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Analysis of mutations and molecular effects 

 

Wsp pathway: Mutations were identified in five genes of the seven-gene pathway all 

of which were predicted by null model IV (Figure 5 – figure supplement 1). The most 

commonly mutated gene was wspA (PFLU1219), with ten of 15 mutations (Figure 6) 

being amino acid substitutions (six unique) clustered in the region 352-420 at the stalk 

of the signalling domain. This region has been implicated in trimer-of-dimer 

formation for the WspA homologue in Pseudomonas aeruginosa (O'Connor, et al. 

2012) which is critical for self-assembly and localization of Wsp clusters in the 

membrane. It is possible that these mutations stabilize trimer of dimer formation, 

change the subcellular location of the Wsp complex, or affect interaction with WspD 

(putative interface 383-420 in WspA) (Griswold, et al. 2002) and thus affecting relay 

of signal to WspE. These effects we interpreted as enabling mutations increasing r3 in 

Figure 4A.  The four additional mutations were in frame deletions in a separate region 

of the transducer domain (ΔT293 - E299, ΔA281-A308). Although it is possible that 

these mutations could also affect trimer-of-dimer formation, there are predicted 

methylation sites in the region (Rice and Dahlquist 1991) that regulate the activity of 

the protein via methyltransferase WspC and methylesterase WspF. Given that 

disabling mutations are more common than enabling mutations it is likely that these 

mutations decrease r2 in Figure 4A by disrupting the interaction with WspF.  We also 

identified a single mutation that fused the open reading frame of WspC, the 



methyltransferase that positively regulates WspA activity, to WspD, resulting in a 

chimeric protein (Figure 6, Figure 6 – source data). This mutation is likely to be a rare 

enabling mutation that increases the activity of WspC (increasing r1 in Figure 4A) by 

physically tethering it to the WspABD complex thus allowing it to more effectively 

counteract the negative regulator WspF. Alternatively, the tethering may physically 

block the interaction with WspF (decrease of r2 in Figure 4A). 

 

The second most commonly mutated gene in the wsp operon was wspE (PFLU1223) 

(Figure 6). Four amino acids were repeatedly mutated in the response regulatory 

domain of WspE and all cluster closely in a structural homology model made with 

Phyre2 (Kelley, et al. 2015). All mutated residues surround the active site of the 

phosphorylated D682 and it is likely that they disrupt feedback regulation by 

decreasing phosphorylation of the negative regulator WspF (decreasing r6) rather than 

increasing activation of WspR (r5 in Figure 4A). 

 

Twelve mutations were detected in wspF (PFLU1224).  These are distributed 

throughout the gene and include amino acid substitutions, in-frame deletions as well 

as a frame-shift and a stop codon (Figure 6). The pattern of mutations is consistent 

with both the role of WspF as a negative regulator of WspA activity and the well-

characterised effect of loss-of-function mutations in this gene (Bantinaki, et al. 2007; 

McDonald, et al. 2009). The mutations are interpreted as decreasing r2 in Figure 4A.  

Five mutations were found in WspR (PFLU1225), the DGC output response regulator 

that produces c-di-GMP and activates expression of cellulose (Figure 6). All 

mutations were located in the linker region between the response regulator and DGC 

domains.  Mutations in this region are known to generate constitutively active wspR 



alleles by relieving the requirement for phosphorylation (Goymer, et al. 2006).  They 

may additionally affect subcellular clustering of WspR (Huangyutitham, et al. 2013) 

or shift the equilibrium between the dimeric form of WspR, with low basal activity, 

towards a tetrameric activated form (De, et al. 2009). In our model these increase 

reaction r5. 

 

Aws pathway: Mutations were identified in all three genes of the Aws pathway – all of 

which were predicted by the null model.  In the Aws pathway, mutations were most 

commonly found in awsX (25 out of 41 mutations (Figure 6).  The above-mentioned 

mutational hotspot produced in-frame deletions likely mediated by 6 bp direct repeats 

(Figure 6 – source data 1). The deletions are consistent with a loss of function and a 

decrease in r3 (Figure 4B) that would leave the partially overlapping open reading 

frame of the downstream gene (awsR) unaffected. 

 

The DGC AwsR, was mutated in 14 cases with an apparent mutational hot spot at 

T27P (9 mutants) in a predicted transmembrane helix (amino acids 19-41). The 

remaining mutations were amino acid substitutions in the HAMP linker and in the 

PAS-like periplasmic domain between the two transmembrane helices. These amino 

acid substitutions are distant to the output DGC domain (Figure 6) and their effects 

are difficult to interpret, but they could cause changes in dimerization (Malone, et al. 

2012) or the packing of HAMP domains, which could, in turn, alter transmission of 

conformational changes in the periplasmic PAS-like domain to the DGC domain 

causing constitutive activation (Parkinson 2010). Such effects would increase r4 in 

Figure 4B. Mutations in the N-terminal part of the protein are easier to interpret based 

on the existing functional model (Malone, et al. 2012) and most likely disrupt 



interactions with the periplasmic negative regulator AwsX resulting in a decrease in r3 

in Figure 4B. 

 

Two mutations were found in the outer membrane lipoprotein protein AwsO between 

the signal peptide and the OmpA domain (Figure 6). Both mutations were glutamine 

to proline substitutions (Q34P, Q40P), which together with a previously reported 

G42V mutation (McDonald, et al. 2009) suggest that multiple changes in this small 

region can cause a WS phenotype. This is also supported by data from Pseudomonas 

aeruginosa in which mutations in nine different positions in this region lead to a small 

colony variant phenotype similar to WS (Malone, et al. 2012). A functional model 

based on the YfiBNR in P. aeruginosa (Malone, et al. 2012; Xu, et al. 2016), suggest 

that AwsO sequesters AwsX at the outer membrane and that mutations in the N-

terminal part of the protein lead to constitutive activation and increased binding of 

AwsX. This would correspond to an increase in r2 in Figure 4B, which would relieve 

negative regulation of AwsR.  

 

Mws pathway: The MwsR pathway (comprising just a single gene) harbours 

mutations in both DGC and phosphodiesterase (PDE) domains .  Only mutations in 

the C-terminal phosphodiesterase (PDE) domain were predicted (Figure 4C).  Eleven 

of 18 mutations were identical in-frame deletions (ΔR1024-E1026) in the PDE 

domain, mediated by 8 bp direct repeats (Figure 6, Figure 6 – source data 1).  It has 

been shown previously that deletion of the entire PDE domain generates the WS 

phenotype (McDonald, et al. 2009), suggesting a negative regulatory role that causes 

a decrease of r2 in the model in Figure 4C. One additional mutation was found in the 

PDE domain (E1083K) located close to R1024 in a structural homology model made 



with Phyre2 (Kelley, et al. 2015), but distant to the active site residues (E1059-

L1061). Previously reported mutations (A1018T, ins1089DV) (McDonald, et al. 

2009) are also distant from the active site and cluster in the same region in a structural 

homology model. This suggests that loss of phosphodiesterase activity may not be the 

mechanism leading to the WS phenotype. This is also supported by the high solvent 

accessibility of the mutated residues, which indicates that major stability-disrupting 

mutations are unlikely and changes in interactions between domains or dimerization 

are more probable. Thus, it is likely that the WS phenotype resulting from a deletion 

in the PDE domain is caused by disruption of domain interactions or dimerization 

rather than loss of phosphodiesterase activity.  

 

The remaining mutations within mwsR are amino acid substitutions in the GGDEF 

domain, close to the DGC active site (927-931) with the exception of a duplication of 

I978-G985. While it is possible that these mutations directly increase the catalytic 

activity of the DGC, increasing r1 in Figure 4C, such enabling mutations are 

considered to be rare. An alternative hypothesis is that these mutations either interfere 

with c-di-GMP feedback regulation or produce larger conformational changes that 

change inter-domain or inter-dimer interactions, similar to the mutations in the PDE 

domain. Based on these data we reject the current model of Mws function, which 

predicted mutations decreasing r2 (Figure 4C) through mutations inactivating the PDE 

domain. We instead suggest that the mutations are likely to disrupt the conformational 

dynamics between the domains and could be seen either as activating mutations 

causing constitutive activation or disabling mutations with much reduced mutational 

target size that must specifically disrupt the interaction surface between the domains. 



In both cases the previous model leads to an overestimation of the rate to WS for the 

Mws pathway. 
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Differential equations for WSP, AWS, & MWS pathways

WSP

d[ABD]

dt
= r2F

∗[ABDm] − r1[ABD][Cm]

d[ABDm]

dt
= r1[ABD][Cm] − r2F

∗[ABDm] − r3S[ABDm] + r4E[ABDm∗]

d[ABDm∗]

dt
= −r4E[ABDm∗] + r3S[ABDm]

dE∗

dt
= r4E[ABDm∗] − r5E

∗R− r6E
∗F
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dt
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dE
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dF ∗

dt
= r6E

∗F − r2F
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dR

dt
= −r5RE∗ − .01R

AWS

dX

dt
= −r2XO∗ − r3XR

d[XR]

dt
= r3XR

dO

dt
= −r1SO

dO∗

dt
= r1SO − r2XO∗

d[OX]

dt
= r2O

∗X

dR

dt
= −r3XR− r4RR

d[RR]

dt
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MWS

dG

dt
= −r1GS

dG∗

dt
= r1GS − r2G

∗E − r3G
∗C

dE

dt
= −r2G

∗E

d[GE]

dt
= r2G

∗E

dC

dt
= −r3G

∗C

d[GC]

dt
= r3G∗C

Julia code for WSP, AWS, and MWS differential equations

The following three functions implement the differential equation model (ODE model) for the WSP,
AWS, and MWS pathways.

using ODE,StatsBase,MAT,HDF5,JLD

# code for WSP differential equations

function lindodeWSP(t,y)

# convert y to reactants for ease of reading

ABD=y[1];

ABDm=y[2];

ABDmp=y[3];

Ep=y[4];

Rp=y[5];

E=y[6];

F=y[7];

Fp=y[8];

R=y[9];

# pull reaction rates from rs variable

r1=rs[1];r2=rs[2];r3=rs[3];r4=rs[4];r5=rs[5];r6=rs[6];

# compute derivatives, i.e. y’

yp=zeros(size(y));

yp[1]=r2*Fp*ABDm-r1*ABD*Cm; # dABD/dt

yp[2]=r1*ABD*Cm-r2*Fp*ABDm-r3*S*ABDm+r4*E*ABDmp; # dABDm/dt

yp[3]=-r4*E*ABDmp + r3*S*ABDm ; # dABDmp/dt

yp[4]=r4*E*ABDmp - r5*Ep*R -r6*Ep*F ; # dEp/dt

yp[5]=r5*R*Ep ; # dRp/dt

yp[6]=r6*Ep*F-r4*E*ABDmp+r5*R*Ep ; # dE/dt

yp[7]=-r6*Ep*F +r2*Fp*ABDm ; # dF/dt

yp[8]=r6*Ep*F -r2*Fp*ABDm ; # dFp/dt

yp[9]=-r5*R*Ep-.01*R; # dR/dt

return yp

end

# code for AWS differential equations
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function lindodeAWS(t,y)

# convert y to reactants for ease of reading

X=y[1];

XR=y[2];

O=y[3];

Op=y[4];

OX=y[5];

R=y[6];

RR=y[7];

# pull reaction rates from rs variable

r1=rs[1];r2=rs[2];r3=rs[3];r4=rs[4];

# compute derivatives, i.e. y’

yp=zeros(size(y));

yp[1]=-r2*X*Op-r3*X*R; # dX/dt

yp[2]=r3*X*R; # dXR/dt

yp[3]=-r1*S*O; # dO/dt

yp[4]=r1*S*O-r2*X*Op; # dOp/dt

yp[5]=r2*Op*X; # dOX/dt

yp[6]=-r3*X*R-r4*R*R; # dR/dt

yp[7]=r4*R*R; # dRR/dt

return yp;

end

# code for MWS differential equations

function lindodeMWS(t,y)

# convert y to reactants for ease of reading

G=y[1];

Gp=y[2];

E=y[3];

GE=y[4];

C=y[5];

GC=y[6];

# pull reaction rates from rs variable

r1=rs[1];r2=rs[2];r3=rs[3];

# compute derivatives, i.e. y’

yp=zeros(size(y));

yp[1]=-r1*G*S; # dG/dt

yp[2]=r1*G*S-r2*Gp*E-r3*Gp*C;# dGp/dt

yp[3]= -r2*Gp*E;# dE/dt

yp[4]= r2*Gp*E;# dGE/dt

yp[5]=-r3*Gp*C;# dC/dt

yp[6]=r3*Gp*C; # dGC/dt

return yp;

end

Julia code for running differential equation solvers

We include the code for implementing our Bayesian sampling method. The colored sections corre-
spond to statements that make it specific to WSP (blue), AWS (red), or MWS (green). It was run
in julia version 0.4.3.

# Variables for reactions

numrxns=6; # number of reaction rates for WSP
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numrxns=4; # number of reaction rates for AWS

numrxns=3; # number of reaction rates for MWS

rs=rand(numrxns); # establish variable scope, will be reaction rates later

rs_save=copy(rs); # establish variable scope, will be a saved version of reaction rates later

totnumruns=3.^length(rs); # all possible combinations for reaction rates (down,nothing, up)

v=zeros(length(rs)); # establish variable scope (used to alter reaction rates)

S=0;Cm=0; # initialize constants used in differential equations

indexWS=5; # reactant corresponding to WS in WSP

indexWS=7; # reactant corresponding to WS in AWS

indexWS=6; # reactant corresponding to WS in MWS

# Variables for running ODE solver

testnums=1000; # number of runs

yorig=zeros(testnums); # storage for baseline WS production

yout=0; # establish variable scope

tf=1.0; # establish variable scope

tftimes=1.0; # establish variable scope

numreactants=9; # number of reactants

numreactants=7; # number of reactants

numreactants=6; # number of reactants

init=10*rand(numreactants); # establish variable scope

# Variables for storing data

res=-1*ones(totnumruns,testnums); # storage for altered WS production

numfinished=1; # counter for runs completed

# Code for Bayesian sampling method

while numfinished<=testnums

done=0;

try

println(numfinished) # keeps track of how many sims have been done

# Sample concentrations and rates to establish a baseline amount of WS production

rs=10.^(4*rand(numrxns)-2); # sample reaction rates from [.01,100]

rs_save=copy(rs); # saved copy as a reference when altering later

init=10*rand(numreactants); # sample initial concentrations for reactants from [0,10]

S=10*rand(); # sample initial concentration for constant reactant of signal (S) from [0,10]

Cm=10*rand(); # sample initial concentration for constant reactant Cm from [0,10]

# ODE solver for baseline

tf=1.0; # initial time for ode solver

dst=100; # initial distance, used to determine solution converged

tol=10^(-8.0); # tolerance for ODE solver

while dst>tol

tout, yout = ode45(lindodeWSP, init, [0.0 ,tf]);

tout, yout = ode45(lindodeAWS, init, [0.0 ,tf]);

tout, yout = ode45(lindodeMWS, init, [0.0 ,tf]);

dst=sum((yout[end-1]-yout[end]).^2); # Euclidean distance in final step of solution

yorig[numfinished]=yout[end][indexWS]; # reactant corresponding to WS

tftimes=tout[end]; # final time

tf*=2;

end

done=1; # successful completion of try loop

end

if done==1 # baseline WS production is established, now sample changes/mutations

i0=1; # counter for completed changes

cct=0; # counter for total number of attempts
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while i0<=totnumruns;

cct+=1;

println([numfinished cct]) # report status for tracking progress

# Alter reaction rates

num=i0-1; # used for determining which rates change down/none/up

for i1=length(rs)-1:-1:0;

v[i1+1]=floor(num/(3^i1)); # v is num into base 3 number

num=num-v[i1+1]*3^i1;

end

v+=1;

facs=[10.^(-2*rand()), 1, 10.^(2*rand())]; # factors to alter rxn rates [.01,1] down, 1 none, [1,100] up

for i1=1:length(rs)

rs[i1]=facs[v[i1]]*rs_save[i1]; # alter reaction rates

end

try

tout, yout = ode45(lindodeWSP, init, [0.0,tftimes]);

tout, yout = ode45(lindodeAWS, init, [0.0,tftimes]);

tout, yout = ode45(lindodeMWS, init, [0.0,tftimes]);

if abs(tout[end]-tftimes)<.01 # ODE solver finished

res[i0,numfinished]=yout[end][indexWS]; # store amount of WS produced

i0+=1

end

end

if cct>10000

i0=2*totnumruns; # baseline and sampling occurred in space with poorly conditioned ODEs, try again

end

end

if i0<2*totnumruns # successful

numfinished+=1;

# Save data to a file for checking in MATLAB

file=matopen("pathway_results_temp.mat","w")

write(file,"res",res); altered WS production

write(file,"yorig",yorig); baseline WS production

close(file);

end

end

end

# Save data to a file for processing in MATLAB

file=matopen("pathway_results_complete_WSP.mat","w")

file=matopen("pathway_results_complete_AWS.mat","w")

file=matopen("pathway_results_complete_MWS.mat","w")

write(file,"res",res); altered WS production

write(file,"yorig",yorig); baseline WS production

close(file);

MATLAB code for interpreting saved data WSP vs MWS

This code shows how the data from the julia code is analyzed and transformed into the contour
plots shown in the paper.

% create record of how parameters change down, none, up for WSP
rs1=rand(1,6);
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totnumruns=3.ˆlength(rs1);
paramsWSP=zeros(totnumruns,length(rs1));
v=zeros(size(rs1));
i0=1;
while i0<=totnumruns;

num=i0-1;
for i1=length(rs1)-1:-1:0;

v(i1+1)=floor(num/(3ˆi1));
num=num-v(i1+1)*3ˆi1;

end
v=v+1;
paramsWSP(i0,:)=v;
i0=i0+1;

end
% create record of how parameters change down, none, up for MWS
rs1=rand(1,3);
totnumruns=3.ˆlength(rs1);
paramsMWS=zeros(totnumruns,length(rs1));
v=zeros(size(rs1));
i0=1;
while i0<=totnumruns;

num=i0-1;
for i1=length(rs1)-1:-1:0;

v(i1+1)=floor(num/(3ˆi1));
num=num-v(i1+1)*3ˆi1;

end
v=v+1;
paramsMWS(i0,:)=v;
i0=i0+1;

end

% Load data
load pathway results complete MWS.mat
resMWS=res;
yorigMWS=yorig';
clear res yorig
load pathway results complete WSP.mat
resWSP=res;
yorigWSP=yorig';

% Variables and data storage to compare likelihood of pathways
numsampWSP=size(resWSP,2); % in case want to use fewer samples
numsampMWS=size(resMWS,2); % in case want to use fewer samples

perange=10.ˆ[-7:.5:-1]; % range for probability enabling mutations
pdrange=10.ˆ[-7:.5:-1]; % range for probability disabling mutations
pemat=zeros(length(perange),length(pdrange)); % matrix for plotting data and reference
pdmat=zeros(size(pemat)); % matrix for plotting data and reference
psummatWSP=zeros(size(pemat)); % matrix for probability WSP used
psummatMWS=zeros(size(pemat)); % matrix for probability MWS used
tol=0;
% Code to compare likelihood of pathways
for i0=1:length(perange)

for j0=1:length(pdrange)
% Retrieve probabilities
pe=perange(i0);
pd=pdrange(j0);
pemat(i0,j0)=pe;
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pdmat(i0,j0)=pd;
% WSP computation
pmatforr=ones(6,1)*[pd 1-pe-pd pe];
psum=0; % total sum of (prob of rxn changes) X (number of times WS produced)
for i1=1:size(resWSP,1)

probevent=1; % initialize, probability to get combination of down, none, up for rxns
for j1=1:6;

probevent=probevent*pmatforr(j1,paramsWSP(i1,j1)); % multiply by prob of each change
end

psum=psum+probevent*sum(resWSP(i1,1:numsampWSP)>yorigWSP(1:numsampWSP)+tol)/numsampWSP;
end
psummatWSP(i0,j0)=psum;

% MWS computation
pmatforr=ones(3,1)*[pd 1-pe-pd pe];
psum=0; % total sum of (prob of rxn changes) X (number of times WS produced)
for i1=1:size(resMWS,1)

probevent=1; % initialize, probability to get combination of down, none, up for rxns
for j1=1:3;

probevent=probevent*pmatforr(j1,paramsMWS(i1,j1)); % multiply by prob of each change
end
psum=psum+probevent*sum(resMWS(i1,1:numsampMWS)>yorigMWS(1:numsampMWS)+tol)/numsampMWS;

end
psummatMWS(i0,j0)=psum;

end
end

% Plot data
close all
figure
contourf(pemat,pdmat,log2(psummatWSP./psummatMWS),400,'LineStyle','None')
set(gca,'xScale','log','yScale','log','TickLength',[.025 .025],'LineWidth',3);
set(gca,'FontSize',18,'xTick',10.ˆ[-7:1:-1],'yTick',10.ˆ[-7:1:-1]);
xlabel('Probability of enabling change','FontSize',24);
ylabel('Probability of disabling change','FontSize',24);
c=colorbar('FontSize',18);
c.Label.String='log 2 ratio probability WSP/MWS';
colormap jet;
axis square
eval(['print -f1 -depsc -r300 WSP vs MWS contour.eps']);

MATLAB code for interpreting saved data WSP vs AWS

% create record of how parameters change down, none, up for WSP
rs1=rand(1,6);
totnumruns=3.ˆlength(rs1);
paramsWSP=zeros(totnumruns,length(rs1));
v=zeros(size(rs1));
i0=1;
while i0<=totnumruns;

num=i0-1;
for i1=length(rs1)-1:-1:0;

v(i1+1)=floor(num/(3ˆi1));
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num=num-v(i1+1)*3ˆi1;
end
v=v+1;
paramsWSP(i0,:)=v;
i0=i0+1;

end
% create record of how parameters change down, none, up for AWS
rs1=rand(1,4);
totnumruns=3.ˆlength(rs1);
paramsAWS=zeros(totnumruns,length(rs1));
v=zeros(size(rs1));
i0=1;
while i0<=totnumruns;

num=i0-1;
for i1=length(rs1)-1:-1:0;

v(i1+1)=floor(num/(3ˆi1));
num=num-v(i1+1)*3ˆi1;

end
v=v+1;
paramsAWS(i0,:)=v;
i0=i0+1;

end

% Load data
load pathway results complete AWS.mat
resAWS=res;
yorigAWS=yorig';
clear res yorig
load pathway results complete WSP.mat
resWSP=res;
yorigWSP=yorig';

% Variables and data storage to compare likelihood of pathways
numsampWSP=size(resWSP,2); % in case want to use fewer samples
numsampAWS=size(resAWS,2); % in case want to use fewer samples

perange=10.ˆ[-7:.5:-1]; % range for probability enabling mutations
pdrange=10.ˆ[-7:.5:-1]; % range for probability disabling mutations
pemat=zeros(length(perange),length(pdrange)); % matrix for plotting data and reference
pdmat=zeros(size(pemat)); % matrix for plotting data and reference
psummatWSP=zeros(size(pemat)); % matrix for probability WSP used
psummatAWS=zeros(size(pemat)); % matrix for probability MWS used
tol=0;
fac=5; % factor increase of mutation because of hotspot

% Code to compare likelihood of pathways
for i0=1:length(perange)

for j0=1:length(pdrange)
% Retrieve probabilities
pe=perange(i0);
pd=pdrange(j0);
pemat(i0,j0)=pe;
pdmat(i0,j0)=pd;
% WSP computation
pmatforr=ones(6,1)*[pd 1-pe-pd pe];
psum=0; % total sum of (prob of rxn changes) X (number of times WS produced)
for i1=1:size(resWSP,1)

probevent=1; % initialize, probability to get combination of down, none, up for rxns
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for j1=1:6;
probevent=probevent*pmatforr(j1,paramsWSP(i1,j1)); % multiply by prob of each change

end
psum=psum+probevent*sum(resWSP(i1,1:numsampWSP)>yorigWSP(1:numsampWSP)+tol)/numsampWSP;

end
psummatWSP(i0,j0)=psum;

% AWS computation
pmatforr=ones(4,1)*[pd 1-pe-pd pe];
pmatforr(4,:)=[.5*pd 1-.5*pd-.5*pe .5*pe]; % because only reactant in dimerization
pmatforr(3,:)=[fac*pd 1-fac*pd-fac*pe fac*pe]; % effect of hotspot
pmatforr(2,:)=[fac*pd 1-fac*pd-fac*pe fac*pe]; % effect of hotspot
psum=0; % total sum of (prob of rxn changes) X (number of times WS produced)
for i1=1:size(resAWS,1)

probevent=1; % initialize, probability to get combination of down, none, up for rxns
for j1=1:4;

probevent=probevent*pmatforr(j1,paramsAWS(i1,j1)); % multiply by prob of each change
end
psum=psum+probevent*sum(resAWS(i1,1:numsampAWS)>yorigAWS(1:numsampAWS)+tol)/numsampAWS;

end
psummatAWS(i0,j0)=psum;

end
end

% Plot data
close all
figure
contourf(pemat,pdmat,log2(psummatWSP./psummatAWS),400,'LineStyle','None')
set(gca,'xScale','log','yScale','log','TickLength',[.025 .025],'LineWidth',3);
set(gca,'FontSize',18,'xTick',10.ˆ[-7:1:-1],'yTick',10.ˆ[-7:1:-1]);
xlabel('Probability of enabling change','FontSize',24);
ylabel('Probability of disabling change','FontSize',24);
c=colorbar('FontSize',18);
c.Label.String='log 2 ratio probability WSP/AWS';
colormap jet;
axis square
eval(['print -f1 -depsc -r300 WSP vs AWS contour.eps']);
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Figure S1. Parameter sensitivity analysis. To assess the effect of the chosen 
parameter (A) ranges on our results, we redid our sampling procedure for WSP for 
three different parameter regimes: (B) an expanded range for initial concentrations [0-
100], (C) an expanded range for reaction rates 10[-3,3], (D) a compressed range for 
mutational effect size 10[-1,1]. We found that our qualitative results are robust to these 
changes. 
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