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1 Model

For a dataset x consisting of sequence abundances in subjects, s and at time
points, t, the joint probability of the model is built up conditionally, and given
by:

p(θ,γ, z, e,x) = p(θ)

∏
i

p(γi)
∏
s

p(zis|γi)
∏
t

p(eist|γi, zis, t)p(xist|eist,θ) (1)

where γ is the latent allocation vector denoting the allocation of sequences
to classes (background, vaccine specific or non-vaccine specific); z is a binary
variable indicating the presence or absence of a sequence within an individual;
and e is the latent allocation vector denoting the underlying distribution from
which the sequence abundances are generated.

The parameter e is not of primary interest, so we marginalise over it, and
obtain a posterior which is equivalent to a mixture model:

p(γ, z,θ|x) ∝ p(θ)

∏
i

p(γi)
∏
s

p(zis|γi)
∏
t

3∑
η=1

p(eist = η|γi, ζ, t)p(xist|η,θ)

(2)
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The vector θ = θ1,1, . . . ,θST contains the sample specific parameters asso-
ciated with the underlying sequence abundance distributions, where

p(xist|η,θ) =

 0 if η = 1
NB(xist|θst) if η = 2
dGPD(xist|θst) if η = 3

(3)

where NB is the density of the negative-binomial distribution and dGPD is the
density of the discretised Generalised Pareto Distribution [1]. These parameters
are subject and time point dependent allowing for differences between the sam-
ples, in particular sequencing depths. The dGPD has a threshold parameter,
and only assigns probability to values above this threshold. This ensures that
it is only capturing the tail of the distribution (those sequences which are seen
in high abundance) and provides an intuitive interpretation that only sequences
seen at abundances above this threshold could be considered clonal.

We adopt a flexible approach allowing the model to be applied to a range
of data sets, and therefore we use non-informative priors and seek to learn
parameters as much as possible. We choose Dirichlet priors for the distribution
of γi and eist, and a Beta prior for zis; more precisely,

p(γi = class) = Γclass for 1 ≤ i ≤ K; class ∈ {bg, vs,ns}
Γclass ∼ Dir(G)

p(zis = 1|γi) ∼ Bernouilli(pγi) for all s

pγi ∼ Beta(α,β)

p(eist|γi, zis, t) = ωγi,t for all s

ωγi,t ∼ Dir(W )

θ ∼ Unif(Θ),

where K is the number of sequences and Dir is the symmetric Dirichlet distri-
bution. We set G = W = 1 to give the flat Dirichlet distribution, α = β = 1 to
give a uniform distribution, and Θ defines the space of all possible parameter
values. The full model is illustrated in plate notation in Figure 1.
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Figure 1: Full graphical representation of model using plate notation.

Inference

The parameters are fitted to the data sets using an E-M algorithm. Initial
parameter values are based on prior belief that vaccine specific sequences will
be rare, seen at high frequency and shared between multiple samples, and the
results are robust to different initial parameter values which maintain these
properties. This choice of initial parameters was seen to prevent problems of
label switching and to identify sequences with properties typically associated
with vaccine response, whilst allowing the data to inform the final parameter
values.

Restrictions on parameter values allow us to encode additional structure
and to link parameters hierarchically. First, we assume no structure in the time
profile for the B cell abundances which are not responding to the vaccine, so that
ωbg,t = ωbg and ωns,t = ωns for all t. The time profile that we assume for the
vaccine-specific cells assumes that pre-vaccination the abundances of vaccine-
specific cells have the same distribution as the background cells (ωvs,0 = ωbg),
and that post-vaccination they have the same abundance distribution as B cells
responding to a stimulus other than the vaccine (ωvs,t = ωns, for t > 0). We
also assume that the probability of a sequence being observed in a subject is the
same for B cells classified as background and those classified as a non-specific
response, that is, pbg = pns Finally, zis = 0 indicates an absence of B cells in
subject, so in this case we restrict the B cell abundance to being generated by
the point mass at zero by defining p(eist = 1|γi, zis = 0, t) = 1.

In order to prevent convergence to degenerative local maxima we restrict
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Γclass ≥ .001, so that is there is always some small probability of a sequence
belonging to any class.
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2 Hepatitis B Q-Q plot

Figure 2: Log-scale Q-Q plots of cluster sizes, conditional on clusters being
present in an individual, and data simulated from the fitted distribution for
each sample. This complex data set with a heavy tail is well represented by the
fitted distribution.
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3 Hepatitis B simulated p-value
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Figure 3: The mean Levenshtein distance between all pairs of sequences, in a
random subset (black), and the vaccine specific subset (red) in the Hep B data
set.
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4 Influenza Q-Q plot

Figure 4: Log-scale Q-Q plots of sequence abundance, conditional on sequences
being present in an individual, and data simulated from the fitted distribution
for each sample. This complex data set with a very heavy tail is fitted reasonably
well by this distribution.
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5 Influenza simulated p-value
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Figure 5: The mean Levenshtein distance between all pairs of sequences, in a
random, length-matched, subset (black), and the vaccine specific subset (red)
in the Influenza data set.
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