"pipeline_version"	..	21	

4

2.5.4	Platform/Environment	"platform"	...	21	
2.5.5	Script	driver	"script_driver"	...	21	
2.5.6	Algorithmic	tools	and	Software	Prerequisites	"software_prerequisites"	...	22	
2.5.7	Domain	Prerequisites	"domain_prerequisites"	..	22	
2.5.8	Environmental	parameters	"env_parameters"	..	23	

2.6	PARAMETRIC	DOMAIN	"PARAMETRIC_DOMAIN"	..	23	
2.7	INPUT	AND	OUTPUT	DOMAIN	"IO_DOMAIN"	..	24	
2.7.1	Input	Subdomain	"input_subdomain"	..	24	
2.7.2	Output	Subdomain	"output_subdomain"	...	25	

2.8	ERROR	DOMAIN,	ACCEPTABLE	RANGE	OF	VARIABILITY	"ERROR_DOMAIN"	..	26	
3	DATA	TYPING	...	27	
3.1	PRIMITIVE	DATA	TYPES	...	27	
3.2	EXTENSIBILITY	THROUGH	INHERITANCE	AND	INCLUSION	OF	DATA	TYPES	...	30	
3.3	BASE	BIOCOMPUTE	TYPE	...	31	
3.4	BCO	EXPANDED	VIEW	EXAMPLE	...	38	
3.5	EXTERNAL	REFERENCE	DATABASE	LIST	...	38	
3.6	DATA	LIFECYCLE	TIMELINE	..	48	

4	TITLE	21	CFR	PART	11	..	49	
5	COMPATIBILITY	...	50	

5.1	ISA	for	the	experimental	metadata	..	50	
6	ACKNOWLEDGEMENTS	..	50	

	

5

1 Introduction
BioCompute is a paradigm and a BioCompute Object (BCO) is an instance of that paradigm. High-
throughput sequencing (HTS), also referred to as next-generation sequencing (NGS) or massively
parallel sequencing (MPS), has increased the pace at which we generate, compute and share
genomic data in biomedical sciences. As a result, scientists, clinicians and regulators are now faced
with a new data paradigm that is less portable, more complex and most of all poorly standardized.
BCOs use a simple JSON format to encode important information on the execution of computational
pipelines, or for the creation of knowledgebases. BioCompute can be process oriented (for software
pipelines) and/or product oriented (for knowledge bases). So error domain can include information to
do QA and/or QC. The goal of using a BCO is to streamline communication of these details between
stakeholders in academia, industry and regulatory agencies.

The US Food and Drug Administration (FDA) and George Washington University (GW) have partnered
to establish a framework for community-based standards development and harmonization of HTS
computations and data formats. Standardized HTS data processing and data formats will promote
interoperability and simplify the verification of bioinformatics protocols. To do this, a schema has been
developed to represent instances of computational analysis as a BCO. A BCO includes:

• Information about parameters and versions of the executable programs in a pipeline
• Reference to input and output test data for verification of the pipeline
• A usability domain
• Keywords
• A list of agents involved along with other important metadata, such as their specific contribution

Knowledge of input data is intended to be captured according to existing efforts, including MIRAGE,
MIAPE, and STRENDA, and to be in accordance with Minimum Information Standards. In addition to
all the information captured in the BCO, the BCO itself must be independent of the execution
environment, whether it is a local high-performance or a cloud-based infrastructure.

Additional, non-normative, information on BCOs:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5510742/

1.1 Mission of the BioCompute project
• Develop BioCompute Objects that will facilitate communication of HTS computational analysis

details with the FDA.

6

• Develop a community of stakeholders to create a versatile data harmonization framework that
allows the standardized definition of platform-independent bioinformatics pipelines for
execution, and is easily read by humans AND machines.

• Facilitate the development of tools and facilities implementing data typing, instantiation,
deposition, storage, and distribution of validated BioCompute Objects through a BioCompute
database, in order to enable reproducible scientific research and regulatory submissions of
data and computations.

• Facilitate portability of pipelines for execution on Public Cloud infrastructure.

1.2 Motivation

The unpredictability of tangible physical, chemical, and biological experiments due to the multitude of
environmental and procedural factors is well documented. What is often systematically overlooked is
that computational biology algorithms are affected by a multiplicity of parameters and are no less
volatile. The complexities of computation protocols and interpretation of outcomes is only part of the
challenge; there are also virtually no standardized and industry-accepted metadata schemas for
reporting the computational pipelines and parameters together with their results. Thus, it is often
impossible to reproduce the results of a previously performed computation due to missing information
on parameters, versions, arguments, conditions, and procedures of application launch. The BCO
concept has been developed specifically to satisfy regulatory research needs for evaluation,
validation, and verification of bioinformatics pipelines; however, there is potential utility of BCO within
the larger scientific community. This utility can be increased through the creation of a BCO database
comprising records relevant to the U.S. Food and Drug Administration.

A BioCompute Object database record will be similar to a GenBank record in form; however, instead
of describing a sequence, the BioCompute record will include information related to parameters,
dependencies, usage, and other information related to the specific computational instance. This
mechanism will extend similar efforts and also serve as a collaborative ground to ensure
interoperability between different platforms, industries, scientists, regulators, and other stakeholders
interested in biocomputing.

For more information, see the project description on the FDA Extramural Research page.

1.2.1 Limitations of the initial effort
• At the initial stages of BioCompute development, we address the challenges of HTS (NGS)

bioinformatics.

7

• BCOs could very easily be extended to other types of computational analysis, and at this stage,
we are limiting our focus to HTS analysis and database creation.

1.3 Audience for this document
• Users performing HTS analysis with a regulatory science perspective
• HTS Platform Developers
• HTS related standard developers

1.4 Potential Stakeholders for the BioCompute project
• US Food and Drug Administration, as well as other Regulatory Agencies
• Medical product manufacturers and their suppliers
• Laboratories developing clinical testing protocols
• Bioinformatics tool and platform developers who wish to operate in a regulatory environment,

including cloud service (PaaS, IaaS, SaaS, FaaS) providers
• Journals / Scientific Publishing / peer reviewing process
• US National Institutes of Health (NIH) (particularly initiatives such as NCI/ITCR)
• Public cloud companies operating in the Life Sciences sector including electronic health record

(EHR) systems

1.5 BCO User stories
• Reproducibility and Interpretation use case:

A pharmaceutical company is submitting NGS data and the FDA conducts a reanalysis of the data.
The reanalysis does not concur with the original results. It can be very lengthy and costly to figure out
the location of the discrepancies. Attaching a BioCompute Object with the initial submission would
prevent most of the ambiguity surrounding the discrepancies.

• Reusability use case:
A regulatory decision has been made where a computational analysis has been used as evidence.
New data emerges after the product has been on the market over a year and the regulators cannot
reproduce the original environment with the configuration of tools and parameters of pipelines to
reanalyze the initial submission data or replicate the initial conclusion.

• Collaboration use case:

8

Authors and pharmaceutical scientists are unaware of how the regulatory industry is using workflows
to analyze data. Openness and transparency are hindered by the lack of ability to communicate, not
a lack of willingness. Scientific merit is compromised as a result of not having a common "language"
for communicating computations.

• Accountability use case:
A bioinformatics platform provider can use BCO as part of its verification and validation process. A
customer submits NGS data provided by a third party sequencing provider. The sequencing data is
poor quality. Reproducible pipelines, validated and verified as a “BCO”, were used to demonstrate the
fault lies in the sequencing step and not the bioinformatics pipeline.

• Versioning use case:
One potential use case related to this is one of 'differential impact' of how different choices in the
workflow affect the outcome of the computational analysis/experiment (e.g. changing expression
estimation procedure).

• Provenance use case:
BCOs can serve as a history of what was computed. An example pertaining to provenance, from
experience: data are generated and QC'ed as far as possible, and then passed on for analysis. The
analysis diagnoses a problem with one or more samples (e.g., cryptic relatedness), which are then
locally excluded from the analysis. But that exclusion is not reflected back to the original data, and the
same bad samples are included in the next analysis. In this way, a record exists of which samples can
be excluded in future analysis.

• Data integration use case:
A BCO can be used to provide clarity and transparency of the data integration process to both the
new and existing collaborators. When new data is integrated into the existing data model, BCO can
be used to describe data source information (eg- authors/contributors, data version etc), a QC
workflow, data content, data modification if any. The BCO also allows reuse of the same workflow to
integrate new data with same structure and source. BCO also provides a way to access and track
data records which were eliminated in the integration/QC process due to rules or restrictions of the
existing data model. Knowledgebases using BCOs in the form of ‘readme’ can provide provenance
for every piece of data that is collected and presented to the user. Such granular tracking facilitates
fair sharing of data and provides mechanisms for adherence to licensing requirements associated with
specific datasets.

9

1.6 BCO community
The BioCompute Object working group facilitates a means for different stakeholders in the HTS
communities to provide input on current practices on the BCO. This working group was formed during
preparation for the 2017 HTS Computational Standards for Regulatory Sciences Workshop, and was
initially made up of the workshop participants, both speakers and panelists. There has been a
continual growth of the BCO working group as a direct result of the interaction between a variety of
stakeholders from all interested communities in standardization of computational HTS data
processing.

2 BioCompute Object explained
The fundamentals of data typing (type primitives, class inheritance, etc.) that are used to define
BioCompute Objects are described in detail in Sections 3.1, 3.2, and 3.3. Developers of BCO
enabled platforms should reference this section for details on how to support the creation of BCO
programmatically or manually. BCOs are represented in JSON (JavaScript Object Notation)
formatted text. The JSON format was chosen because it is both human and machine
readable/writable. For a detailed description of JSON see www.json.org.

BioCompute data types are defined as aggregates of the critical fields organized into a few domains:
the descriptive domain, the identification and provenance domain, the input and output domains, the
parametric domain, the environmental domain, the execution domain, the prerequisite domain, the
usability domain, and the error domain. At the time of submission to the BioCompute Object
database an instance of BCO type is created, populated with actual values compliant with the data
type definitions and assigned a unique identifier. The object could then be assigned a unique digital
signature and a unique digital object identifier.

Three of the domains in a BioCompute Object become immutable upon assignment of the digital
signature: 1) the Parametric Domain, 2) the Execution Domain and 3) the I/O Domain. Changing
anything within these domains invalidates the verification and will break the digital signature.
Required fields are indicated by the "vital" : "True" flag, which is shown in the data typing
section (Sections 3.1 - 3.3).

2.0 Top Level Fields

These header fields uniquely define a BCO. These fields are required for every BCO.

10

2.0.1 BioCompute Object Identifier "BCO_id"
A unique identifier that should be applied to each BCO instance. These can be assigned by a BCO
database engine. IDs should be URIs (expressed as a URN or URL). IDs should never be reused.

"BCO_id" : "https://github.com/biocompute-
objects/BCO_Spec_V1.2/blob/hadley_local/HCV1a.json"

2.0.2 Type “type”
As any object of type 'type,' it has its own fields: _type, _id, _inherits, name, title and description.
Type of this JSON object is “antiviral_resistance_detection”

 "type": "antiviral_resistance_detection"

2.0.3 Digital signature "digital_signature"
A string-type, read-only value generated and stored by a BCO database, protecting the object from
internal or external alterations without proper validation. The string can be generated through the
use of an SHA-256 or implementation specific hash function.

 "digital_signature": "905d7fce3f3ac64c8ea86f058ca71658"

This value should not be submitted during deposition but can be read during downloading or
transferring validated BCOs. The BCO server can provide an API validating the signature versus
BCO content, allowing users to validate the signature "offline" on their own. The server will also
must provide a reference to the signature creation algorithm, facilitating for greater interoperability.

2.0.4 BCO version “bco_spec_version”
The version of the BCO specification used to define this document.

 "bco_spec_version": "v1.2"

2.1 Provenance Domain "provenance_domain"

2.1.1 Name "name"
Name for the BCO. This public field should take free text value using common biological research
terminology supporting external reference linkage identifiers whenever possible for use in the
structured name.

11

"name": "HCV1a ledipasvir resistance SNP detection"

2.1.2 Structured name “structured_name”
Structured name is an optional templated computable text field designed to represent a BCO
instance name in visible interfaces. This field can refer to other fields within the same or other
objects. For example, a string like "HCV1a [taxonomy:$taxonomy] mutation detection" will be
visualized as "HCV1a [taxonomy:31646] mutation detection" assuming the BCO has a field called
“taxonomy” with value “31646”.

"structured_name": "HCV1a [taxonomy:$taxonomy] mutation detection",
"taxonomy": "31646”,
...

=> HCV1a [taxonomy:31646] mutation detection

2.1.3 Version "version"
Records the versioning of this BCO instance object. In BCO versioning, a change in the BCO
affecting the outcome of the computation should be deposited as a new BCO, not as a new version.
If a parameter in a tool is changed within a BCO, which in turn changes the outcome of the pipeline
and the original BCO, a new BCO, not a new version, will be created.

In such cases the connection between the new object and the older one may or may not be (on
author’s discretion) retained in the form of references. Changes that cannot affect the results of the
computation can be incorporated into a new version of the existing BCO. Such changes might
include name and title, comments, authors, validity dates, etc.

 "version": "2.1",

2.1.4 Review "review"
Describes the status of an object in the review process. The 'unreviewed' flag indicates that the
object has been submitted, but no further evaluation or verification has occurred. The ‘in-review’ flag
indicates that verification is underway. The 'approved' flag indicates that the BCO has been verified
and reviewed. The 'suspended' flag indicates an object that was once valid is no longer considered
valid. The 'rejected' flag indicates that an error or inconsistency was detected in the BCO, and it has
been removed or rejected. The fields from the “contributor” object (described in section 2.1.10) is
inherited to populate the reviewer section.

12

 "review": [
 {
 "status": "approved",
 "reviewer_comment": ["Approved by GW staff. Waiting for
approval from FDA Reviewer"],
 "reviewer": {
 "name": "Charles Hadley King",
 "affiliation": "George Washington University",
 "email": "hadley_king@gwu.edu",
 "contribution": ["curatedBy"],
 "orcid": "https://orcid.org/0000-0003-1409-4549"
 }
 },
 {
 "status": "approved",
 "reviewer_comment": ["The revised BCO looks fine"],
 "reviewer": {
 "name": "Eric Donaldson",
 "affiliation": "FDA",
 "email": "Eric.Donaldson@fda.hhs.gov",
 "contribution": ["curatedBy"]
 }
 }
]

2.1.5 Inheritance/derivation “derived_from”
If the object is derived from another, this field will specify the parent object, in the form of the
‘objectid’. If the object inherits only from the base BioCompute Object or a type definition, then the
value here is null.

 "derived_from" : null,

2.1.6 Obsolescence “obsolete”
If the object has an expiration date this field will specify that using the ‘datetime’ type which is in
ISO-8601 format as clarified by W3C <https://www.w3.org/TR/NOTE-datetime>. This field is
optional.

 "obsolete" : "2118-09-26T14:43:43-0400"

13

2.1.7 Embargo ‘embargo’
If the object has a period of time that it is not public, that range can be specified using these fields.
Using the ‘datetime’ type a start and end time are specified for the embargo. These fields are
optional.

 "embargo" : {
 "start_time": "2000-09-26T14:43:43-0400",
 "end_time": "2000-09-26T14:43:45-0400"
 },

2.1.8 Created ‘created’
Using the ‘datetime’ type the time of initial creation of the BCO is recorded in ISO-8601 format as
clarified by W3C <https://www.w3.org/TR/NOTE-datetime>.

 "created": "2017-01-20T09:40:17-0500"

2.1.9 Modification ‘modified’
Using the ‘datetime’ type the time of most recent modification of the BCO is recorded

 "modified": "2018-03-21T18:31:48-0400"

2.1.10 Contributors "contributors"
This is a list to hold contributor identifiers and a description of their type of contribution, including a
field for ORCIDs to record author information, as they allow for the author to curate their information
after submission. ORCID identifiers must be valid and must have the prefix ‘https://orcid.org/’. The
contribution type is a choice taken from PAV ontology: provenance, authoring and versioning, which
also maps to the PROV-O.

 "contributors": [
 {
 "name": "Charles Hadley King",
 "affiliation": "George Washington University",
 "email": "hadley_king@gwu.edu",
 "contribution": ["createdBy", "curatedBy"]
 "orcid": "https://orcid.org/0000-0003-1409-4549"
 },
 {

14

 "name": "Eric Donaldson",
 "affiliation": "FDA",
 "email": "Eric.Donaldson@fda.hhs.gov",
 "contribution": ["authoredBy"]
 }
]

2.1.11 License “license”
A space for Creative Commons licence or other licence information (text). The default or recommended
licence can be Attribution 4.0 International: for example https://spdx.org/licenses/CC-BY-4.0.html

 "license": "https://spdx.org/licenses/CC-BY-4.0.html"

2.2 Usability Domain "usability_domain"
This field provides a space for the author to define the usability domain of the BCO. It is an array of
free text values. This field is to aid in search-ability and provide a specific description of the object.
The usability domain along with keywords can help determine when and how the BCO can be used.
Novel use of the BCO could result in the creation of a new entry with a new usability domain.

 "usability_domain": [
 "Identify baseline single nucleotide polymorphisms SNPs [SO:0000694],
insertions [so:SO:0000667], and deletions [so:SO:0000045] that correlate with
reduced ledipasvir [pubchem.compound:67505836] antiviral drug efficacy in
Hepatitis C virus subtype 1 [taxonomy:31646]",
 "Identify treatment emergent amino acid substitutions [so:SO:0000048]
that correlate with antiviral drug treatment failure",
 "Determine whether the treatment emergent amino acid substitutions
[so:SO:0000048] identified correlate with treatment failure involving other
drugs against the same virus",
 "GitHub CWL example: https://github.com/mr-c/hive-cwl-
examples/blob/master/workflow/hive-viral-mutation-detection.cwl#L20"
],

2.3 Extension Domain "extension_domain"

The extension domain is for a user to add more structured information that is defined in the type
definition. This section is not evaluated by checks for BCO validity or computational correctness. Two
examples follow:

15

2.3.1 Extension to External References: SMART on FHIR Genomics

The FHIR Endpoint URL coupled with the specific resource type and a unique FHIR identifier leads
to a resource that can contain everything from the date and time of the procedure, specimen details,
sequence information, linked sequence repositories, associated pedigrees, or even a set of
observations linked from diagnostic reports. The link to FHIR can also be added to the usability
domain. More on FHIR Genomics in release 3 of FHIR can be found here:
https://www.hl7.org/fhir/genomics.html

SMART on FHIR Genomics provides a framework for EHR-based apps built on FHIR that integrate
clinical and genomic information. For more information on how to use the SMART on FHIR
Genomics apps, please visit http://projects.iq.harvard.edu/smartgenomics/.

 "extension_domain":{
 "FHIR_extension": [
 {
 "FHIRendpoint_Resource": "Sequence",
 "FHIRendpoint_URL": "http://fhirtest.uhn.ca/baseDstu3",
 "FHIRendpoint_Ids": ["21376"]
 },
 {
 "FHIRendpoint_Resource": "DiagnosticReport",
 "FHIRendpoint_URL": "http://fhirtest.uhn.ca/baseDstu3",
 "FHIRendpoint_Ids": ["6288583"]
 },
 {
 "FHIRendpoint_Resource": "ProcedureRequest",
 "FHIRendpoint_URL": "http://fhirtest.uhn.ca/baseDstu3",
 "FHIRendpoint_Ids": ["25544"]
 },
 {
 "FHIRendpoint_Resource": "Observation",
 "FHIRendpoint_URL": "http://fhirtest.uhn.ca/baseDstu3",
 "FHIRendpoint_Ids": ["92440"]
 },
 {
 "FHIRendpoint_ResourceType": "FamilyMemberHistory",
 "FHIRendpoint_URL": "http://fhirtest.uhn.ca/baseDstu3",
 "FHIRendpoint_Ids": ["4588936"]
 }
],

16

2.3.2 Extension to External References: GitHub
The external references also include an extension to GitHub repositories where HTS computational
analysis pipelines, workflows, protocols, and tool or software source code can be
stored/deposited/downloaded. The BCO would contain link to the GitHub repository where the
information is stored and easily retrieved. The links to GitHub can be added to the usability domain.

 "github_extension": {
 "github_repository": "https://github.com/common-workflow-
language/hive-cwl-examples",
 "github_URI":"https://github.com/common-workflow-language/hive-cwl-
examples/blob/c9ffea0b60fa3bcf8e138af7c99ca141a6b8fb21/workflow/hive-viral-
mutation-detection.cwl"
 }
 },

2.4 Description Domain "description_domain"
Structured field for description of external references, the pipeline steps, and the relationship of I/O
objects. Information in this domain is not used for computation. This domain is meant to capture
information that is currently being provided in FDA submission in journal format. It is possible that in
the future this field can be semi-automatically generated from the execution_domain information.

2.4.1 Keywords "keywords"
This is a list of key map fields to hold a list of keywords to aid in search-ability and description of the
object.

 "keywords": [
 {
 "key": "search terms",
 "value": [
 "HCV1a",
 "Ledipasvir",
 "antiviral resistance",
 "SNP",
 "amino acid substitutions"
]
 }
]

17

2.4.2 External References "xref"
This field contains a list of the databases and/or ontology IDs that are cross-referenced in the BCO.
The external references are used to provide more specificity in the information related to BCO
entries. Cross-referenced resources need to be available in the public domain. The external
references are stored in the form of prefixed identifiers (CURIEs). These CURIEs map directly to the
URIs maintained by identifiers.org. See Section 3.5 for a list of the CURIEs used in this example.

 "xref": [
 {
 "namespace": "pubchem.compound",
 "name": "PubChem-compound",
 "ids": ["67505836"],
 "access_time": "2018-13-02T10:15-05:00"
 },
 {
 "namespace": "pubmed",
 "name": "PubMed",
 "ids": ["26508693"],
 "access_time": "2018-13-02T10:15-05:00"
 },
 {
 "namespace": "so",
 "name": "Sequence Ontology",
 "ids": ["0000048"],
 "access_time": "2018-13-02T10:15-05:00"
 },
 {
 "namespace": "taxonomy",
 "name": "Taxonomy",
 "ids": ["31646"],
 "access_time": "2018-13-02T10:15-05:00"
 }
],

2.4.3 Pipeline tools "pipeline_steps"
This is an optional structured domain for recording the specifics of a pipeline. Each individual tool (or
a well defined and reusable script) is represented as step, at the discretion of the author. Parallel
processes are given the same step number.

18

2.4.3.1 Step Number "step_number"
This is a non-negative integer value representing the position of the tool in a one-dimensional
representation of the pipeline. The number is a suggestion for a partial order for presentation
purposes, e.g. parallel computations assigned the same number based on their first possible
execution. Actual execution order might differ from the step number. Gaps are allowed (e.g. step 20
follows step 10).

"step_number": "1"

2.4.3.2 Name "name"
Name for the specific tool. This field is a string (A-z, 0-1) and should be a single uniquely identifying
word for the tool.

"name": "HIVE-hexagon"

2.4.3.2 Tool Description "description"
A free text field for describing the specific use/purpose of the tool.

"description": "Alignment of reads to a set of references",

2.4.3.3 Tool Version "version"
The version assigned to the instance of the tool used corresponding to the upstream release.

"version": "1.3",

2.4.3.4 Tool Prerequisites "prerequisite"
A list of text values to indicate any packages or prerequisites for running the tool used.

 "prerequisite": [
 {
 "name": "Hepatitis C virus genotype 1",
 "source": {
 "address":
"http://www.ncbi.nlm.nih.gov/nuccore/22129792",
 "access_time": "2017-01-24T09:40:17-0500"
 }

19

 },
 {
 "name": "Hepatitis C virus type 1b complete
genome",
 "source": {
 "address":
"http://www.ncbi.nlm.nih.gov/nuccore/5420376",
 "access_time": "2017-01-24T09:40:17-0500"
 }
 },
 {
 "name": "Hepatitis C virus (isolate JFH-1) genomic
RNA",
 "source": {
 "address":
"http://www.ncbi.nlm.nih.gov/nuccore/13122261",
 "access_time": "2017-01-24T09:40:17-0500"
 }
 },
 {
 "name": "Hepatitis C virus clone J8CF, complete
genome",
 "source": {
 "address":
"http://www.ncbi.nlm.nih.gov/nuccore/386646758",
 "access_time": "2017-01-24T09:40:17-0500"
 }
 },
 {
 "name": "Hepatitis C virus S52 polyprotein gene",
 "source": {
 "address":
"http://www.ncbi.nlm.nih.gov/nuccore/295311559",
 "access_time": "2017-01-24T09:40:17-0500"
 }
 }
]

20

2.4.3.6 Input List "input_list"
Each tool lists the URIs (expressed as a URN or URL) of the input files. These are a catchall for
read files, reference files or any other type of input. All of these fields are optional and for descriptive
purposes, therefore the structure here is less rigid than in other fields.

 "input_list": [
 {
 "address":
"https://hive.biochemistry.gwu.edu/dna.cgi?cmd=objFile&ids=514683",
 "access_time": "2017-01-24T09:40:17-0500"
 },
 {
 "address":
"https://hive.biochemistry.gwu.edu/dna.cgi?cmd=objFile&ids=514682",
 "access_time": "2017-01-24T09:40:17-0500"
 }
],

2.4.3.7 Output List "output_list"
Each tool lists the URIs (expressed as a URN or URL) of the output files for that tool.

 "output_list": [
 {
 "address":
"https://hive.biochemistry.gwu.edudata/514769/allCount-aligned.csv",
 "access_time": "2017-01-24T09:40:17-0500"
 }
]

2.5 Execution Domain "execution_domain"
The fields required for execution of the BCO have been encapsulated together in order to clearly
separate information needed for deployment, software configuration and running applications in a
dependent environment. One byproduct of an accurate BCO definition is facilitation of reproducibility
as defined by the Oxford English Dictionary as "the extent to which consistent results are obtained
when produced repeatedly."

21

2.5.1 Script Access Type "script_access_type"
This field indicates whether the code of the "script" to execute the BioCompute Object is accessed as an
external file via HTTP (URI) or in-line text in the "script" field. Valid options are “URI” or “text”.

 "script_access_type": "URI" OR "text"

2.5.2 Script "script"
The Script field points to an internal or external reference to a script object that was used to perform
computations for this BCO instance. This may be a reference to Galaxy Project or Seven Bridges
Genomics pipeline, a Common Workflow Language (CWL) object in GitHub, a High-performance
Integrated Virtual Environment (HIVE) computational service or any other type of script.

 "script":
{"https://example.com/workflows/antiviral_resistance_detection_hive.py"}

2.5.3 Pipeline Version "pipeline_version"
This field records the version of the pipeline implementation.

"pipeline_version": "2.0"

2.5.4 Platform/Environment "platform"
The multi-value reference to a particular deployment of an existing platform where this BCO can be
reproduced. A platform can be a bioinformatic platform such as Galaxy or HIVE or it can be a
software package such as CASAVA or apps that includes multiple algorithms and software.

"platform": "HIVE"

2.5.5 Script driver "script_driver"
The reference to an executable that can be launched in order to perform a sequence of commands
described in the script (see above) in order to run the pipeline. For example, if the pipeline is driven
by a HIVE script, the script driver is the "hive" execution engine. For CWL based scripts specify “cwl-
runner”. Another very general script driver commonly used in Linux based operating systems is
"shell" and the type of scripts it can run are operating system shell scripts. The combination of script
driver and script is a capability to run a particular sequence of computational steps in order to
produce BCO outputs given the inputs and parameters.

22

It is noteworthy to mention that scripts and script drivers by themselves can be objects. These
objects can exist in internal (BCO) or external databases and be publicly or privately accessible.

"script_driver": "shell"

2.5.6 Algorithmic tools and Software Prerequisites "software_prerequisites"
An optional multi-value field listing the minimal necessary prerequisites, library, tool versions needed
to successfully run the script to produce BCO. Recommended keys are “name” and “version”, but
their interpretation is implementation-dependent for a given script_driver.

 "software_prerequisites": [
 {
 "name": "HIVE-hexagon",
 "version": "babajanian.1",
 "uri": {
 "address": "https://hive.biochemistry.gwu.edu/dna.cgi?cmd=dna-
hexagon&cmdMode=-",
 "access_time": "2017-01-24T09:40:17-0500",
 "sha1_chksum": null
 }
 },
 {
 "name": "HIVE-heptagon",
 "version": "albinoni.2",
 "uri": {
 "address": "https://hive.biochemistry.gwu.edu/dna.cgi?cmd=dna-
heptagon&cmdMode=-",
 "access_time": "2017-01-24T09:40:17-0500",
 "sha1_chksum": null
 }
 }
],

2.5.7 Domain Prerequisites "domain_prerequisites"
An optional multi-value field listing the minimal necessary domain specific external data source
access in order to successfully run the script to produce BCO. The values under this field present
the requirements for network protocol endpoints used by a pipeline’s scripts, or other software. The
key "url" defines an endpoint to be accessed. If the "path" is "/" then any resource at the given
domain may be accessed, while if the path is more specific than only resources which path prefix
matches may be accessed.

23

"domain_prerequisites": [
 {
 "name": "HIVE",
 "url": "https://hive.biochemistry.gwu.edu/dna.cgi?cmd=login"
 },
 {
 "name": "access to ftp",
 "url": "ftp://:22/"
 },
 {
 "name": "access to e-utils",
 "url": "http://eutils.ncbi.nlm.nih.gov/entrez/eutils/"
 },
 {
 "name": "generic name",
 "url": "protocol://domain:port/application/path",
 }
]

2.5.8 Environmental parameters "env_parameters"
Multi-value additional key value pairs useful to configure the execution environment on the target
platform. For example, one might specify the number of compute cores, or available memory use of
the script. The possible keys are specific to each platform. The “value” should be a JSON string.

 "env_parameters": {
 "key": "HOSTTYPE",
 "value" : "x86_64-linux"
 }
 }

2.6 Parametric Domain "parametric_domain"
This represents the list of parameters customizing the computational flow which can affect the
output of the calculations. These fields are custom to each type of analysis and are tied to a
particular pipeline implementation. All BCOs should inherit from the fundamental BioCompute data
type and as such inherit all of the core fields described in document. Specific BioCompute types
introduce specific fields designed to customize the use of pipelines for a particular use pattern.
Please refer to documentation of individual scripts and specific BCO descriptions for details.

 "parametric_domain": {

24

 "HIVE-hexagon" : {
 "seed": 14,
 "minimum_match_len": 66,
 "divergence_threshold_percent": 0.30
 },
 "HIVE-heptagon": {
 "minimum_coverage": 15,
 "freq_cutoff": 0.10
 }
 }

2.7 Input and output Domain "io_domain"
This represents the list of global input and output files created by the computational workflow,
excluding the intermediate files. These fields are pointers to objects that can reside in the system
performing the computation or any other accessible system. Just like the fields of parametric
domain, these fields are custom to every specific BCO implementation and can refer to named input
output arguments of underlying pipelines. Please refer to documentation of individual scripts and
specific BCO descriptions for further details.

2.7.1 Input Subdomain "input_subdomain"
This field records the references and input files for the entire pipeline. Each type of input file is listed
under a key for that type. The file types are specified when the BCO type is created. This allows the
author to be very specific about a particular type of input file, if they so choose. For example:
reference files have common names, and adding the common name here, in addition to the uri
would make this more readable and understandable (eg, "HCV reference version..." or "human
reference GRCH38"). For data integration workflows, the input files can be a table downloaded from
a specific source which is then filtered for modified using rules described in the BCO.

 "input_subdomain": {
 "subject": [
 {
 "name": "Hepatitis C virus genotype 1",
 "source": {
 "address":
"http://www.ncbi.nlm.nih.gov/nuccore/22129792",
 "access_time": "2017-01-24T09:40:17-0500"

25

 }
 },
 {
 "name": "Hepatitis C virus type 1b complete genome",
 "source": {
 "address":
"http://www.ncbi.nlm.nih.gov/nuccore/5420376",
 "access_time": "2017-01-24T09:40:17-0500"
 }
 },
 "query": [
 {
 "name": "HCV1a_drug_resistant_sample0001-01",
 "source": {
 "address": "https://hive.biochemistry.gwu.edunuc-
read/514682",
 "access_time": "2017-01-24T09:40:17-0500"
 }
 },
 {
 "name": "HCV1a_drug_resistant_sample0001-02",
 "source": {
 "address": "https://hive.biochemistry.gwu.edunuc-
read/514683",
 "access_time": "2017-01-24T09:40:17-0500"
 }
 }
]
 }

2.7.2 Output Subdomain "output_subdomain"
This field records the outputs for the entire pipeline. Each file should be an object with a key, and a
title, URI, and media type (https://www.iana.org/assignments/media-types/) value.

 "output_subdomain": [
 {
 "mediatype": "text/csv",
 "source": {
 "address":
"https://hive.biochemistry.gwu.edudata/514769/dnaAccessionBased.csv",
 "access_time": "2017-01-24T09:40:17-0500"
 }
 },

26

 {
 "mediatype": "text/csv",
 "uri": {
 "address":
"https://hive.biochemistry.gwu.edudata/514801/SNPProfile.csv",
 "access_time": "2017-01-24T09:40:17-0500"
 }
 }
]
 },

2.8 Error Domain, acceptable range of variability "error_domain"
The error domain consists of two subdomains: empirical and algorithmic.

The empirical error subdomain contains the limits of detectability, false positives, false negatives,
statistical confidence of outcomes, etc. This can be measured by running the algorithm on multiple
data samples of the usability domain or in carefully designed in-silico spiked data. For example, a
set of spiked, well-characterized samples can be run through the algorithm to determine the false
positives, negatives and limits of detection.

The algorithmic subdomain is descriptive of errors that originated by fuzziness of the algorithms,
driven by stochastic processes, in dynamically parallelized multi-threaded executions, or in machine
learning methodologies where the state of the machine can affect the outcome. This can be
measured in repeatability experiments of multiple runs or using some rigorous mathematical
modeling of the accumulated errors. For example: bootstrapping is frequently used with stochastic
simulation based algorithms to accumulate sets of outcomes and estimate statistically significant
variability for the results.

For data integration BCOs used to develop knowledgebases the error domain can, for example,
contain a records of annotations that did not pass a set of rules.

The possible keys within each subdomains are workflow-specific free text which should be readable
for a human.

 "error_domain": {
 "empirical_error": {
 "false negative alignment hits": "<0.0010",
 "false discovery": "<0.05"
 },

27

 "algorithmic_error": {
 "false_positive_mutation_calls_discovery": "<0.00005",
 "false_discovery": "0.005"
 }
 }

3 Data typing
The conceptual schema for BCO creation is built on top of two layers: the data definition layer and
the BCO layer. The first layer is where all fundamental data types are defined. Complex types are
composed of multiple atomic or complex types, like a character string. Using these principles one
can construct a datum that has the ability to represent any level of complexity that is needed. A BCO
is a federation of other objects.

3.1 Primitive data types
When defining a field in a data type, one can place any number of constraints on the data and the
field will be accepted as valid. So, if a data type field was being constructed for holding DNA
sequencing information, one could restrain the type of characters that field would accept. This
further refinement would ensure that only the characters used for representing nucleic acids would
be accepted as input in this field (e.g. A, T, C, G). A list of the primitive types used in BCO data
typing is below.

{
 "primitives" : {
 "_comment": "primitive type hash with short descriptions",
 "_type" : {
 "string": "alphanumeric string",
 "integer": "integer number",
 "float": "floating point number",
 "boolean": "can only be assigned true, false, or null",
 "date": "specified ISO 8601",
 "time": "ISO 8601",
 "dateTime": "ISO 8601",
 "blob": "binary data stored as a single object",
 "json" : "any json formatted subobject, the structure to json is
not imposed by base biocompute type, but should follow guidelines of using the
predefined primitives"
 }

28

 },
 "objectid": {
 "_type": "string",
 "_comment": ["a string of characters designed for unambiguous
identification of resources and extensibility via the URI scheme
(https://www.w3.org/wiki/UriSchemes)"],
 "_constraint": {
 "regex" : "url_regex"
 }
 },
 "version": {
 "_type": "string",
 "_comment": "suggestion major[.minor[.build_nunber]]"
 },
 "email":{
 "_type": "string",
 "_constraint": {
 "regex" : "email_regex"
 }
 },
 "keyval" : {
 "key" : {
 "_type" : "string"
 },
 "value" : {
 "_type" : "string"
 }
 },
 "keymap" : {
 "key" : {
 "_type" : "string"
 },
 "value" : {
 "_type" : "string",
 "_multi_value" : true
 }
 },
 "uri": {
 "address": {
 "_type": "objectid"
 },
 "access_time": {
 "_type" : "dateTime",
 "_optional" : true
 },

29

 "sha1_chksum": {
 "_type": "string",
 "_optional" : true,
 "_constraint" : {
 "regex" : "[A-Za-z0-9]+"
 }
 }
 },
 "contribution": {
 "_type" : "string",
 "_multi_value" : true,
 "_comment": "taken from https://doi.org/10.1186/2041-1480-4-37",
 "_constraint" :{
 "_choice" : ["authoredBy", "contributedBy", "createdAt",
"createdBy", "createdWith", "curatedBy", "derivedFrom", "importedBy",
"importedFrom", "providedBy", "retrievedBy", "retrievedFrom",
"sourceAccessedBy"]
 }
 },
 "contributor": {
 "_comment": [""],
 "name": {
 "_type": "string",
 "_optional" : true
 },
 "affiliation": {
 "_type": "string",
 "_optional" : true
 },
 "email" : {
 "_type" : "email",
 "_optional" : true
 },
 "contribution": {
 "_type": "contribution"
 },
 "orcid": {
 "_type": "objectid"
 }
 },
 "file": {
 "uri" : {
 "_type" : "uri"
 },
 "mediatype": {

30

 "_type" : "string",
 "_optional" : true
 }
 },
 "xref" : {
 "namespace" : {
 "_type" : "string",
 "_comment" : "can be a prefix in identifiers.org or a db named in a
source"
 },
 "ids" : {
 "_type" : "string",
 "_multi_value" : true
 },
 "name" : {
 "_comment": "This can be the common name for the db",
 "_type" : "string",
 "_optional" :true
 },
 "access_time":{
 "_type": "dateTime",
 "_optional" : true
 }
 }
}

3.2 Extensibility through inheritance and inclusion of data types
It is of the utmost importance to generate extensible metadata formats capable of providing the
basis for more complex new types. There are two proposed ways to extend a data format:
inheritance and inclusion.

The concept of inheritance assumes that a more complex data type inherits all the field value pairs
from another, simpler data type and extends the content only with additional field value pairs or
customizes (redefines some characteristics) of existing fields. The concept of inclusion assumes that
a particular field of an object is of a previously declared complex type and that it contains all the
fields of a simpler data type. A single data type can inherit from multiple data types and can include
multiple data types multiple times.

Using these two paradigms, one can design a number of layered standard objects based on
predefined objects and extend their functionality with specific fields. For example: imagine a
metadata object of type bio-sample which has a predefined fundamental description applied to a

31

generalized sample. This object can have its properties repeatedly inherited to create a human-
sample object with increasingly specific information about particularities of that sample description.

The two proposed extensibility models allow avoiding the overuse of optional field attributes that are
present in conglomerated flat data type designs. Instead of designing wide and flat data types with
all fields for different use-cases, one may choose to design more targeted types with specifically
mandated fields inside.

For example, having an optional tissue-location field in all biological-sample objects might lead to
sparse population of the field as it will be unpopulated for all environmental, metagenomic, bacterial,
and viral samples where the notion of a tissue is irrelevant. However, designing an inherited animal-
sample data type can have a mandatory tissue location field for instances when it is important to
know from which part of the animal a particular sample was collected.

The power of the inheritance and inclusion methods to extend and implement new data types is
evident when one considers the need to create new subtypes or a branch of existing types after the
initial data -type structure is established. This step can be accomplished without modification of
existing database objects by defining the new intermediates within the framework of the pre-defined
metadata type hierarchy.

The relationship implemented by inheritance subtyping is a “is-a” relationship. For example, the type
"fish" can have three subtypes "eel", "shark" and "salmon". Each subtype “is a” variety of the "fish"
supertype and inherits all "fish" characteristics but has some specific differences.

3.3 Base BioCompute Type
The second layer is constructed with objects from first layer, producing a derived data type called
the "base BioCompute type". Extending the same principles that allowed us to construct a string
representing a DNA sequence from the primitive character type, one can construct a type definition
that is the absolute minimum fields necessary to create a BCO. By taking the primitive BCO type
and adding parametric and metadata fields unique to a particular instance, a BCO can be created.
Below is the type definition for “BioCompute_base_type”:

{
 "name" : "BioCompute_base_type",
 "title" : "Base type for all BioCompute Object types",
 "description" : "All BioCompute object types must inherit from this type in
order to be compliant with BioCompute framework",
 "_comment" : [

32

 "Since JSON format do not allow comments '_comment' key is used for
comments and should be ignored by parsers",
 "As any object of type 'type' it has its own fields: _type, _id,
_inherits, name, title and description",
 "As base type this type inherits from none",
 "Identifier of the object since type itself is an object",
 "Type of this JSON object is 'type'",
 "For each field default value for '_multi_value', '_optional', and
'_read_only' key is 'false' "
],
 "_fields" : {
 "_comment" : [
 "List of fields of the BioCompute Object type"
],

 "BCO_id":{
 "_type" : "string",
 "_read_only" : true,
 "_comment" : [
 "A unique identifier that should be applied to each BCO
instance, assigned by a BCO database engine.",
 "IDs should never be reused"
]
 },
 "type": {
 "_type": "_type",
 "_read_only" : true
 },
 "digital_signature" : {
 "_type" : "string",
 "_read_only" : true,
 "_comment" : ["Digital signature of BioCompute Object by
Authority"],
 "_constraint" : {
 "regex" : "[A-Za-z0-9]+"
 }
 },
 "bco_spec_version" : {
 "_type" : "string",
 "_read_only" : true,
 "_comment" : ["The version of the BCO specification used to define
this document."]
 },

 "provenance_domain": {

33

 "name" : {
 "_type" :"string",
 "_comment" : "Public searchable name for BioCompute Object"
 },
 "structured_name" :{
 "_type" :"string",
 "_optional" : true,
 "_comment" :[
 "templated computable text field designed to represent a
BCO instance name in visible interfaces.",
 "This field can refer to other fields within the same or
other objects."
]

 },
 "version" : {
 "_type" : "version",
 "_comment" : "version of this BioCompute Object"
 },
 "review" : {
 "_multi_value" : true,
 "_optional" : true,
 "status" : {
 "_type" : "string",
 "_constraint" : {
 "_choice" : ["unreviewed", "in-review", "approved",
"rejected", "suspended"]
 },
 "_comment" : "Current verification status of the BioCompute
Object",
 "_default_value" : "unreviewed"
 },
 "reviewer" : {
 "_type": "contributor",
 "_multi_value" : true
 },
 "date" : {
 "_type" : "dateTime"
 },
 "reviewer_comment" : {
 "_type" : "string",
 "_optional" : true,
 "_multi_value" : true
 }
 },

34

 "derived_from": {
 "_type": "objectid",
 "_optional" : true,
 "_comment" : ["value of _id field of another bio compute
object"]
 },
 "obsolete_after" : {
 "_type": "datetime" ,
 "_optional" : true
 },
 "embargo" : {
 "start_time" : {
 "_type" : "datetime",
 "_optional" : true
 },
 "end_time" : {
 "_type" : "datetime",
 "_optional" : true
 }
 },
 "created" : {
 "_type" :"datetime",
 "_comment" : ["Date and time of the BioCompute Object
creation"],
 "_read_only" : true
 },
 "modified" : {
 "_type" :"datetime",
 "_comment" : ["Date and time of the BioCompute Object was last
modified"],
 "_read_only" : true
 },
 "contributors" : {
 "_type" : "contributor",
 "_multi_value" : true
 },
 "license" : {
 "_type" : "string",
 "_optional" : true,
 "_comment" : ["Creative Commons licence or other licence
information (text) space. The default or recommended licence can be Attribution
4.0 International: for example https://spdx.org/licenses/CC-BY-4.0.html"]
 }
 },

35

 "usability_domain" : {
 "_type" : "string",
 "_comment" : ["Text from biospec"],
 "_multi_value" : true
 },

 "extension_domain":{
 "_type" : "json",
 "_optional" : true,
 "_comment" : [
 "all fields in this domain are BioCompute specific and should
be defined in inherited BioCompute type",
 "This domain allows for the addition of "
]
 },

 "description_domain" : {
 "keywords" : {
 "_type" : "keymap",
 "_multi_value" : true
 },
 "xref" : {
 "_type" : "xref",
 "_optional" : true,
 "_multi_value" : true
 },
 "pipeline_steps" : {
 "tool" : {
 "_multi_value" : true,
 "name" : {
 "_type" : "string",
 "_comment" : ["this is a recognized name of the
software tool"]
 },
 "description" : {
 "_type" : "string"
 },
 "step_number": {
 "_type": "integer"
 },
 "version" : {
 "_type" : "version"
 },
 "prerequisite" : {
 "_multi_value" : true,

36

 "_optional" : true,
 "_comment" : "reference or required prereqs",
 "name" : {
 "_type" :"string",
 "_comment" : ["Public searchable name for reference
or prereq"]
 },
 "source":{
 "_type" : "uri"
 }
 },
 "input_list" : {
 "_type" : "uri",
 "_multi_value" : true
 },
 "output_list" : {
 "_type" : "uri",
 "_multi_value" : true
 }
 }
 }
 },

 "execution_domain" : {
 "script_access_type" : {
 "_type" :"string",
 "_constraint" : {
 "_choice" : ["URI", "text"]
 }
 },
 "script" : {
 "_type" : "string"
 },
 "script_driver" : {
 "_type" : "string"
 },
 "pipeline_version" : {
 "_type" : "version"
 },
 "platform" : {
 "_type" : "string"
 },
 "software_prerequisites" : {
 "_multi_value" : true,
 "name" : {

37

 "_type" : "string"
 },
 "version" : {
 "_type" : "version"
 },
 "uri" : {
 "_type" : "uri",
 "_optional" : true
 }
 },
 "domain_prerequisites" : {
 "_multi_value" : true,
 "name" : {
 "_type" : "string"
 },
 "url" : {
 "_type" : "string",
 "_multi_value" : true
 }
 },
 "environment_variables" : {
 "_type" : "keyval",
 "_multi_value" : true
 }
 },

 "parametric_domain" : {
 "_type" : "json",
 "_comment" : [
 "all fields in this domain should be defined in inheriting
BioCompute subtypes",
 "see example in bco_type_examples.json object
parametric_domain_type_definition_examples"
]
 },

 "io_domain" : {
 "input_subdomain" : {
 "_type" : "json",
 "_comment" : "all fields in this domain are BioCompute specific
and should be defined in inherited BioCompute type"
 },

 "output_subdomain" : {
 "_type" : "file",

38

 "_multi_value" : true,
 "_comment" : "output is a file object"
 }
 },
 "error_domain": {
 "empirical_error": {
 "_type" : "json",
 "_comment" : "all fields in this domain are BioCompute specific
and should be defined in inherited BioCompute type"
 },
 "algorithmic_error": {
 "_type" : "json",
 "_comment" : "all fields in this domain are BioCompute specific
and should be defined in inherited BioCompute type"
 }
 }
 }
}

3.4 BCO expanded view example
{
 "BCO_id": "https://github.com/biocompute-
objects/BCO_Spec_V1.2/blob/master/HCV1a.json",
 "type": "antiviral_resistance_detection",
 "digital_signature": "905d7fce3f3ac64c8ea86f058ca71658",
 "bco_spec_version" : "v1.2",
 "provenance_domain": {
 "name": "HCV1a ledipasvir resistance SNP detection",
 "structured_name": "HCV1a [taxonomy:31646] ledipasvir
[pubchem.compound:67505836] resistance SNP [so:0000694] detection",
 "version": "2.9",
 "review": [
 {
 "status": "approved",
 "reviewer_comment": ["Approved by GW staff. Waiting for
approval from FDA Reviewer"],
 "reviewer": {
 "name": "Charles Hadley King",
 "affiliation": "George Washington University",
 "email": "hadley_king@gwu.edu",
 "contribution": ["curatedBy"],
 "orcid": "https://orcid.org/0000-0003-1409-4549"

39

 }
 },
 {
 "status": "approved",
 "reviewer_comment": ["The revised BCO looks fine"],
 "reviewer": {
 "name": "Eric Donaldson",
 "affiliation": "FDA",
 "email": "Eric.Donaldson@fda.hhs.gov",
 "contribution": ["curatedBy"]
 }
 }
],
 "derived_from" : null,
 "obsolete" : "2118-09-26T14:43:43-0400",
 "embargo" : {
 "start_time": "2000-09-26T14:43:43-0400",
 "end_time": "2000-09-26T14:43:45-0400"
 },
 "created": "2017-01-24T09:40:17-0500",
 "modified": "2018-09-21T14:06:14-0400",
 "contributors": [
 {
 "name": "Charles Hadley King",
 "affiliation": "George Washington University",
 "email": "hadley_king@gwu.edu",
 "contribution": ["createdBy", "curatedBy"],
 "orcid": "https://orcid.org/0000-0003-1409-4549"
 },
 {
 "name": "Eric Donaldson",
 "affiliation": "FDA",
 "email": "Eric.Donaldson@fda.hhs.gov",
 "contribution": ["authoredBy"]
 }
],
 "license": "https://spdx.org/licenses/CC-BY-4.0.html"
 },
 "usability_domain": [
 "Identify baseline single nucleotide polymorphisms SNPs [SO:0000694],
insertions [so:SO:0000667], and deletions [so:SO:0000045] that correlate with
reduced ledipasvir [pubchem.compound:67505836] antiviral drug efficacy in
Hepatitis C virus subtype 1 [taxonomy:31646]",
 "Identify treatment emergent amino acid substitutions [so:SO:0000048]
that correlate with antiviral drug treatment failure",

40

 "Determine whether the treatment emergent amino acid substitutions
[so:SO:0000048] identified correlate with treatment failure involving other
drugs against the same virus",
 "GitHub CWL example: https://github.com/mr-c/hive-cwl-
examples/blob/master/workflow/hive-viral-mutation-detection.cwl#L20"
],
 "extension_domain":{
 "FHIR_extension": [
 {
 "FHIRendpoint_Resource": "Sequence",
 "FHIRendpoint_URL": "http://fhirtest.uhn.ca/baseDstu3",
 "FHIRendpoint_Ids": ["21376"]
 },
 {
 "FHIRendpoint_Resource": "DiagnosticReport",
 "FHIRendpoint_URL": "http://fhirtest.uhn.ca/baseDstu3",
 "FHIRendpoint_Ids": ["6288583"]
 },
 {
 "FHIRendpoint_Resource": "ProcedureRequest",
 "FHIRendpoint_URL": "http://fhirtest.uhn.ca/baseDstu3",
 "FHIRendpoint_Ids": ["25544"]
 },
 {
 "FHIRendpoint_Resource": "Observation",
 "FHIRendpoint_URL": "http://fhirtest.uhn.ca/baseDstu3",
 "FHIRendpoint_Ids": ["92440"]
 },
 {
 "FHIRendpoint_ResourceType": "FamilyMemberHistory",
 "FHIRendpoint_URL": "http://fhirtest.uhn.ca/baseDstu3",
 "FHIRendpoint_Ids": ["4588936"]
 }
],
 "github_extension": {
 "github_repository": "https://github.com/common-workflow-
language/hive-cwl-examples",
 "github_URI":"https://github.com/common-workflow-language/hive-
cwl-examples/blob/c9ffea0b60fa3bcf8e138af7c99ca141a6b8fb21/workflow/hive-viral-
mutation-detection.cwl"
 }
 },
 "description_domain": {
 "keywords": [
 {

41

 "key": "search terms",
 "value": [
 "HCV1a",
 "Ledipasvir",
 "antiviral resistance",
 "SNP",
 "amino acid substitutions"
]
 }
],
 "xref": [
 {
 "namespace": "pubchem.compound",
 "name": "PubChem-compound",
 "ids": ["67505836"],
 "access_time": "2018-13-02T10:15-05:00"
 },
 {
 "namespace": "pubmed",
 "name": "PubMed",
 "ids": ["26508693"],
 "access_time": "2018-13-02T10:15-05:00"
 },
 {
 "namespace": "so",
 "name": "Sequence Ontology",
 "ids": ["0000048"],
 "access_time": "2018-13-02T10:15-05:00"
 },
 {
 "namespace": "taxonomy",
 "name": "Taxonomy",
 "ids": ["31646"],
 "access_time": "2018-13-02T10:15-05:00"
 }
],
 "pipeline_steps": {
 "tool": [
 {
 "step_number": "1",
 "name": "HIVE-hexagon",
 "description": "Alignment of reads to a set of references",
 "version": "1.3",
 "prerequisite": [
 {

42

 "name": "Hepatitis C virus genotype 1",
 "source": {
 "address":
"http://www.ncbi.nlm.nih.gov/nuccore/22129792",
 "access_time": "2017-01-24T09:40:17-0500"
 }
 },
 {
 "name": "Hepatitis C virus type 1b complete
genome",
 "source": {
 "address":
"http://www.ncbi.nlm.nih.gov/nuccore/5420376",
 "access_time": "2017-01-24T09:40:17-0500"
 }
 },
 {
 "name": "Hepatitis C virus (isolate JFH-1) genomic
RNA",
 "source": {
 "address":
"http://www.ncbi.nlm.nih.gov/nuccore/13122261",
 "access_time": "2017-01-24T09:40:17-0500"
 }
 },
 {
 "name": "Hepatitis C virus clone J8CF, complete
genome",
 "source": {
 "address":
"http://www.ncbi.nlm.nih.gov/nuccore/386646758",
 "access_time": "2017-01-24T09:40:17-0500"
 }
 },
 {
 "name": "Hepatitis C virus S52 polyprotein gene",
 "source": {
 "address":
"http://www.ncbi.nlm.nih.gov/nuccore/295311559",
 "access_time": "2017-01-24T09:40:17-0500"
 }
 }
],
 "input_list": [
 {

43

 "address":
"https://hive.biochemistry.gwu.edu/dna.cgi?cmd=objFile&ids=514683",
 "access_time": "2017-01-24T09:40:17-0500"
 },
 {
 "address":
"https://hive.biochemistry.gwu.edu/dna.cgi?cmd=objFile&ids=514682",
 "access_time": "2017-01-24T09:40:17-0500"
 }
],
 "output_list": [
 {
 "address":
"https://hive.biochemistry.gwu.edudata/514769/allCount-aligned.csv",
 "access_time": "2017-01-24T09:40:17-0500"
 }
]
 },
 {
 "step_number": "2",
 "name": "HIVE-heptagon",
 "description": "variant calling",
 "version": "1.3",
 "prerequisites": null,
 "input_list": [
 {
 "address":
"https://hive.biochemistry.gwu.edudata/514769/dnaAccessionBased.csv",
 "access_time": "2017-01-24T09:40:17-0500"
 }
],
 "output_list": [
 {
 "address":
"https://hive.biochemistry.gwu.edudata/514801/SNPProfile.csv",
 "access_time": "2017-01-24T09:40:17-0500"
 },
 {
 "address":
"https://hive.biochemistry.gwu.edudata/14769/allCount-aligned.csv",
 "access_time": "2017-01-24T09:40:17-0500"
 }
]
 }
]

44

 }
 },
 "execution_domain": {
 "script_access_type": "text",
 "script":
["https://example.com/workflows/antiviral_resistance_detection_hive.py"],
 "script_driver": "manual",
 "pipeline_version": "2.0",
 "platform": "hive",
 "software_prerequisites": [
 {
 "name": "HIVE-hexagon",
 "version": "babajanian.1",
 "uri": {
 "address":
"https://hive.biochemistry.gwu.edu/dna.cgi?cmd=dna-hexagon&cmdMode=-",
 "access_time": "2017-01-24T09:40:17-0500",
 "sha1_chksum": null
 }
 },
 {
 "name": "HIVE-heptagon",
 "version": "albinoni.2",
 "uri": {
 "address":
"https://hive.biochemistry.gwu.edu/dna.cgi?cmd=dna-heptagon&cmdMode=-",
 "access_time": "2017-01-24T09:40:17-0500",
 "sha1_chksum": null
 }
 }
],
 "domain_prerequisites": [
 {
 "name": "HIVE",
 "url": "https://hive.biochemistry.gwu.edu/dna.cgi?cmd=login"
 },
 {
 "name": "access to ftp",
 "url": "ftp://:22/"
 },
 {
 "name": "access to e-utils",
 "url": "http://eutils.ncbi.nlm.nih.gov/entrez/eutils/"
 },
 {

45

 "name": "generic name",
 "url": "protocol://domain:port/application/path"
 }
],
 "env_parameters": {
 "key": "HOSTTYPE",
 "value" : "x86_64-linux"
 }
 },
 "parametric_domain": {
 "HIVE-hexagon" : {
 "seed": 14,
 "minimum_match_len": 66,
 "divergence_threshold_percent": 0.30
 },
 "HIVE-heptagon": {
 "minimum_coverage": 15,
 "freq_cutoff": 0.10
 }
 },
 "io_domain": {
 "input_subdomain": {
 "subject": [
 {
 "name": "Hepatitis C virus genotype 1",
 "source": {
 "address":
"http://www.ncbi.nlm.nih.gov/nuccore/22129792",
 "access_time": "2017-01-24T09:40:17-0500"
 }
 },
 {
 "name": "Hepatitis C virus type 1b complete genome",
 "source": {
 "address":
"http://www.ncbi.nlm.nih.gov/nuccore/5420376",
 "access_time": "2017-01-24T09:40:17-0500"
 }
 },
 {
 "name": "Hepatitis C virus (isolate JFH-1) genomic RNA",
 "source": {
 "address":
"http://www.ncbi.nlm.nih.gov/nuccore/13122261",
 "access_time": "2017-01-24T09:40:17-0500"

46

 }
 },
 {
 "name": "Hepatitis C virus clone J8CF, complete genome",
 "source": {
 "address":
"http://www.ncbi.nlm.nih.gov/nuccore/386646758",
 "access_time": "2017-01-24T09:40:17-0500"
 }
 },
 {
 "name": "Hepatitis C virus S52 polyprotein gene",
 "source": {
 "address":
"http://www.ncbi.nlm.nih.gov/nuccore/295311559",
 "access_time": "2017-01-24T09:40:17-0500"
 }
 }
],
 "query": [
 {
 "name": "HCV1a_drug_resistant_sample0001-01",
 "source": {
 "address": "https://hive.biochemistry.gwu.edunuc-
read/514682",
 "access_time": "2017-01-24T09:40:17-0500"
 }
 },
 {
 "name": "HCV1a_drug_resistant_sample0001-02",
 "source": {
 "address": "https://hive.biochemistry.gwu.edunuc-
read/514683",
 "access_time": "2017-01-24T09:40:17-0500"
 }
 }
]
 },
 "output_subdomain": [
 {
 "mediatype": "text/csv",
 "source": {
 "address":
"https://hive.biochemistry.gwu.edudata/514769/dnaAccessionBased.csv",
 "access_time": "2017-01-24T09:40:17-0500"

47

 }
 },
 {
 "mediatype": "text/csv",
 "uri": {
 "address":
"https://hive.biochemistry.gwu.edudata/514801/SNPProfile*.csv",
 "access_time": "2017-01-24T09:40:17-0500"
 }
 }
]
 },
 "error_domain": {
 "empirical_error": {
 "false negative alignment hits": "<0.0010",
 "false discovery": "<0.05"
 },
 "algorithmic_error": {
 "false positive mutation calls discovery": "<0.0005",
 "false_positive_mutation_calls_discovery": "<0.00005",
 "false_discovery": "0.005"
 }
 }
}

3.5 External reference database list
This list contains the databases that are currently being used in our BCOs. We use the CURIEs that
map to URIs maintained by identifiers.org.

“Identifiers.org is an established resolving system the enables the referencing of data for the
scientific community, with a current focus on the Life Sciences domain. Identifiers.org provides
direct access to the identified data using one selected physical location (or resource). Where
multiple physical locations are recorded in the registry the most stable one is selected for
resolution. This allows the location independent referencing (and resolution if required) of data
records.”

In the entries below the “namespace” and identifier combine to become the CURIEs.

Recommended name: Taxonomy

48

Namespace: taxonomy
Identifier pattern: ^\d+$
Registry identifier: MIR:00000006
URI: http://identifiers.org/taxonomy/

Recommended name: Sequence Ontology
Namespace: so
Identifier pattern: ^SO:\d{7}$
Registry identifier: MIR:00000081
URI: http://identifiers.org/so/

Recommended name: PubMed
Namespace: pubmed
Identifier pattern: ^\d+$
Registry identifier: MIR:00000015
URI: http://identifiers.org/pubmed/

Recommended name: PubChem-compound
Namespace: pubchem.compound
Identifier pattern: ^\d+$
Registry identifier: MIR:00000034
URI: http://identifiers.org/pubchem.compound/

For instance, the inline CURIE [taxonomy:31646] expands to
http://identifiers.org/taxonomy/31646 as the namespace "taxonomy" corresponds to the prefix
http://identifiers.org/taxonomy/ to be augmented with the identifier "31646”. Resolving the
resulting URI will redirect (currently to
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=31646) showing
that term [taxonomy:31646] means “Hepatitis C virus subtype 1a” in the NCBI Taxonomy
browser. Note that some identifier patterns result in a repetition when combined with the prefix,
e.g. [so:0000667] expands to http://identifiers.org/so/SO:0000667

3.6 Data lifecycle timeline
Data objects are typically records stored in an information system: a file system or a database. The
life of such a record starts at the moment of metadata file submission. Typical preprocessing steps
include: files being parsed and validated regarding their conformity with data standards, application
of quality control processes and designation of appropriate permissions for later use. Depending on
the size and complexity of the data, as well as the load on the data processing subsystems, this
period may take seconds to days for NGS data. After this initial preprocessing stage, objects
become visible to the owner/submitter of the information.

49

The user can then specify the validity start time before which the object is not to be accessed by
anyone other than the user. This feature is useful for providing pre-publication delays or time fixed
processing procedures. The user can also specify the validity end period after which the object is not
to be used by anyone other than the owner of the record.

Optional soft and hard expiration periods can be set. These properties signify when the object
should become "expired" from the database and should be treated as "deleted," and when the
record is actually deleted from the database, respectively. The timespan between these two time
periods is the potential recovery period; during this period the deletion can be reverted by manual or
electronic inquiry from the user to the DB administrator/manager.

Another important milestone of the data existence is set by FDA’s mandate to maintain an archival
copy of any review data used to make regulatory decisions. This copy does not necessarily reside in
any easily accessible database or file system and is managed by a different set of regulations, the
description of which lies outside the scope of this document.

4 Title 21 CFR Part 11

Code of Federal Regulations Title 21 Part 11: Electronic Records - Electronic Signatures

BioCompute project is being developed with Title 21 CFR Part 11 compliance in mind. The digital
signatures incorporated into the format will provide the basis for provenance of BioCompute Object
integrity using NIST proposed encryption algorithms. Execution domain and parametric domain (that
have a potential impact on a result of computation) and identity domain will be used to create hash
values and digital signature encryption keys which later can be used for computer or human
validation of transmitted objects.

Discussions are now taking place to consider relevance of BioCompute Objects with relation to Title
21 CFR part 11. We encourage continuous input from BioCompute stakeholders on this subject now
and while the concept is becoming more mature and more widely accepted by scientific and
regulatory communities.

Relevant document link:
Part 11: Electronic Records

50

5 Compatibility

5.1 ISA for the experimental metadata

ISA is a metadata framework to manage an increasingly diverse set of life science, environmental
and biomedical experiments that employ one or a combination of technologies. Built around the
Investigation (the project context), Study (a unit of research) and Assay (analytical
measurements) concepts, ISA helps to provide rich descriptions of experimental metadata (i.e.
sample characteristics, technology and measurement types, sample-to-data relationships) so that
the resulting data and discoveries are reproducible and reusable. The ISA Model and Serialization
Specifications define an Abstract Model of the metadata framework that has been implemented in
two format specifications, ISA-Tab and ISA-JSON (http://isa-tools.org/format/specification), both of
which have supporting tools and services associated with them, including by a programmable
Python AP (http://isa-tools.org) and a varied user community and contributors
(http://www.isacommons.org). ISA focuses on structuring experimental metadata; raw and derived
data files, codes, workflows etc are considered as external file that are referenced. An example,
along its complementarity with other models and a computational workflow is illustrated in this
paper, which shows how to explicitly declare elements of experimental design, variables, and
findings: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0127612

6 Acknowledgements
This document began development during the 2017 HTS-CSRS workshop. The discussion during
the workshop facilitated the refinement and completion of this document. The workshop participants
were a major part of the initial BCO community, and the comments and suggestions collected during
the sessions were incorporated into Version 1.0. This work was continued through 2018 and
culminated in this document, Version 1.2. The people who participated in the creation of this

