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Dataset generation
With the goal to make this large dataset tractable for analysis, we first organized it into different levels
of organization, namely contigs, populations, and Viral Clusters (VCs, Supplementary Figure 1). To
this end, we first quality-controlled metagenomic shotgun sequencing reads and assembled them into
contigs, then binned contigs into sets of contigs representing viral populations and finally grouped viral
populations into clusters of related viral populations which we denote as VCs. In the following, we
describe in detail the procedures performed to achieve these goals.  All the raw data are available at
ENA or IMG, with sample identifiers indicated in Supplementary Table 1. Processed data, including
assembled contigs, populations definition and abundance, clusters definition and abundance, annotated
viral contigs are available at http://mirrors.iplantcollaborative.org/  browse/  iplant/home/shared/i  V  irus.

Selection of binning parameters
To identify the optimal parameters for genome binning with Metabat1, different sets of parameters

were  evaluated  (all  with  minProb=80%,  minBinned=40%,  minCV=1,  minContig=1,500,
minContigByCorr=500, s=15,000 and fuzzy=1): 3 “sensitive” (i.e. p1, p2, p3 at 90%, 90% and 95%
respectively) with a minimum correlation of 92%, 95% and 98%, and 3 “specific” (i.e. p1, p2, p3 at
95%, 90% and 95% respectively) with a minimum correlation of 92%, 95% and 98%. The binning
efficiency  was  evaluated  based  on  the  identification  of  single  copy  marker  genes  from microbial
genomes(COG0012; COG0049; COG0052; COG0048; COG0016; COG0018; COG0080; COG0088;
COG0081; COG0087; COG0090; COG0085; COG0091; COG0092; COG0093; COG0094; COG0096;
COG0097; COG0098; COG0099; COG0100; COG0102; COG0103; COG0124; COG0172; COG0184;
COG0185; COG0186; COG0197; COG0200; COG0201; COG0215; COG0256; COG0522; COG0495;
COG0525;  COG0552,  see  ref.  2)  and  viral  genomes  (TerL3),  looking  for  the  set  of  parameters
maximizing the number of viral bins generated (i.e. bins with only viral marker gene and no microbial
marker  gene),  and minimizing the percentage of bins with multiple  single-copy marker genes (i.e.
including multiple genomes). Both these parameters were optimal with the “sensitive” options and a
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minimum correlation of 98% (data not shown).

Identification of contigs and bins from eukaryotic viruses
While automatic tools exist to distinguish microbial and viral contigs in a mixed dataset, such as

VirSorter4 used  in  this  study,  no  such  tool  is  available  to  discriminate  between  viruses  infecting
eukaryotes versus viruses infecting bacteria and archaea. To this end, we chose to rely on a BLAST
affiliation of the contig genes to the NCBI RefseqVirus database. The contigs considered as originating
from eukaryotic viruses fulfilled one of these conservative conditions:

• >50% of genes displaying a best BLAST hit to an eukaryotic virus
• at least 1 gene with a best BLAST hit to an eukaryotic virus and no genes with a best BLAST

hit against an archaeal or bacterial virus
• more than 10% of the genes or 3 genes (whichever was higher) with a best BLAST hit to an

eukaryotic  virus,  and less  than  25% of  genes  with a  best  BLAST hit  to  an  archaeal  and
bacterial virus

Arguably,  because  of  the  similarity  between  genomes  from  archaeal  or  bacterial  viruses  and
eukaryotic  viruses,  some of  these  contigs  might  still  originate  from archaeal  or  bacterial  viruses.
However, a best BLAST hit affiliation of all genes from archaeal and bacterial viruses in NCBI RefSeq
database (v70, 05-26-2015), against all viruses (i.e. including eukaryotic viruses) revealed that only
0.13% of these genes had a best BLAST hit to an eukaryotic virus. Hence, given that some eukaryotic
viruses are small enough to get through 0.22μm filters, any contig fulfilling the above conditions likely
originated from an eukaryote virus, and was thus (conservatively) designated as a “eukaryotic virus”.

The affiliation of viral genome bins (based on the affiliation of its contigs members) was performed
as follows:

• if >10kb or >25% of the bin (whichever was lower) was affiliated to a eukaryotic virus, the bin 
was considered as a eukaryotic virus bin.

• the bin was considered as an archaeal or bacterial virus bin otherwise.

Identification of epi-, meso-, and bathypelagic viral populations
The coverage of viral populations (based on a mapping of QC'd reads to the contigs with Bowtie 25,

using  options --sensitive, -X 2000, and --non-deterministic, with all other parameters set to default)
across the different samples revealed a strong separation between epi- and mesopelagic samples versus
bathypelagic samples: 15,203 populations were detected (i.e. ≥75% of the genome covered) only in
epi- and mesopelagic samples, 47 were detected only in bathypelagic samples, 19 were detected in both
layers, but with a highest coverage in an epi- or mesopelagic sample, and 11 were detected in both
layers, but with a highest coverage in a bathypelagic sample (Supplementary Table 2). Based on this
uniqueness of deep-sea viruses, we decided to focus exclusively on epi- and mesopelagic viruses (i.e.
contigs with a highest coverage in an epi- or mesopelagic sample) for this study, and  focus on  the
bathypelagic viruses in a separate  study. Thus, the final set of sequences analyzed in this study was
composed of 298,383 contigs and 15,222 viral populations.

Level of reads mapping to viral contigs and populations
On average, 66.83% of epi- or mesopelagic reads per sample mapped back to an assembled contig

(min:  33.75%,  max  84.11%).  Over  these,  reads  mapping  to  contigs  identified  to  originate  from
microbial or eukaryotic viruses corresponded to 12.47% on average for epipelagic (SRF / DCM / MIX)
samples  (1.49%  -  47.89%),  and  40.05%  on  average  for  mesopelagic  (MES)  samples  (11.07%  -
58.27%), where the lower biomass available (and lower concentration of viruses) likely explains this
increased detection of non-viral signal. On average, for both epi- and mesopelagic samples, 40.95% of
these mapped reads were linked to contigs too small (often <5kb4) to determine their origin (i.e. viral or
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cellular genome) with confidence (range: 24.50% - 68.04%). These small contigs likely correspond to
genomes with a coverage too low to lead to the assembly of a large genome fragment(s), either rare
viruses or cellular genomes. Eventually, 46.26% of the mapped reads were linked to viral contigs for
epipelagic samples (7.21% - 65.92%), and 20.42% for mesopelagic samples (5.25% - 47.14%). Among
the reads mapped to any viral contig, an average of 20% were mapped to a contig associated with a
viral population (the other viral contigs being too small to be confidently linked to any specific viral
population identified). This constituted a two-fold improvement in terms of ratio of reads mapped to
viral populations compared to the TOV dataset6.

Viral cluster definition and affiliation

Additional taxonomic affiliation of NCBI Refseq viral genomes (v70) identified in GOV VCs
The following affiliation were added to the taxonomy downloaded from NCBI, based on manual

curation of the corresponding genomes: Synechococcus phage S-SKS1: Myoviridae, Persicivirga phage
P12024L:  Siphoviridae,  Persicivirga  phage  P12024S:  Siphoviridae,  Cyanophage  KBS-P-1A:
Podoviridae,  Synechococcus  phage  S-CBP2:  Podoviridae,  Synechococcus  phage  S-CBP3:
Podoviridae, Cyanophage SS120-1: Podoviridae, Cyanophage MED4-117: Myoviridae, Marinomonas
phage P12026:  Siphoviridae, Sulfitobacter phage pCB2047-C:  Podoviridae, Vibrio phage pYD21-A:
Siphoviridae,  Paenibacillus  phage  phiIBB_Pl23:  Siphoviridae,  Bacillus  phage  Grass:  Myoviridae,
Deep-sea  thermophilic  phage  D6E:  Myoviridae,  Geobacillus  virus  E2:  Siphoviridae,  Pseudomonas
phage phiPto-bp6g: Siphoviridae, Lactobacillus johnsonii prophage Lj771: Siphoviridae, Enterococcus
phage EF62phi: Podoviridae.

Complete and near-complete genome identification
Circular  contigs  (i.e.  contigs  with  identical  5'  and  3'  ends)  were  considered  as  new  complete

genomes7.  To identify linear  contigs  that  might  represent  complete  or  near-complete  genomes,  the
genome size information of each VC was first gathered (based on known isolates and circular contigs).
If  the  standard  deviation  of  this  VC's  estimated  genome size was within 15% of  the VC average
genome size, i.e. if the genomes in that VC were not too variable in size (which was the case for 220
out of 245 VCs with two or more complete genomes), then all contigs in the VC longer than 80% of
this VC average genome size were considered as near-complete genomes. Overall, 345 contigs were
detected as complete because these were circular, and 425 were linear but within 20% of the expected
genome size of the VC, and thus considered as near-complete.

Comparison of clustering methods for viral genome fragments and corresponding taxonomic level 
Although there is currently no uniform standard to classify viruses into taxonomic groups based on

genomic data8, we sought to obtain nevertheless an overview of the phylogenomic diversity of the viral
clusters we identified. Several methods have been previously proposed to classify new viral genomes
into taxonomic groups. Although phylogenetic trees based on marker genes can be used for “fine-level”
groupings (i.e. species level), the lack of universally conserved marker gene and high rate of horizontal
gene transfer hampers the detection of larger groups (e.g. genus level). Instead, researches relied on
pairwise genome comparisons to identify groups of viral genomes sharing a substantial portion of their
genes as a reflection of their common ancestral origin.

A first way to estimate genome-to-genome similarities is by counting the number of proteins shared
between two genomes relative to the total number of proteins in each genome. Based on reference
genomes, thresholds were proposed of 40% of genes shared for two viruses to belong in the same
genus, and 20% of genes shared to belong in the same subfamily9. Although these “hard” thresholds are
operationally useful, they do not account for different rates of evolution and horizontal gene transfers
between viral groups3.
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Another proposed method named “phage proteomic tree” uses first an all-vs-all BLAST comparison
to  calculate  a  global  viral  genome similarity  matrix,  and  then  applies  a  clustering  algorithm (e.g.
hierarchical clustering) to identify groups of similar genomes10. This method was successfully applied
to new environmental viral genomes, but requires complete or near-complete genomes11.

Finally, a network clustering of viral genomes based on shared content was also proposed12. Instead
of representing relationships between viral genomes in a binary tree, this approach uses a reticulate
representation (i.e. a network) to display the viral genome sequence space, and identify in this network
“clusters” of viruses (“Viral Clusters” or VCs) sharing a significant fraction of their genes (i.e. sharing
more genes that would be expected by chance). Because of this reticulate representation, this method
can more accurately account for the mosaic nature of viral genomes. Moreover, it is also less sensitive
to incomplete genomes as frequently seen in environmental samples, and is easily scalable to include
tens of thousands of sequences3.

Because of this scalability and better ability to classify mosaic and/or partial genomes, this latter
method was used in this study. For corroboration, we compared out results with the phage proteomic
tree and percentage of shared genes for the 756 complete and near-complete epi-  and mesopelagic
GOV genomes  (Extended Data  Fig.  2).  Overall,  ~75% of  the  VCs corresponded  to  monophyletic
groups in the phage proteomic tree, confirming that both methods provide similar classifications. Most
of  the  discrepancies  were  found  in  poorly  resolved  regions  of  phage  genome  sequence  space  as
reflected by sporadic representation in the network or long branches in the proteomic tree, unlikely to
be  all  resolved  by  any  techniques  until  more  data  become  available  (Extended  Data  Figure  2).
Examining the percentage of shared PCs between viruses, we found that viral contigs within a VC tend
to share 20% to 50% of their genes (i.e. PCs). This was consistent with the observation that 54 of the
68 known viral genera with more than one genome are gathered in single VCs in this dataset (12 others
are in 2 VCs, and only 2 are split in more than 2 VCs), and previous results showing that VCs gathered
viruses from the same genus3,12. Unfortunately, the number of subfamilies defined by the International
Committee  on  Taxonomy  of  Viruses  (ICTV)  is  too  low  (only  6)  to  robustly  evaluate  the  VC
classification at this level. Hence, we used VCs as our larger taxonomic unit (Supplementary Figure 1),
and considered it an operational taxonomic unit not associated with a specific taxonomic level.

Genome and contig map comparisons for VCs
Genome and contig map comparison were generated with Easyfig13. For each VC, all GOV complete

and/or near-complete genomes are included if available. If the VC did not include any complete or
near-complete genomes, all the longest contigs (within 80% of the largest sequence) were included.
Non-GOV sequences  were included when available  (only the ones most closely related to  a GOV
contig were added to the plot when multiple non-GOV sequences are included in the VC). 

Host prediction for viral contigs and VCs
Different methods have been proposed to predict virus-host pairings in silico. The most recent review

of these  methods14 identified  three  main  ways  of  predicting  host(s)  for  a  new virus:  (i)  similarity
between viral and host genomes (as identified by BLAST), (ii) similarities between viral genome and
CRISPR spacers in the host (strong, yet rarely identified signal), and (iii) similarities in nucleotide
composition of host and viral genomes. To help interpret the host prediction results on GOV dataset, we
first  summarize  here  the  results  of  the  different  benchmarks  conducted  for  these  methods,  before
discussing the results obtained on GOV sequences.

Host prediction method sensitivity and specificity 
The first method (direct sequence similarity between virus and host genome) is the most accurate if

the similarity region is long enough (at least 2kb).  Unfortunately, this signal will originate from the
presence of an integrated prophage in the host genome or several horizontally transfer genes, which
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means that any virus-host prediction based on this method requires that (a) the virus has the capacity to
integrate into or exchange genes with the host genome, (b) a host genome (or closely related one) was
sequenced,  and  (c)  the  prophage  or  exchanged  gene(s)  region  in  the  host  genome  was  correctly
assembled. Hence, this approach will only provide host information for a small fraction of the newly
sequenced viruses.

The second method (CRISPR-based similarity) can also be very accurate when using exact or near-
exact matches (up to 2 mismatches) between the CRISPR spacer and the viral genome14. This method
requires the host to use a CRISPR-based defense, and the correct host sequence to be available in the
reference database (i.e. a host having encountered the virus recently enough to have generated CRISPR
spacers that still retain near-perfect identity to the viral genome), so will only be suitable for a small
fraction of the new viruses.

Finally,  the  third  method  (nucleotide  composition)  is  also  able  to  accurately  identify  virus-host
pairings,  especially  when  comparing  4-mer  frequency  vectors  between  host  and  viral  genomes14.
Notably, correct host predictions at the order level could be obtained even after excluding the exact
host species from the host database, and only retaining host sequences from the same genus3. This
method will however provide a predicted host to the viral genome in every case, and thresholds on the
similarity  between  host  and  viral  4-mer  frequency  vectors  have  to  be  applied  to  get  accurate
predictions3. Hence, viral genomes could still have no predicted host even when using this nucleotide
composition  approach,  because  the  similarity  between  4-mer  frequency  vectors  was  such  that  no
confident predictions could be made.

Results of host prediction on GOV contigs
The  three  host  prediction  methods  (BLAST  similarity,  CRISPR  spacer  matches,  nucleotide

composition) were applied to GOV viral contig associated with a viral population (24,353 contigs), to
try to predict host at the phylum level (or class for Proteobacteria). 

As could be expected, only a minor fraction of the viral contigs could be associated with a putative
host with CRISPR matches (n=22), however these predictions were always consistent (i.e. when a viral
contig was associated with different host genomes by CRISPR matches, they always corresponded to
the same host group). A larger fraction of viral  contigs could be linked to a host through BLAST
matches  (n=859).  Among these,  34 contigs  were linked to  different  host  groups by these BLAST
matches (i.e.  a viral  genome was similar to host genomes belonging to different phyla),  and these
predictions were discarded for the rest of the analysis. Finally, an even larger fraction of viral contigs
were  linked  to  a  host  through  nucleotide  composition  (n=3,292).  These  results  are  provided  in
Supplementary Table 4.

When multiple predictions from different methods were obtained for the same viral contig, these
were found to be consistent in most cases (>85%). This was consistent with the expected accuracy of
such host prediction method3,14. Moreover, most of the conflicting cases correspond to host predictions
relying on microbial metagenome contigs, which affiliation is not as certain as for complete genomes.
Hence,  these  discrepancies  are  likely  due  to  a  combination  of  the  few  false-positive  predictions
generated  through  tetranucleotide  frequencies  similarity  and  affiliation  issues  for  microbial
metagenome contigs.

Host prediction at the VC level
Because  of  the  sparseness  and  uncertainty  of  the  host  prediction  at  the  individual  contig  or

population level, this signal was studied at the VC level. For each VC, the number of host prediction
for each host group was calculated, and compared to an expected number of host prediction obtained
by chance based on the number of sequences in the VC, the number of host sequences of this group in
the reference database, and the global rate of host prediction across all contigs. This is meant to control
for false positive predictions that will be database-biased (i.e. more frequent for hosts more represented
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in the database) and scale with VC size, and make sure that VC-host links are based on a significant
numbers of predictions. Overall, a host prediction could be achieved for 392 VCs.

Function,  taxonomic  affiliation,  and host  prediction for new viral  AMGs (dsrC,  soxYZ,  P-II,
amoC)

Auxiliary Metabolic Genes (AMGs) are metabolic genes encoded by viruses and used to reprogram
their host cell metabolism during infection15,16. Identifying AMGs is thus critical to predict the potential
impact of viruses on geochemical cycles, however such AMG analysis from uncultivated virus presents
multiple  challenges,  especially  the  verification  of  functionality  of  the  AMG  from  the  gene  and
predicted protein sequences  only,  and the  association  of  the AMG with a  specific  host  group and
metabolic pathway. Here, we describe the different analyses conducted to address these two questions.

Motif detection and 3D structure predictions
Multiple alignments of the 4 new viral AMGs further analyzed were screened for the presence of

conserved residues known to be important in the function of these proteins.
For  dsrC,  these  include  two  conserved  cysteine  residues  in  the  C-terminal  part  of  the  protein,

identified as Cys-B and Cys-A17. The presence of both these residues is considered as required for a
protein to be identified as bona fide DsrC, i.e. a “true  DsrC” involved in the Dsr proteins-mediated
sulfur oxidation or sulfite reduction reactions. Further groups of “DsrC-like” proteins were recently
delineated by phylogenetic analysis and based on presence/absence of the two cysteine residues17. For
example, sequences that only have the CysA residue are classified as TusE. While some members of
the TusE group are known to be involved in persulfide-driven thiolation of tRNAs, it is unclear if they
also play a role in the sulfur energy metabolism of sulfur-oxidizing bacteria17. In the GOV dataset, one
AMG (DsrC-5)  displayed  both  Cys-B and  Cys-A and  branched  within  the  bona  fide  DsrC clade
(Extended Data Fig. 5 and Supplementary Figure 2), while the other AMGs (DsrC-1 to 4 clades) lacked
Cys-B and affiliated with the TusE group.

As no specific  motifs  have been defined to  identify SoxY and SoxZ proteins,  we relied on the
conserved residues highlighted in their respective PFAM domains (PF13501 and PF08770). Screening
the SoxYZ multiple alignments for these residues revealed that viral  soxYZ genes encoded 23 of 24
conserved positions (Supplementary Figure 3). Notably, all the virus-encoded SoxYZ proteins included
the motif KXX(X/-)GGC that is required for SoxYZ activity (the C residue is the active site of protein-
bound sulfur oxidation18), and thus likely have a role in enhancing microbial sulfur oxidation.

In  the  case  of  P-II-like  proteins,  two  conserved  motifs,  a  C-terminal  region  signature,  and  a
conserved  uridylation  site,  have  been  described  and  manually  curated  (PROSITE  documentation
PDOC00439). Three of the four clades of viral P-II display the two motifs, and only one clade (P-II-3)
seemed to lack the conserved uridylation site  (Supplementary Information Figure 4).  Because P-II
structure has been determined through X-ray analysis, we could predict 3D structures of the P-II AMGs
using  I-TASSER19(with  default  parameters).  The  models  obtained  were  similar  to  the  known P-II
structure (Supplementary Information Figure 4) and their quality assessed with ProSA20 comparable to
the quality of experimentally determined structures for proteins of similar size in the Protein Data Bank
(Supplementary Information Figure 4). Except for P-II-3 (whose function remains uncertain), we thus
considered that viral P-II proteins in clades P-II-1, P-II-2 and P-II-4 are likely functioning as true P-II
proteins.

For  the  AmoC  protein,  no  specific  functional  motifs  have  been  described,  and  some  butane
monooxygenase not involved in ammonia oxidation but closely related to bacterial AMO have been
identified,  which indicates that remote homology is not sufficient to identify a new gene as “true”
AMO21.  Here,  the  amoC AMG displays  94% Amino Acid Identity  to  AmoC proteins  from known
ammonia-oxidizer Nitrosopumilus maritimus SCM1 (Supplementary Figure 5, by comparison, butane
mooxygenase displayed 37-39% Amino Acid Identity to AMO proteins22). Consistently, a prediction of
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transmembrane  helices  in  the  viral  and  Nitrosopumilus  maritimus AmoC  identified  the  same
transmembrane domains in both proteins (Supplementary Figure 5). Thus, we considered the  amoC
AMG as likely functioning as true AmoC involved in ammonia oxidation.

Selection pressure and signal of expression of new AMGs
Since conserved motifs and predicted 3D structures suggested that viral copies of dsrC, soxYZ and

P-II genes had retained their “cellular” function, we next tried to verify that these genes were still
functional and active once encoded by the virus.

To this  end,  we  first  looked  for  signs  of  purifying  selection  by  calculating  the  ratio  of  non-
synonymous  to  synonymous  polymorphism  rates  (pN/pS)  for  each  gene  on  the  AMG-containing
contigs, as in23. All but one AMG displayed signs of strong purifying selection (pN/pS ratios <0.3,
Extended Data Table 1), the only exception being P-II-4, for which the signal of purifying selection
was weaker (pN/pS of 0.66). Overall, except for P-II-4, this confirmed that the viral copies of these
genes are still under strong negative selection and likely functional.

We then tried to identify transcript(s) of these genes in Tara Oceans metatranscriptomes, and could
detect coverage of dsrC and soxYZ AMGs in 3 samples (metatranscriptomic reads mapping to the viral
contigs at ≥95% ANI, Extended Data Table 1). Moreover, in the cases where an AMG was covered in a
metatranscriptome, 1 to 53 other genes from the same contigs were also covered, suggesting that the
transcripts identified are indeed originating from the same viral population.

Hence, combining the selective constraint and expression data, the only AMG which may have lost
or  evolved  new functionality  once  transferred  to  the  viral  genome  might  be  P-II-4  (no  transcript
detected and pN/pS higher than the other AMGs).

Taxonomic affiliation of AMG-containing contigs
As some of the AMG-containing contigs were not included in the VCs (because they were too short),

a  manual  annotation  was  performed  based  on  gene  content.  The  11  dsrC-containing  contigs  all
displayed ≥50% of their genes affiliated by best BLAST hit to genomes from the T4-like superfamily
(Extended Data Figure 5). The two longest contigs were either in VC_2, which is affiliated to the T4
phage  superfamily  (GOV_bin_3019_contig-100_4),  or  not  clustered  in  any  VC
(GOV_bin_5582_contig-100_23). However, this latter contig, despite being unclustered, displayed a
gene similar to a T4 baseplate protein (Extended Data Figure 5). Hence, we concluded that all the dsrC-
containing contigs were likely originating from T4-like phages.

Similarly, soxYZ-containing contigs displayed ≥50% of genes affiliated by best BLAST hit to the T4
subfamily  (or  to  another  contig  affiliated  to  the  T4  subfamily  for
Tp1_25_DCM_0-0d2_scaffold13291_1),  and  the  two  contigs  included  in  the  VC  analysis  were
included in VC_2, alongside other long contigs from the same viral populations (Extended Data Figure
6). Again, this consistent signal strongly suggested that soxYZ-containing contigs are originating from
T4-like phages.

Conversely, the GOV contigs including P-II AMGs were more diverse: 6 contigs were long enough
to be included in the VC analysis,  and were found in 5 different  VCs (Extended Data Figure 7).
Moreover, one of the short P-II-containing contigs (GOV_bin_5834_contig-100_7) was associated with
a viral population clustered in VC_12 (a Siphoviridae VC: P12024virus). Combined with the fact that
one  of  the  large  P-II-containing  contigs  in  a  new  VC  displayed  a  Siphoviridae structural  gene
(Tp1_39_OMZ-0-0d2_scaffold996_1), this suggested that P-II AMGs are found in at least two different
families of viruses (Myoviridae and Siphoviridae), and possibly in 6 different genera.

Finally, the amoC AMG was detected in a single contig (GOV_bin_4552_contig-100_2), affiliated to
a new VC (VC_623). This contig displayed 16 predicted genes: 3 with a best BLAST hit against a
known archaeovirus (including a major capsid protein), 1 similar to amoC, and 12 hypothetical proteins
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(no similarity to NCBI nr or PFAM). Best BLAST hit  affiliations of genes predicted on the other
contigs  in  VC_623  are  consistent  with  uncultivated  archaeoviruses.  Thus,  we  considered
GOV_bin_4552_contig-100_2 as a genome fragment from a newly described archaeaovirus.

Identification of putative hosts of AMG-containing contigs
Finally, we tried to identify the hosts of viruses encoding dsrC, soxYZ, P-II, or amoC genes based on

the host prediction and the AMG phylogenetic trees.
For dsrC, no host could be predicted from any of the viral contigs, and accordingly, all clades of viral

dsrC were distinct from any reference and only grouped with other metagenomic sequences from Tara
Oceans microbial metagenomes24 (Extended Data Table 1 and Extended Data Figure 5). However, for
DsrC-5, some of these microbial metagenomic contigs (the longest ones) could be affiliated further.
Beyond DsrC, 9 of these contigs displayed other members of the dsr operon, including dsrA and dsrB
which  can  used  as  phylogenetic  markers  for  these  sulfur-oxidizing  micro-organisms25.  These
metagenomic  sequences  were  thus  inserted  into  a  DsrAB reference  tree26 as  outlined  previously27.
Briefly, dsrAB sequences were translated into amino acids, aligned to the reference alignment by using
MAFFT28, and added to the reference tree without changing its topology by using the Evolutionary
Placement Algorithm in RAxML29.  The metagenomic contigs all grouped near a recently described
DsrAB from a BAC clone from the Mediterranean Sea identified as an uncultivated deep-branching
phototrophic sulfur-oxidizing Gammaproteobacteria30 (Supplementary Information Figure 6). Hence,
this dsrC-5 AMG clade likely corresponded to viruses infecting these Gammaproteobacteria.

Of  the  4  soxYZ-containing  contigs,  2  had  a  predicted  host  in  the  Bacteroidetes  and
Alphaproteobacteria groups respectively (Extended Data Table 1). The Bacteroidetes host prediction is
likely incorrect, as no bacteria in this phylum are known to be sulfur-oxidizers or carry sox genes, and
this prediction was obtained from a signal based on nucleotide composition, which can have an error
rate  of 20% (when the host species  is  absent from the reference database).  The host  prediction to
Alphaproteobacteria is more likely to be correct because it originates from a blastn sequence similarity,
but this similarity is to a metagenomic contig which itself is affiliated with Alphaproteobacteria, so that
this host prediction depends on the correct affiliation of the microbial contig. Finally, on the  soxYZ
phylogenetic  tree,  the  viral  versions  of  the  gene  cluster  together  at  the  root  of  a  group including
Betaproteobacteria, Gammaproteobacteria, and unclassified Proteobacteria. Thus, taken together, these
different results suggest that soxYZ-containing contigs likely infect sulfur-oxidizing Proteobacteria, but
could not reveal with more certainty the actual host group.

Consistently with their affiliation to multiple VCs, P-II AMG clades were all linked to different host
groups. One sequence from each clade P-II-1 and P-II-3 was predicted as infecting a Bacteroidetes host
based on nucleotide composition (Extended Data Table 1), and the P-II phylogenetic tree confirmed
that these viruses likely infect Bacteroidetes (Extended Data Figure 7). The host of clade P-II-2 was
more uncertain: no host prediction was available, its nearest neighbor in the phylogeny was a sequence
from a Gammaproteobacteria Single-Amplified Genome (SAG), yet it was found in a deep-branching
clade  containing  mostly  Verrucomicrobia.  For  clade  P-II-4,  both  the  nearest  neighbor  in  the
phylogenetic tree and a host prediction based on nucleotide composition suggested these viruses infect
Gammaproteobacteria hosts. Hence, P-II-containing viruses are likely infecting hosts from at least two
different phyla (Bacteroidetes and Proteobacteria), and possibly a third one (Verrucomicrobia).

Finally, no host prediction was possible for the  amoC-containing contig based on similarity to a
prophage,  CRISPR  spacer,  or  tetranucleotide  composition  (Extended  Data  Table  1).  The  AmoC
phylogeny suggested that the AMG is most closely related with sequences from Thaumarchaeota /
marine group I.1a (Extended Data Figure 8). This is consistent with the affiliation of the viral contig as
an archaeovirus based on best BLAST hits (see above), as archaeal and bacterial viruses are expected to
harbor  limited  genetic  similarity31.  Hence,  this  amoC-containing  virus  is  likely  infecting  an
uncultivated ammonia-oxidizing Thaumarchaeota.
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Supplementary Tables

Supplementary  Table  1:  List  of  viromes  included  in  the  GOV dataset. For  each  virome,  the
corresponding expedition, station number, and depth is indicated.  Tara Oceans stations are prefixed
with “Tara_” and Malaspina stations with an “M”. Accession numbers are given for raw reads available
in ENA (for Tara Oceans samples) and on JGI IMG (for Malaspina samples). Longhurst provinces and
biomes are defined based on Longhurst32 and environmental features are defined based on Environment
Ontology (http://environmentontology.org/). The total number of reads and bp sequenced, as well as the
number of bp mapped to viral contigs within and outside of populations are indicated.  *Malaspina
stations for which no water mass or basin data are available because these were not included in the
previous study33.

Supplementary Table 2: GOV viral population summary. The number of contigs, total length and
length of the largest contig, type of assembly used, and highest normalized coverage across the GOV
samples is indicated in the first tab. For populations already identified in the TOV dataset (contigs
similar at 95% ANI on ≥50% of their length), the size of the TOV contig is noted. In the second tab, the
normalized coverage (average coverage of the population contig(s) normalized by the total sequencing
depth of the sample) is indicated as coverage / Gb of metagenome for all GOV samples.

Supplementary Table 3: Summary of Viral Clusters (VCs).  The first tab lists, for each VC, the
number  of  members  (total,  and  by  dataset,  i.e.  originating  from  RefSeq,  environmental  phages,
VirSorter Curated Dataset, and GOV), alongside the affiliation of RefSeq members of the VCs (when
available)  at  the  family,  subfamily,  and  genus  levels.  The  second  tab  includes  the  cumulative
normalized coverage of each VC in each sample (based on the coverage of populations members of the
VC), as well as the sum of coverage for the 38 recurrently abundant VCs and all other VCs at the
bottom.

Supplementary  Table  4:  List  of  host  prediction  for  GOV  viral  contigs  associated  with  a
population. For each prediction, the type of signal (blastn, CRISPR, tetranucleotide composition), the
host sequence used for the prediction alongside its affiliation, and the strength of the prediction (length
of the blastn match, number of mismatches in the CRISPR spacer, and distance between viral and host
tetranucleotide frequencies vectors) is indicated.

Supplementary Table 5: List of PFAM domains detected in GOV viral contigs. For each PFAM
domain, the number of genes detected in the GOV dataset is indicated, alongside the category of the
domain (as in  34).  The category “other” category includes PFAM domains with vague descriptions,
multiple functions, or regulatory functions.
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Supplementary Figures

Supplementary Figure 1: Schematic of the different levels of organization used in this study. The
base unit is the contig, i.e. assembled genome (fragment). These contigs are gathered (when available)
in viral populations, a proxy for viral “species”, through genome binning based on co-occurrence and
similarity in nucleotide composition. A higher level of organization (VCs, subfamily ~ genus level) is
achieved by clustering the contigs based on shared gene content.
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Supplementary Figure 2: Multiple alignment of  dsrC protein sequences.  Conserved residues are
indicated below the alignment, and the two conserved C residues representing the active sites of “true
dsrC” (Cys-B and Cys-A) are named as in17.  Viral AMGs are highlighted in bold, with previously
described anoxic SUP05 viruses sequences in red (from35,36) and epipelagic GOV sequences in black.
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Supplementary Figure 3: Multiple alignment of soxYZ protein sequences. Conserved residues are
indicated below the alignment for SoxY and SoxZ protein domains, based on the respective PFAM
domains (PF13501 and PF08770). Viral AMGs are highlighted in bold.430



Supplementary  Figure  4:  Alignment  (A)  and  predicted  3D  structures  (B)  of  P-II  AMGs.
Conserved motifs are indicated below the alignment (PROSITE: PDOC00439). P-II uridylation site is
highlighted with a star.  Characterized structure (from E. Coli) and predicted 3D conformations are
colored according to secondary structures (alpha helix: blue, beta strand: red), except for the trimer
structure of E. Coli P-II where each subunit is colored differently. For predicted structures, the model
quality as assessed by ProSA20 is indicated below the model. Viral AMGs are highlighted in bold.
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Supplementary  Figure 5:  Alignment  (A)  and predicted  transmembrane domain (B)  of  amoC
AMGs. The viral  sequence is  highlighted in  bold,  and conserved residues are indicated below the
alignment. Transmembrane domains were predicted with TMHMM37 for the AMG amoC (left), and a
reference amoC from the ammonia-oxidizing Nitrosopumilus maritimus SCM1 (right).440



Supplementary  Figure  6:
Dissimilatory sulfite reductase
(dsrAB)  tree  showing  the
phylogeny  of  oxidative
bacterial  type  dsrAB.
Sequences  from  Tara  Ocean
microbial metagenomes close to
DsrC-5  AMG  are  indicated  in
blue  and  are  affiliated  with
sulfur-oxidizing
Gammaproteobacteria.  Other
phylogenetic groups and dsrAB
families  are  collapsed  and
shown as triangles.
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Supplementary Figure 7: Overview and result of the cross assembly, binning, and viral contigs
selection process. A. Iterative assembly viromes. First, for each sample, reads were mapped to the set
of contig generated through MOCAT38. Reads not assembled (i.e. not mapped to any contigs) were then
used in another assembly, using Idba_ud39.  Unmapped reads after this  second round of sample-by-
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sample assembly were then pooled by Longhurst province (i.e. all unmapped reads from all samples
within one province), and cross-assembled with Idba_ud40. Finally, all unmapped reads after this third
round of assembly were gathered and assembled with Idba_ud.  B. Results of the iterative assembly
process.  For  each  assembly  round,  the  number  of  contigs  is  displayed  alongside  the  cumulated
percentage of reads mapped to a contig. C. Overview of the binning process. Contigs generated through
the  iterative  assembly  were  binned  based  on  correlation  between  their  abundance  profile  and
similarities between their tetranucleotide frequency (using Metabat1). For each bin, two contig pools
(beyond the initial set of contigs) were generated, assembling either all reads mapping to the contig
pool,  or  only  reads  from the  sample  in  which  the  bin  had the  highest  coverage  (both  assemblies
computed with Idba_ud). The set of contigs including the largest genome fragment was then kept for
each bin.  D. Results  of the re-assembly of bins.  For each type of bin assembly (highest coverage
sample,  all  samples,  or  initial  assembly)  the  number  of  bins  for  which  this  type  was  selected  is
indicated on top, with the distribution of increase in length of longest contig at the bottom.  E. Bin
refinement based on abundance profile similarities. For each bin, the abundance profile of each contig
was compared to the abundance profile of the bin seed contig (largest contig), and contigs not well
correlated to the bin seed were excluded. Bins still displaying multiple TerL gene (single-copy marker
gene  for  viruses)  after  this  bin  refinement  step  were  split.  F. Bin  affiliation  and  viral  population
definition. Bins were either affiliated as entirely viral and considered as single viral populations, or
included non-viral contigs, in which case viral contigs in these bins were considered as “unbinned” and
selected as viral  population seed if  ≥10kb  G. Selection of  thresholds  for bin refinement  based on
abundance profile similarities. Thresholds to exclude contigs from bins based on Euclidean distance
and  Pearson  correlation  coefficient  between  contig  abundance  profile  and  bin  seed  profile  were
explored, looking for the best compromise between number of true positive (z-axis, number of bins
with a single TerL) and number of false negative (in colors, number of bins with multiple TerL). The
thresholds combination chosen is indicated with a black square.
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