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SI Materials and Methods 

 

The Study Sample and the Cohorts 

The Health and Retirement Study (HRS) is a longitudinal panel study for which a representative 

sample of approximately 20,000 Americans have been surveyed every two years since 1992 (the 

HRS oversamples certain minority groups, but this does not affect the current study which only 

uses data on individuals of European ancestry.) All individuals were born between 1900 and 

1992, with more than 95% of the individuals who have been successfully genotyped born in 

1953 or earlier. All primary respondents were over the age of 50 when enrolled; spouses of the 

primary respondents were also interviewed, regardless of age. DNA samples have been collected 

for a subsample of the HRS participants between 2006 and 2008.  

 

My main analyses focus on individuals born between 1931 and 1953. To reduce the risks of 

confounding by population stratification, I restrict the analyses to unrelated individuals of 

European ancestry (i.e., non-Hispanic White individuals; some of those unrelated individuals are 

spouses). To ensure that the lifetime reproductive success (LRS) variable is a good proxy for 

completed fertility, I only include females who were at least 45 years old when asked the number 

of children they ever gave birth to and males who were at least 50 years old when asked the 

number of children they ever fathered. (Although the HRS contains variables on self-reported 

age at menopause, I do not use those variables to exclude females who had not completed 

menopause when asked the number of children they ever gave birth to, because this could induce 

a selection bias and because those variables are imprecisely measured.) Further, to ensure that 

the sample of individuals who have been successfully genotyped is comparable to the sample of 

individuals who have not, I only include individuals who were enrolled in the HRS and asked the 

number of children they ever gave birth to or fathered in 2008 or earlier (all but two individuals 

who have been successfully genotyped were enrolled in the HRS and asked this question in 2008 

or earlier, but a large number of individuals who have not been successfully genotyped were 

enrolled later). This left 6,414 females and 5,436 males with phenotypic data and 3,416 unrelated 

females and 2,571 unrelated males who have been successfully genotyped and who passed the 

quality control filters described below (and for whom I could thus construct polygenic scores). I 

refer to the resulting sample as the “study sample.”  
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For some specifications, I divided the study sample into cohorts based on the individuals’ birth 

years. The HRS1 cohort contains individuals born from 1931 to 1941; the HRS2 cohort contains 

individuals born from 1942 to 1947; and the HRS3 cohort contains individuals born from 1948 

to 1953. Table S6 provides more details on these cohorts and on the HRS0 cohort of individuals 

born from 1924 to 1930. My definition of the cohorts closely resembles the HRS', except for the 

fact that the HRS assigns the primary respondents' spouses or partners to the primary 

respondents' cohorts regardless of the spouses’ years of birth; hence, except for the spouses of a 

few primary respondents, my HRS0, HRS1, HRS2, and HRS3 cohorts are identical to the HRS’ 

Children of the Depression, Initial HRS, War Baby, and Early Baby Boomer cohorts. The HRS 

cohorts were added to the HRS at different times, and dividing the study sample into cohorts 

allowed me to test the robustness of my results across cohorts. 

 

To mitigate the risk of selection bias based on mortality, I excluded the HRS0 cohort from the 

study sample, but my main results are robust to the inclusion of that cohort (Table S4). As shown 

in Table S6, only 69% of females and 60% of males in the HRS0 cohort survived to 2008, the 

last year when individuals were genotyped. Also, for the study sample the estimates from the 

regressions of rLRS on the phenotypic variables are very similar between the sample of 

genotyped individuals and the sample of all individuals (Tables 1 and S4). By contrast, as can be 

seen in Table S8, for the HRS0 cohort the coefficient on phenotypic EA is negative and 

significant in the sample of all females (P = 0.031), but the corresponding coefficient in the 

sample of genotyped females is positive. That latter coefficient is significantly different from the 

coefficient in the sample of females who have not been genotyped (P = 0.009, t-test of the 

interaction between the coefficient on EA and a dummy for genotyped individuals), suggesting 

that sample selection bias is at play for the HRS0 cohort. Also to mitigate the risk of selection 

bias based on mortality, I excluded individuals born prior to 1924 from the study sample. I also 

excluded individuals born after 1953 from the study sample, as very few of them have been 

genotyped.  
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Phenotypic Variables 

For my baseline analyses, I operationalize relative fitness with the relative LRS (rLRS) variable. 

Using rLRS instead of LRS as the measure of fitness helps control for the effects of time trends 

in LRS and makes it possible to interpret my estimates as rates of natural selection (1, 21). (My 

results are robust to using LRS instead of rLRS as the measure of fitness.) The LRS variable is 

the number of children females ever gave birth to or the number of children males ever fathered. 

Most individuals were asked this question in their first HRS interview. As Fig. S1 shows, LRS 

for females and males declined gradually between 1931 and 1953, from around 3 children in the 

early 1930s to 2 children around 1950. To construct the rLRS variable, I proceeded as follows: 

for any given birth year, I first calculated the mean LRS for all females born in the preceding, the 

given, and the following birth years; then, I obtained rLRS for females born in the given birth 

year by dividing their LRS by this mean LRS. I proceeded analogously for males.  

 

The HRS contains phenotypic variables for body mass index (BMI), educational attainment 

(EA), height (HGT), and total cholesterol (TC). The TC phenotypic variable is an indicator 

variable for a self-reported health problem with high cholesterol in 1992, and not plasma 

concentrations of total cholesterol as in the genome-wide association study (GWAS) of TC. BMI 

was measured in each wave of the HRS, and the BMI phenotypic variable for females is the 

mean across waves of female BMI residualized on birth year dummies, plus the mean female 

BMI across all waves. The BMI phenotypic variable for males is defined analogously. HGT was 

also measured in each wave of the HRS and the HGT phenotypic variable is also defined 

analogously for both sexes. The EA variable is from the RAND HRS data. Table S1 presents 

summary statistics for these phenotypic variables and for birth year, LRS and childlessness (a 

dummy that is equal to one if an individual is childless). The HRS does not contain phenotypic 

variables for fasting glucose concentration (GLU), schizophrenia (SCZ), and age at menarche 

(AAM; in females).  

 

Quality Control of the Genotypic Data and Polygenic Scores 

Following (31), the individuals’ genotyped (as opposed to imputed) single nucleotide 

polymorphisms (SNPs) were used to compute the polygenic scores. The HRS-provided binary 

PLINK-format data files that exclude chromosome anomalies greater than 10 MB (among other 
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things) were used. Following the HRS recommendations regarding the use of the genotypic data 

(“Quality Control Report for Genotypic Data”), only individuals in the HRS-provided 

“hwe_eur_keep.txt” file were used; this effectively only keeps a set of unrelated individuals of 

European-ancestry, with missing call rate of less than 2%, who self-identified as White, and 

falling within 1 SD of all self-identified non-Hispanic Whites on the first two principal 

components of the genetic relatedness matrix of all unrelated individuals. Also following the 

HRS recommendations, only SNPs in the HRS-provided “SNP_qual_maf_filter_extract.txt” file 

were used; among other things, this effectively removed SNPs with minor allele frequency 

(MAF) less than 1%, with P-value less than 1x10-4 on the test for Hardy–Weinberg equilibrium, 

and with missing call rate greater than 2%. In addition, the following filters were applied to the 

resulting sample, which only includes the “hwe_eur_keep.txt” individuals and the 

“SNP_qual_maf_filter_extract.txt” SNPs: SNPs with MAF less than 1%, with P-value less than 

1x10-4 on the test for Hardy–Weinberg equilibrium, and (following (31)) with missing call rate 

greater than 1%, were excluded. 1,411,964 SNPs passed these quality control filters. For each set 

of GWAS summary statistics, SNPs with MAF less than 1% in the summary statistics were also 

dropped. 

 

The individuals’ genotyped SNPs that passed the above quality control filters and that were 

present in the phenotype’s summary statistics files were used to construct the polygenic scores. 

Depending on the phenotype, there were between 505,254 and 544,493 such overlapping SNPs 

(except for GLU, for which there were only 22,895 such overlapping SNPs, because the GLU 

GWAS was conducted with only ~66,000 SNPs). The average sample sizes across the SNPs in 

the summary statistics used to construct the polygenic scores are !!"# = 232,186, !!" =
386,098, !!"# = 243,630, and !!" = 92,793 individuals. The summary statistics for GLU, 

SCZ, and MEN did not contain sample size information, but the reported samples sizes for the 

main GWAS of these phenotypes are !!"# = 133,010, !!"# ≈ 80,000, and !!"# = 132,989 

individuals. To avoid overfitting, I ensured that the GWAS summary statistics used to construct 

the polygenic scores for each phenotype are based on meta-analyses that exclude the HRS 

dataset (30). The HRS was not included in the GWAS of BMI, GLU, HGT, SZC, TC, and AAM. 

For EA, whose GWAS included the HRS (20), summary statistics based on a meta-analysis that 

excludes the HRS were used to construct the scores. 
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For the main analysis, I used LDpred (31) to construct the polygenic scores; for a robustness 

check, I also constructed a set of polygenic scores with PLINK (32). (For EA, polygenic scores 

were constructed and directly provided to me by the Social Science Genetic Association 

Consortium (SSGAC), following the procedure described here and which I used to construct the 

other scores.) For a given phenotype and a given individual !, both the LDpred and PLINK 

scores are calculated as the weighted sums of individual !’s SNPs: 

PGS! = !!!!"
!

!!!
, 

where PGS! is individual !’s polygenic score, !! is an estimate of SNP !’s effect size (i.e., the 

effect of having one more copy of the reference allele at SNP !), and !!" !is the genotype of 

individual !!at SNP ! (coded as having 0, 1 or 2 copies of the reference allele at SNP !). For the 

PLINK scores, the !! for a given SNP ! is simply the GWAS estimate for SNP !. Because nearby 

SNPs tend to be in linkage disequilibrium (LD) (i.e., correlated), that GWAS estimate captures 

the causal effects both of SNP ! and of SNPs that are in LD with SNP !. As a result, PLINK 

polygenic scores effectively count the causal effects of SNPs that are in LD with other SNPs 

multiple times. To correct for this multiple counting problem, LDpred uses information on LD 

between SNPs from a reference panel together with a prior on the SNPs’ effect sizes, and adjusts 

the GWAS estimate for SNP ! to obtain an estimate of the causal effect of SNP ! independent of 

the effects of other SNPs. LDpred then uses that estimate as the !! for SNP !!in the above 

formula. The resulting LDpred score for individual ! is therefore the sum of !’s genotype across 

all SNPs, weighted by the LDpred estimates of the SNPs’ causal effects; it is an unbiased 

predictor of the true genetic score (and of the phenotype itself) for individual !, conditional on 

the model assumptions and the data (31). 

 

For the LDpred scores, the study sample individuals’ genotyped SNPs that passed the above 

quality control filters were used as the reference panel to calculate the LD between the SNPs. 

(LDpred requires that the reference panel be from a population that is similar to that in which the 

GWAS summary statistics were estimated (31); here, the study sample individuals and almost all 

the individuals in the various GWAS whose summary statistics are used are of European 

ancestry.) The LDpred prior on the SNPs’ effect sizes depends on an assumed Gaussian mixture 
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weight, which corresponds to the assumed fraction of causal markers. For each phenotype, 

LDpred scores were constructed for each of the following Gaussian mixture weights: 0.0001, 

0.0003, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1. For BMI, EA, HGT, TC—for which there are 

phenotypic variables in the HRS—I selected the weights that maximize the incremental R2 of 

each score in an ordinary least squares (OLS) regression of the phenotypic variable on the score 

and on variables for sex, birth year, birth year squared, and the top 20 principal components of 

the genetic relatedness matrix. For each of GLU, SCZ, AAM—for which there are no phenotypic 

variables in the HRS—I selected the weights that maximize the correlations between the score 

and known correlates of the phenotype, controlling for sex, birth year, birth year squared, and the 

top 20 principal components. For GLU, I selected the weight that maximizes the correlation with 

a variable indicating if an individual ever had diabetes or high blood sugar; for SCZ, I selected 

the weight that maximizes the correlations with neuroticism (59) and cognitive ability (60); for 

AAM, I selected the weight that maximizes the correlations with HGT and BMI (61). For each 

phenotype, I verified that the correlation between the score and the phenotype or the known 

correlates has the expected direction. Table S7 shows the parameters used to construct the scores 

and the sources for each phenotype’s summary statistics. The scores were standardized to have 

mean zero and a standard deviation of one. 

 

To construct the PLINK scores, the PLINK’s “score” command was used with the default 

options; I then standardized the resulting scores so that they have mean zero and a standard 

deviation of one. 

 

Association Analyses 

For each of BMI, EA, HGT, and TC—for which there are phenotypic variables in the HRS—I 

regressed rLRS on the corresponding phenotypic variable, separately for males and females; 

these regressions included birth year dummies and HRS-defined cohort dummies, and were 

estimated by OLS. For all phenotypes, I also regressed rLRS on the polygenic score of the 

phenotype in various samples; the regressions included birth year dummies, HRS-defined cohort 

dummies, and the top 20 principal components of the genetic relatedness matrix, and were also 

estimated by OLS. (The top principal components of the genetic relatedness matrix capture the 

main dimensions along which the ancestry of the individuals in the dataset vary and are 
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commonly used to control for population stratification (27); Section 5 of the Supplemental 

Material of ref. (56) demonstrates how controlling for the top principal components can 

eliminate some spurious associations. I did not control for the top 20 principal components in the 

regressions of rLRS on the phenotypic variables because it is not possible to compute these for 

the individuals who have not been successfully genotyped.) For the regressions in the sample of 

females and males together, I also controlled for sex and I only included the respondent with the 

lowest person number (PN, an HRS identifier) in each household, as spouses very often have the 

same number of children, which induces a complex correlation structure between the error terms 

(the results for the score of EA are robust to alternative ways of selecting one respondent per 

household). 

 

In all results tables, I report the coefficient estimates and standard errors, with stars to indicate 

statistical significance; P-values are included in the log files available on my website. As Lande 

and Arnold (16) note, the estimates and standard errors from these OLS regressions are unbiased; 

however, rLRS is not a continuous variable and the error terms from these regressions are not 

normally distributed, so the P-values based on the OLS t-statistics are only asymptotically valid. 

Here, given the large sample sizes, the P-values should be informative. To verify, I used the 

nonparametric bootstrap method to bootstrap the t-statistics of the coefficients whose estimates 

are reported in Tables 1 and 2, using 10,000 bootstrap samples; I then calculated the percentile of 

the actual t-statistics of each coefficient in its corresponding bootstrapped distribution to obtain 

the coefficient’s bootstrapped P-value. The bootstrapped P-values were very similar to the P-

values implied by the stars in Tables 1 and 2.  

 

I also note that the standard errors and P-values implied by the stars in the tables reporting my 

estimates from regressions of rLRS on the LDpred scores do not account for the uncertainty 

stemming from the selection of the Gaussian mixture weights for the LDpred scores. However, 

all my results are robust to the use of the PLINK scores instead of the selected LDpred scores; 

my results for EA are robust to the use of the alternative weights of 0.3 and 1 instead of 0.1 (for 

lower weights, the scores of EA have much lower incremental R2); my results for AAM are 

actually much stronger and more robust with the alternative weight of 1 instead of 0.3; and my 

insignificant results for the other phenotypes remain insignificant with different weights. All of 
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this implies that my main results are not driven by the weight selection procedure. 

 

Directional Selection Differentials 

The directional selection differential of a character is the change in its mean value due to natural 

selection in one generation. The Robertson-Price identity (33, 34) equates the directional 

selection differential of a character to the genetic covariance between the character and relative 

fitness: 

∆! = !∗ − ! = Cov! !, ! , 
where ! is the character of interest before selection, !∗ is the character of interest after one 

generation of selection, ! is relative fitness, and Cov! !.  is the genetic covariance. 

 

If we define the polygenic score of EA (as opposed to EA, as would be usual) as the character of 

interest, then  

∆!!"#!!"!!" = Cov! rLRS,PGS!of!EA = Cov rLRS,PGS!of!EA !

= Cov rLRS,PGS!of!EA
Var PGS!of!EA = !!"#$!!"!!"#!!"!!", 

where “PGS!of!EA” is the polygenic score of EA. The second equality follows because the non-

genetic component of rLRS is independent of the genetic component of EA (by definition) and 

thus of PGS!of!EA, the third equality follows from the fact that the score of EA has been 

standardized to have unit variance, and the last equality holds if the other covariates in the 

regression of rLRS on PGS!of!EA are uncorrelated with PGS!of!EA (which is a reasonable 

approximation). (This can also be derived from the framework of Lande and Arnold (16), in 

which the directional selection differential ∆! is given by ∆! = !∗ − ! = ! ∙ !!! ∙ Cov(!, !), 
where ! and ! are the genotypic and phenotypic variance-covariance matrices. If we treat the 

score of EA as the single character of interest—as opposed to the phenotype, as would be 

usual—then ! = ! and Cov !, ! = Cov!(!, !) and the Robertson-Price identity follows.)  

 

Hence, the directional selection differential of the score of EA is equal to the coefficient on the 

score of EA in the regression of rLRS on the score of EA. In other words, my estimates of the 

coefficients on the score of EA in Table 2 can be interpreted as directional selection differentials, 

or as the implied changes in the mean values of the score of EA that will occur in one generation 
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as a result of natural selection. Furthermore, because the score of EA has a standard deviation of 

one, these implied changes are expressed in Haldanes (one Haldane is one standard deviation per 

generation). This also applies to the scores of BMI, GLU, HGT, SCZ, TC, and AAM.  

 

To express the estimates of the directional selection differential for the score of EA in years of 

education per generation instead of in Haldanes, I first rescale the score of EA in years of 

education and calculate its standard deviation in years of education. If we let PGS!of!EA denote 

the rescaled polygenic score of EA, then EA = PGS!of!EA+ !!"# and !!"#!!"!!"! = !"# !"#!!"!!"
!"# !"  

and it follows that !!"#!!"!!" = !!" ∙ !!"#!!"!!"! . We can then express the directional selection 

differential for the score of EA in years of education per generation by multiplying the estimates 

of ∆!!"#!!"!!" = !!"#$!!"!!"#!!"!!" (expressed in Haldanes) by !!"#!!"!!": 

∆!!"#!!"!!" ≡ ∆!!"#!!"!!" ∙ !!"#!!"!!"!. 
 

Using this formula and using the nonparametric bootstrap method with 1,000 bootstrap samples 

to estimate percentile confidence intervals, I obtain estimates of the rescaled directional selection 

differential for the score of EA of ∆!!"#!!"!!" = −0.022 (95% CI: -0.036 to -0.009) and 

∆!!"#!!"!!" = −0.022 (95% CI: -0.040 to -0.004) years of education per generation for females 

and for males, or about minus one week of education per generation for both sexes. (These 

calculations can in principle also apply to the other phenotypes, but are not performed here 

because I do not have an estimate of !!"#!!"!!!"!  and because my estimates for the scores of 

BMI, GLU, HGT, SCZ, and TC are not significant.)  

 

For a given phenotype, LDpred calculates the posterior mean of the true genetic score of the 

phenotype; the result is an unbiased predictor of the true genetic score of the phenotype (and of 

the phenotype itself), conditional on the model assumptions and the data (31). (Here, the scores 

are rescaled unbiased predictors of the true genetic scores, but this does not affect the present 

derivations.) Thus, if we focus on EA, we can write 

!!" = !PGS!of!EA+ !, 
where !!" is the true genetic score of EA, ! is orthogonal to!PGS!of!EA, and where !!", 
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PGS!of!EA, and ! are expressed in years of education. 

 

To obtain an estimate of the directional selection differential of EA (or, equivalently, of the true 

genetic score of EA—rather than of the score of EA) expressed in years of education per 

generation, observe that  

∆!!" ≡ Cov! rLRS,EA = Cov rLRS,!!" !

= Cov rLRS,!!"
Var !!"

⋅ Var !!"Var EA ⋅ Var EA
Var PGS!of!EA ⋅ Var PGS!of!EA !

= Cov rLRS,!!"
Var !!"

⋅ ℎ!"! !!"#!!"!!"! ⋅ Var PGS!of!EA !

= !!"#$!!"!!!" ⋅ ℎ!"! !!"#!!"!!"! ⋅ Var PGS!of!EA ,!
where ℎ!"!  is the heritability of EA and !!"#!!"!!"!  is the R2 of the score. The second equality 

follows because the non-genetic component of rLRS is independent of the genetic component of 

EA (by definition).  

 

Under the assumption that E rLRS PGS!of!EA,!! = ! ⋅ PGS!of!EA+ ! ⋅ ! = ! ⋅ !!" (or, 

equivalently, that !!"#$!!"!!!" = !!"#$!!"!!"#!!"!!"), the following holds: !!"#$!!"!!!" =
!!"#$!!"!!"#!!"!!" = !!"#$!!"!!"#!!"!!" !!"#!!"!!" = ∆!!"#!!"!!" !!"#!!"!!". It follows that  

∆!!" = ∆!!"#!!"!!" !!"#!!"!!" ⋅ ℎ!"! !!"#!!"!!"! ⋅ Var PGS!of!EA !
= ∆!!"#!!"!!" ⋅ !!"#!!"!!" ⋅ ℎ!"! !!"#!!"!!"! !
= ∆!!"#!!"!!" ⋅ ℎ!"! !!"#!!"!!"! . 

 

In other words, under the assumption that the coefficient on the score of EA in a regression of 

rLRS on the score is equal to the coefficient on the true genetic score of EA in a regression of 

rLRS on the true genetic score, it follows that the directional selection differential of EA is equal 

to the directional selection differential of the score multiplied by the ratio of the heritability of 

EA to the R2 of the score of EA.  

 

Estimates of the heritability of EA vary substantially across studies and countries, but a recent 

meta-analysis of existing heritability estimates of EA obtained a mean of ~0.40 (35). Assuming 
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that ℎ!"! = 0.40, using my earlier estimates of !!"#!!"!!"!  and ∆!!"#!!"!!", and using the 

nonparametric bootstrap method with 1,000 bootstrap samples to estimate percentile confidence 

intervals, I obtain estimates of the directional selection differential of EA of ∆!!" = −0.108 

(95% CI: -0.177 to -0.045) and ∆!!" = −0.128 (95% CI: -0.237 to -0.025) years of education 

per generation for females and for males, respectively—which is equivalent to -1.30 (95% CI: -

2.12 to -0.54) and -1.53 (95% CI: -2.85 to -0.31) months of education per generation for females 

and males, respectively. (These estimates of the confidence intervals do not account for the 

uncertainty in the value of the heritability of EA, nor for the uncertainty stemming from the 

selection of the Gaussian mixture weights for the LDpred scores.) 

 

Testing for Nonlinear Selection  

Lande and Arnold (16) show that, under the assumption that the characters have a multivariate 

normal distribution before selection, the estimates from a quadratic regression of relative fitness 

on all the characters and their squares and interactions together can inform whether the 

characters are under either of the three types of nonlinear selection: stabilizing, disruptive, or 

correlational selection. In that framework, the coefficients on the characters capture the forces of 

directional selection; the coefficients on the squared characters capture the forces of stabilizing 

and disruptive selection acting directly on the variances of the characters and will be positive for 

the characters that are under disruptive selection and negative for the characters that are under 

stabilizing selection; and the coefficients on the interacted characters capture the forces of 

correlational selection (9) as well as the impact of selection on the covariance between the 

characters. All these coefficients are needed to project evolutionary changes over more than one 

generation.  

 

I treat the polygenic scores themselves (as opposed to the phenotypes, as is usual) as the 

characters of interest and estimated the quadratic regression of rLRS on all the scores and their 

squares and interactions together, along with birth year dummies, HRS-defined cohort dummies, 

and the top 20 principal components of the genetic relatedness matrix, separately for females and 

males in the study sample, by OLS. 

 

Table S5 reports the results. For both females and males, few of the coefficients on the squared 
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and interacted scores are significant at the 5%-level. The most significant estimate is that of the 

coefficient on the interaction of the scores of SCZ and TC in females (P = 0.007), but it is not 

significant after Bonferroni correction (it is not significant after Bonferroni correction for more 

than seven tests; coefficients on 28 squared or interacted scores are tested for females, and 21 are 

tested for males, so 49 tests are conducted in total). There is thus no solid evidence that 

stabilizing, disruptive, or correlational selection has been operating on the genetic variants 

associated with the various phenotypes. Comparing Table S5 to Table 2, the coefficient estimates 

on the scores from the quadratic regressions are very similar to those from the regressions of 

rLRS on each score individually. This is not surprising, since the correlations between most 

scores are low and the coefficients on the squared and interacted scores are small. I emphasize 

that these null results could be attributable to the polygenic scores being imperfect proxies for 

the true genetic scores; they do not prove that there has been no stabilizing, disruptive, or 

correlational selection of the genetic variants associated with the various phenotypes. 
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Fig. S1. 3-year rolling average of LRS by birth year, for females and males in the study sample. 

The rolling average for each year was calculated using the year's data together with data from the 

previous and following years. 
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Table S1. Summary statistics for the phenotypic variables 

 
            

      
All individuals 

(genotyped and not genotyped) Genotyped individuals only 

Phenotype Comment Unit N Mean Std. Dev. N Mean Std. Dev. 
    Females             

Birth year  --- Year 6,414 1941.21 6.41 3,416 1941.35 6.40 
LRS Number of children ever given birth to Children 6,414 2.57 1.63 3,416 2.58 1.58 
BMI Mean across waves of female BMI residualized on birth year 

dummies, plus mean female BMI across all waves and females  
BMI points 6,396 27.01 5.73 3,413 27.18 5.56 

EA  --- Years of 
education 

6,403 12.98 2.38 3,410 13.12 2.33 

HGT Mean across waves of female HGT residualized on birth year 
dummies, plus mean female HGT across all waves and females 

Centimeters 6,411 162.95 6.36 3,416 163.14 6.25 

TC Indicator variable for a self-reported health problem with high 
cholesterol in 1992 

1 = Yes 4,152 0.25 0.43 2,217 0.25 0.44 

Childlessness Indicator variable for a childless individual (LRS=0) 1 = Childless 6,414 0.10 0.31 3,416 0.10 0.31 

    Males             
Birth year  --- Year 5,436 1940.83 6.50 2,571 1941.07 6.50 
LRS Number of children ever fathered Children 5,435 2.45 1.60 2,571 2.47 1.57 
BMI Mean across waves of male BMI residualized on birth year 

dummies, plus mean male BMI across all waves and males 
BMI points 5,432 27.81 4.53 2,571 27.79 4.49 

EA  --- Years of 
education 

5,420 13.27 2.82 2,566 13.49 2.70 

HGT Mean across waves of male HGT residualized on birth year 
dummies, plus mean male HGT across all waves and males  

Centimeters 5,436 178.07 6.63 2,571 178.18 6.48 

TC Indicator variable for a self-reported health problem with high 
cholesterol in 1992 

1 = Yes 3,078 0.24 0.42 1,441 0.27 0.44 

Childlessness Indicator variable for a childless individual (LRS=0) 1 = Childless 5,435 0.12 0.32 2,571 0.11 0.31 

         This table shows the summary statistics for the study sample. For the main analyses, I use rLRS (relative LRS), not LRS. The phenotypic variable for TC is an 
indicator for a self-reported health problem with high cholesterol, and not plasma concentrations of total cholesterol as in the GWAS of TC. The HRS does not 
contain phenotypic variables for GLU, AAM, and SCZ. 
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Table S2. Estimates from separate regressions of rLRS on each phenotypic variable, for the genotyped 
individuals only 

 
        

 
Females Males 

  Coefficient estimate N Coefficient estimate N 
 BMI    0.010*** (0.002) 3,413    0.010*** (0.003) 2,571 
 EA    -0.055*** (0.004) 3,410    -0.020*** (0.005) 2,566 
 HGT    -0.009*** (0.002) 3,416    -0.001 (0.002) 2,571 
 TC    -0.002 (0.028) 2,217    -0.020 (0.036) 1,441 

     This table mirrors Table 1 in the main text, but shows results for the sample of genotyped individuals only—instead 
of for the sample of all individuals (genotyped and not genotyped)—in the study sample. It shows estimates of the 
coefficients on the phenotypic variables and their standard errors (in parentheses) from separate regressions of rLRS 
on each phenotypic variable. Each estimate comes from a different regression and every regression included birth 
year dummies and HRS-defined cohort dummies. The HRS does not contain phenotypic variables for GLU, AAM, 
and SCZ. 
*P < 0.10, **P < 0.05, ***P < 0.01 
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Table S3. Estimates from separate regressions of rLRS on the polygenic score of each phenotype, for the 
study sample and for each cohort separately, and by sex and for females and males together 

 
  

   

  
Study sample 
(born 1931-53) 

HRS1 cohort 
(born 1931-41) 

HRS2 cohort 
(born 1942-47) 

HRS3 cohort 
(born 1948-53) 

Females 
Score of BMI    0.006 (0.010)    0.017 (0.014)    0.004 (0.020)    -0.034 (0.025) 
Score of EA    -0.033*** (0.010)    -0.038*** (0.014)    -0.044** (0.020)    -0.001 (0.025) 
Score of GLU    0.009 (0.010)    0.002 (0.014)    0.029 (0.021)    0.004 (0.024) 
Score of HGT    -0.011 (0.014)    -0.025 (0.019)    0.024 (0.028)    -0.019 (0.033) 
Score of SCZ    -0.001 (0.011)    -0.012 (0.015)    0.053** (0.022)    -0.035 (0.025) 
Score of TC    -0.012 (0.011)    -0.022 (0.014)    -0.005 (0.021)    0.010 (0.025) 
Score of AAM    0.018* (0.011)    0.008 (0.014)    0.021 (0.021)    0.037 (0.024) 

N 3,416 1,840 811 765 
Males 

Score of BMI    0.016 (0.013)    0.015 (0.016)    -0.025 (0.029)    0.049 (0.032) 
Score of EA    -0.031** (0.012)    -0.050*** (0.015)    -0.010 (0.028)    0.012 (0.031) 
Score of GLU    -0.013 (0.013)    0.009 (0.016)    -0.023 (0.028)    -0.051* (0.031) 
Score of HGT    -0.005 (0.018)    0.016 (0.022)    -0.043 (0.040)    -0.024 (0.042) 
Score of SCZ    0.009 (0.013)    0.033** (0.016)    -0.033 (0.032)    -0.009 (0.033) 
Score of TC    -0.003 (0.013)    -0.010 (0.016)    0.010 (0.030)    0.022 (0.033) 

N 2,571 1,493 506 572 
Females and males together (one person per household) 

Score of BMI    0.018* (0.010)    0.025** (0.012)    0.013 (0.018)    -0.014 (0.022) 
Score of EA    -0.041*** (0.009)    -0.047*** (0.012)    -0.039** (0.018)    -0.008 (0.021) 
Score of GLU    -0.003 (0.009)    0.011 (0.012)    0.006 (0.018)    -0.037* (0.021) 
Score of HGT    -0.015 (0.013)    -0.008 (0.016)    0.001 (0.026)    -0.011 (0.028) 
Score of SCZ    0.011 (0.010)    0.011 (0.013)    -0.016 (0.020)    -0.004 (0.022) 
Score of TC    -0.008 (0.010)    -0.012 (0.012)    -0.005 (0.019)    0.007 (0.022) 

N 4,361 2,647 1,135 1,121 

     This table mirrors Table 2 in the main text, but also shows the results for each cohort separately as well as for 
females and males together (the results for the study sample for females and for males separately are the same as 
those shown in Table 2). The table shows estimates of the coefficients on the polygenic scores and their standard 
errors (in parentheses) from separate regressions of rLRS on the polygenic score of each phenotype. Each estimate 
comes from a different regression. All regressions included birth year dummies, HRS-defined cohort dummies, and 
the top 20 principal components of the genetic relatedness matrix, and all regressions for a cohort and sex had the 
same number of observations. The regressions for females and males together also included a sex dummy and only 
included the respondent with the lowest person number (PN, an HRS identifier) in each household. (The results for 
the score of EA are robust to alternative ways of selecting one respondent per household, but the significant 
estimates for the score of BMI are not.) The coefficients can be interpreted as directional selection differentials of 
the scores, expressed in Haldanes—i.e., each coefficient equals the implied change in the score that will occur due to 
natural selection in one generation, expressed in standard deviations of the score. 
*P < 0.10, **P < 0.05, ***P < 0.01 
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Table S4. Robustness checks for the regressions reported in Table 2 

     

 

LRS (instead of 
rLRS) as the 

dependent variable 

PLINK (instead of 
LDpred) polygenic 

scores 

Females aged 50-70 
and males aged 55-70 

only 

Study sample 
together with the 

HRS0 cohort 
Females 

Score of BMI    0.020 (0.027)    0.002 (0.011)    -0.007 (0.014)    0.002 (0.009) 
Score of EA    -0.085*** (0.027)    -0.028*** (0.011)    -0.030** (0.014)    -0.021** (0.009) 
Score of GLU    0.019 (0.026)    -0.003 (0.010)    0.014 (0.013)    0.000 (0.009) 
Score of HGT    -0.030 (0.036)    -0.011 (0.013)    -0.007 (0.018)    -0.016 (0.013) 
Score of SCZ    -0.001 (0.028)    -0.010 (0.012)    0.001 (0.014)    0.001 (0.010) 
Score of TC    -0.036 (0.027)    -0.001 (0.010)    -0.009 (0.014)    -0.005 (0.010) 
Score of AAM    0.045* (0.027)    0.022** (0.010)    0.021 (0.014)    0.013 (0.010) 

N 3,416 3,416 2,065 4,182 
Males 

Score of BMI    0.047 (0.031)    0.021 (0.013)    0.003 (0.021)    0.013 (0.011) 
Score of EA    -0.079** (0.031)    -0.031** (0.013)    -0.074*** (0.020)    -0.021* (0.011) 
Score of GLU    -0.030 (0.030)    -0.014 (0.013)    -0.019 (0.020)    -0.003 (0.011) 
Score of HGT    0.007 (0.040)    0.001 (0.017)    -0.026 (0.029)    0.007 (0.016) 
Score of SCZ    0.022 (0.036)    0.004 (0.015)    0.018 (0.022)    0.015 (0.012) 
Score of TC    -0.009 (0.031)    -0.001 (0.013)    -0.016 (0.021)    -0.008 (0.012) 

N 2,571 2,571 959 3,173 

      
This table mirrors Table 2 in the main text, but shows the results for alternative specifications and samples. Column 
2 shows the estimates and standard errors (in parentheses) from separate regressions of LRS (instead of rLRS) on 
the polygenic score of each phenotype for the study sample; column 3 shows the estimates and standard errors from 
separate regressions of rLRS on the polygenic score of each phenotype constructed with PLINK (instead of LDpred) 
for the study sample; column 4 shows estimates and standard errors from separate regressions of rLRS on the 
polygenic score of each phenotype, but only for individuals in the study sample who were aged no more than 70 in 
2008 (the last year for genotyping) and at least 50 years old when asked the number of children they ever gave birth 
to (for females) or at least 55 years old when asked the number of children they ever fathered (for males); column 5 
shows estimates and standard errors from separate regressions of rLRS on the polygenic score of each phenotype, 
but for the study sample and the HRS0 cohort together. All regressions included birth year dummies, HRS-defined 
cohort dummies, and the top 20 principal components of the genetic relatedness matrix, and all regressions for each 
specification and sex had the same number of observations. The coefficients in column 2 can be interpreted as the 
effects of one-standard deviation increases in the scores on the number of children ever given birth to (for females) 
or the number of children ever fathered (for males). The coefficients in columns 3-5 can be interpreted as directional 
selection differentials of the scores, expressed in Haldanes—i.e., each coefficient equals the implied change in the 
score that will occur due to natural selection in one generation, expressed in standard deviations of the score.  
*P < 0.10, **P < 0.05, ***P < 0.01 
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Table S5. Estimates from the quadratic regression from Lande and Arnold (16) of rLRS on all the polygenic 
scores of the different phenotypes, all the squared polygenic scores, and all their interactions 

     Females Males 
Score of BMI    0.003 (0.011)    0.012 (0.013) 
Score of EA    -0.035*** (0.011)    -0.029** (0.013) 
Score of GLU    0.010 (0.010)    -0.012 (0.013) 
Score of HGT    -0.008 (0.014)    0.004 (0.018) 
Score of SCZ    -0.001 (0.011)    0.006 (0.014) 
Score of TC    -0.013 (0.011)    -0.004 (0.013) 
Score of AAM    0.022** (0.011)             --- 
Squared score of BMI    -0.006 (0.008)    -0.001 (0.010) 
Squared score of EA    -0.012 (0.008)    -0.004 (0.009) 
Squared score of GLU    -0.007 (0.007)    -0.002 (0.009) 
Squared score of HGT    -0.009 (0.007)    0.000 (0.009) 
Squared score of SCZ    0.010 (0.007)    0.022** (0.009) 
Squared score of TC    -0.007 (0.007)    0.000 (0.009) 
Squared score of AAM    -0.004 (0.008)             --- 
Score of BMI x score of EA    0.005 (0.011)    0.004 (0.013) 
Score of BMI x score of GLU    0.002 (0.011)    -0.011 (0.013) 
Score of BMI x score of HGT    -0.008 (0.012)    -0.015 (0.013) 
Score of BMI x score of SCZ    0.017 (0.011)    0.015 (0.013) 
Score of BMI x score of TC    0.009 (0.011)    0.016 (0.014) 
Score of BMI x score of AAM    -0.012 (0.011)             --- 
Score of EA x score of GLU    -0.006 (0.011)    0.017 (0.012) 
Score of EA x score of HGT    -0.003 (0.011)    0.001 (0.013) 
Score of EA x score of SCZ    0.001 (0.011)    -0.032** (0.013) 
Score of EA x score of TC    -0.010 (0.011)    0.000 (0.013) 
Score of EA x score of AAM    0.003 (0.011)             --- 
Score of GLU x score of HGT    -0.020* (0.011)    -0.002 (0.013) 
Score of GLU x score of SCZ    -0.008 (0.011)    0.008 (0.013) 
Score of GLU x score of TC    -0.007 (0.010)    0.013 (0.013) 
Score of GLU x score of AAM    -0.015 (0.011)             --- 
Score of HGT x score of SCZ    0.004 (0.011)    0.022 (0.014) 
Score of HGT x score of TC    0.000 (0.011)    -0.010 (0.013) 
Score of HGT x score of AAM    0.003 (0.012)             --- 
Score of SCZ x score of TC    -0.028*** (0.010)    -0.004 (0.013) 
Score of SCZ x score of AAM    -0.019* (0.011)             --- 
Score of TC x score of AAM    0.002 (0.011)             --- 

N 3,416 2,571 

   
This table shows estimates (and their standard errors, in parentheses) from the quadratic regression from Lande and 
Arnold (16) of rLRS on all the polygenic scores of the different phenotypes, all the squared polygenic scores, and all 
their interactions, for the study sample. (I thus treat the scores themselves—as opposed to the phenotypes, as is 
usual—as the characters of interest in Lande and Arnold’s quadratic framework.) The estimates for females come 
from one single regression and the estimates for males come from another single regression. Each regression 
included birth year dummies, HRS-defined cohort dummies, and the top 20 principal components of the genetic 
relatedness matrix.  
*P < 0.10, **P < 0.05, ***P < 0.01 
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Table S6. Description of cohorts 

       HRS0 HRS1 HRS2 HRS3 
Included in the study sample? No Yes Yes Yes 
Years of birth 1924-30 1931-41 1942-47 1948-53 
Females 

    N (genotyped and not genotyped) 1,736 3,505 1,528 1,381 
Age asked #children, 1st-99th percentiles 65-77 55-73 49-66 45-62 
Age when genotyped (in 2006-08) 76-84 65-77 59-66 53-60 
Fraction survived to 2008    0.69 0.82 0.90 0.96 
Fraction asked to be genotyped (in 2006-08)  0.59 0.70 0.74 0.73 
Fraction consented to be genotyped (in 2006-08) 0.51 0.61 0.62 0.63 
Fraction in sample of genotyped individuals 0.44 0.52 0.53 0.55 

Males 
    N (genotyped plus not genotyped) 1,562 3,231 1,068 1,137 

Age asked #children, 1st-99th percentiles 66-80 55-75 50-68 50-62 
Age when genotyped (in 2006-08) 76-84 65-77 59-66 53-60 

Fraction survived to 2008    0.60 0.76 0.86 0.97 
Fraction asked to be genotyped (in 2006-08)  0.52 0.63 0.65 0.70 
Fraction consented to be genotyped (in 2006-08) 0.47 0.54 0.55 0.58 
Fraction in sample of genotyped individuals 0.39 0.46 0.47 0.50 

     For each cohort, I include all individuals of European ancestry born in the cohort's years of birth, who were enrolled in the HRS and asked the number of children 
they ever gave birth to or fathered in 2008 or earlier, and who were at least 45 years old when asked the number of children they ever gave birth to (for females) 
or at least 50 years old when asked the number of children they ever fathered (for males). “Fraction in sample of genotyped individuals” indicates the fraction of 
individuals who are in the sample of unrelated genotyped individuals who passed the quality control filters described in Supporting Information (the sample used 
in the analyses with the genotyped individuals). The HRS0 cohort is not included in the study sample because of the high mortality among its members by 2008 
(the last year when individuals were genotyped) and because of evidence of selection bias for the genotyped individuals in that cohort. The main results are 
robust to the inclusion of that cohort. 
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Table S7. Summary information on the polygenic scores of the different phenotypes 

         

  

Optimal Gaussian 
mixture weight 

for LDpred 

LDpred 
window size 
(# of SNPs) 

Number 
of SNPs 

used 

Assumed 
GWAS 

sample size 
GWAS 
article 

Source for GWAS 
summary statistics 

R2, 
previously 
reported 

Incremental R2 

(Std. Error), 
est. in HRS 

Score of BMI 0.1 170 505,254 232,186 Ref. (19) http://www.broadinstitute.org/coll
aboration/giant/index.php/GIANT
_consortium_data_files#GWAS_
Anthropometric_2015_BMI 
 

0.06 0.089*** 
(0.007) 

Score of EA 0.1 180 544,493 386,098 Ref. (20) SSGAC (Summary statistics from 
a meta-analysis excluding the 
HRS were used) 
 

0.039 0.074*** 
(0.006) 

Score of GLU 0.03 10 22,894 120,000 Ref. (21) www.magicinvestigators.org/dow
nloads/ 
 

 ---  --- 

Score of HGT 1 170 510,411 243,630 Ref. (22) http://www.broadinstitute.org/coll
aboration/giant/index.php/GIANT
_consortium_data_files#GWAS_
Anthropometric_2014_Height 
 

0.17 0.174*** 
(0.009) 

Score of SCZ 0.3  180 544,225 75,000 Ref. (23) http://www.med.unc.edu/pgc/files
/resultfiles 
 

0.070  --- 

Score of TC 0.3  175 530,012 92,793 Ref. (24) www.broadinstitute.org/mpg/pubs
/lipids2010/ 
 

 --- 0.012*** 
(0.004) 

Score of AAM 0.3  170 506,120 120,000 Ref. (25) http://www.reprogen.org/data_do
wnload.html 

 ---  --- 

         
For every phenotype, the polygenic score was constructed using LDpred (31), using the individuals' genotyped SNPs that passed quality control filters and 
overlapped with the SNPs in the phenotype's summary statistics file. The optimal Gaussian mixture weights (the assumed fractions of causal markers) were 
selected to maximize each score's R2 with respect to the corresponding phenotype or to maximize the correlations between each score and known correlates of the 
corresponding phenotype. As recommended, LDpred windows approximately equal to the number of used SNPs divided by 3,000 were used. The assumed 
GWAS sample sizes are the assumed sample sizes for LDpred, based on mean sample sizes across the used SNPs (when SNP-level sample sizes are reported) or 
based on the reported GWAS sample sizes (slighlty reduced to account for missing observations). The previously reported R2 and the incremental R2 estimated in 
the HRS are the numerical values of the results presented in Fig. 1 in the main text (with standard errors instead of 95% C.I.). The incremental R2 estimated in the 
HRS for the score of EA is substantially higher than the previously reported R2 because the score I used in the HRS is based on summary statistics from a meta-
analysis that includes one additional large cohort (the UK Biobank). 
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Table S8. Estimates for the HRS0 cohort (born 1924-30) 
          

    Panel A: regressions of rLRS on the phenotypic variables  
 

Panel B: regressions of rLRS on the scores  

 

All individuals 
(genotyped and not genotyped) Genotyped individuals only 

 
Genotyped individuals only 

  Females 
 

Females 

 
Coefficient estimate N Coefficient estimate N 

 
  Coefficient estimate N 

 BMI    0.015*** (0.003) 1,731    0.008* (0.005) 766 
 

Score of BMI    -0.020 (0.023) 766 
 EA    -0.013** (0.006) 1,736    0.008 (0.009) 766 

 
Score of EA    0.031 (0.023) 766 

  ---         ---  ---         ---  --- 
 

Score of GLU    -0.044* (0.023) 766 
 HGT    -0.000 (0.003) 1,735    -0.001 (0.004) 766 

 
Score of HGT    -0.046 (0.031) 766 

 ---         ---  ---         ---  --- 
 

Score of SCZ    0.006 (0.025) 766 
TC    -0.024 (0.122) 93         ---  --- 

 
Score of TC    0.020 (0.023) 766 

 ---         ---  ---         ---  --- 
 

Score of AAM    -0.010 (0.024) 766 
  Males 

 
Males 

 
Coefficient estimate N Coefficient estimate N 

 
  Coefficient estimate N 

 BMI    0.003 (0.004) 1,562    0.007 (0.006) 602 
 

Score of BMI    0.002 (0.026) 602 
 EA    -0.003 (0.005) 1,561    -0.001 (0.008) 602 

 
Score of EA    0.029 (0.026) 602 

  ---         ---  ---         ---  --- 
 

Score of GLU    0.044* (0.026) 602 
 HGT    -0.003 (0.002) 1,562    -0.004 (0.004) 602 

 
Score of HGT    0.054 (0.034) 602 

  ---         ---  ---         ---  --- 
 

Score of SCZ    0.037 (0.026) 602 
TC    -0.067 (0.059) 590    -0.102 (0.091) 220 

 
Score of TC    -0.026 (0.025) 602 

         Panel A mirrors Table 1 in the main text and Table S2, but shows results for the HRS0 cohort. It shows estimates of the coefficients on the phenotypic variables 
and their standard errors (in parentheses) from separate regressions of rLRS on each phenotypic variable. Each estimate comes from a different regression and 
every regression included birth year dummies and HRS-defined cohort dummies. The HRS does not contain phenotypic variables for GLU, AAM, and SCZ; the 
results are not reported for TC for genotyped females because there are only 36 genotyped females with TC data in the HRS0 cohort. Panel B mirrors Table 2 in 
the main text, but shows results for the HRS0 cohort. The table shows estimates of the coefficients on the polygenic scores and their standard errors (in 
parentheses) from separate regressions of rLRS on the polygenic score of each phenotype. Each estimate comes from a different regression. All regressions 
included birth year dummies, HRS-defined cohort dummies, and the top 20 principal components of the genetic relatedness matrix. The coefficients can be 
interpreted as directional selection differentials of the scores, expressed in Haldanes—i.e., each coefficient equals the implied change in the score that will occur 
due to natural selection in one generation, expressed in standard deviations of the score.  
*P < 0.10, **P < 0.05, ***P < 0.01  


