
Extended	Experimental	Procedures	

	

Subject	Recruitment	

Poly(A)	selected	RNA-Seq	samples	(n=38).	 In	this	analysis,	we	used	a	subset	of	Puerto	

Rican	 Islanders	 recruited	 as	 part	 of	 the	on-going	Genes-environments	&	Admixture	 in	

Latino	Americans	study	(GALA	II).1–4	We	classified	asthma	by	physician	diagnosis	and	the	

presence	of	at	least	two	symptoms	(wheezing,	coughing,	or	shortness	of	breath)	during	2	

years	 prior	 to	 the	 enrollment.	 All	 study	 subjects	 had	 no	 history	 of	 smoking	 or	 recent	

(within	 4	 weeks	 of	 recruitment)	 nasal	 steroid	 use.	 The	 study	 was	 approved	 by	 local	

institutional	 review	boards,	and	written	assent/consent	was	received	 from	all	 subjects	

and,	if	applicable,	parents	of	subjects	under	the	age	of	legal	consent.		

Ribo-Zero	 RNA-Seq	 samples	 (n=49).	 	 Via	 community-based	 advertising,	 we	 recruited	

adults	 aged	 18-70	 years	 to	 participate	 in	 a	 study,	 in	 which	 they	 underwent	 research	

bronchoscopy.		The	study	was	approved	by	the	University	of	California	at	San	Francisco	

Committee	 on	 Human	 Research.	 Written	 informed	 consent	 was	 obtained	 from	 all	

subjects,	and	all	studies	were	performed	in	accordance	with	the	principles	expressed	in	

the	Declaration	of	Helsinki.	

	

Sample	Collection	

Poly(A)	selected	RNA-Seq	samples	(n=38).	 	Methods	for	nasal	epithelial	cell	collection	

and	processing	are	described	in	Poole	et	al.4	Briefly,	nasal	epithelial	cells	were	collected	

from	behind	the	inferior	turbinate	with	a	cytology	brush	using	a	nasal	 illuminator.	The	



collected	 brush	 was	 submerged	 in	 a	 mixture	 of	 RLT	 Plus	 lysis	 buffer	 and	 beta-

mercaptoethanol,	 and	 frozen	 at	 -80	 C	 until	 extraction	 was	 performed	 with	 a	 Qiagen	

Allprep	RNA/DNA	extraction	kit	(Qiagen,	Valencia,	CA).	We	collected	10ml	of	whole	blood	

using	 PAXgene	 RNA	 blood	 tubes	 (PreAnalytiX,	 Valencia,	 CA)	 and	 isolated	 RNA	 using	

PAXgene	RNA	blood	extraction	kits,	according	to	the	manufacturers’	protocol.	Portions	of	

the	 nasal	 airway	 epithelial	 whole	 transcriptome	 data	 were	 published	 in	 a	 previous	

manuscript.4				

Ribo-Zero	RNA-Seq	samples	(n=49).			During	bronchoscopy	airway	epithelial	brushings,	

samples	were	 obtained	 from	 3rd-4th	 generation	 bronchi.	 RNA	was	 extracted	 from	 the	

epithelial	 brushing	 samples	 using	 the	 Qiagen	 RNeasy	 mini-kit	 (Qiagen,	 Valencia,	 CA),	

according	to	manufacturer’s	protocol.			

	

Whole	Transcriptome	Sequencing	

Poly(A)	selected	RNA-Seq	samples	(n=38).	We	constructed	poly-A	RNA-seq	libraries	using	

500	ng	of	blood	and	nasal	airway	epithelial	total	RNA	from	9	atopic	asthmatics	and	10	

non-atopic	controls.	Libraries	were	constructed	and	barcoded	with	the	Illumina	TruSeq	

RNA	Sample	Preparation	v2	protocol.	Barcoded	nasal	airway	RNA-seq	libraries	from	each	

of	the	19	subjects	were	pooled	and	sequenced	as	2	x	100bp	paired-end	reads	across	two	

flow	cells	of	an	Illumina	HiSeq	2000.	Barcoded	blood	RNA-seq	libraries	from	each	of	the	

19	subjects	were	pooled	and	sequenced	as	2	x	100bp	paired	end	reads	across	4	lanes	of	

an	Illumina	Hiseq	2000	flow	cell.		



Ribo-Zero	RNA-Seq	samples	(n=49).			We	used	100ng	of	isolated	RNA	from	a	total	of	61	

samples	 to	 construct	 ribo-depleted	RNA-seq	 libraries	 using	 the	 TruSeq	 Stranded	 Total	

RNA	 with	 Ribo-Zero	 Human/Mouse/Rat	 library	 preparation	 kit,	 per	 manufacturer’s	

protocol.	 Barcoded	 bronchial	 epithelial	 RNA-seq	 libraries	 were	 multiplexed	 and	

sequenced	as	2	 x	100bp	paired	end	 reads	on	an	 Illumina	HiSeq	2500.	On	average,	 37	

million	reads	were	generated	per	sample.	We	excluded	12	samples	from	further	analyses	

due	to	high	ribosomal	RNA	read	counts	(library	preparation	failure),	leaving	a	total	of	49	

samples	suitable	for	further	analyses	

	

Workflow	to	categorize	the	mapped	reads	

Map	reads	onto	human	genome	and	transcriptome			

We	 mapped	 reads	 onto	 the	 human	 transcriptome	 (Ensembl	 GRCh37)	 and	 genome	

reference	(Ensembl	hg19)	using	tophat2	(v	2.0.13)	with	the	default	parameters.	Tophat2	

was	supplied	with	a	set	of	known	transcripts	(as	a	GTF	formatted	file,	Ensembl	GRCh37)	

using	–G	option.		The	mapped	reads	of	each	sample	are	stored	in	a	binary	format	(.bam).			

	

Categorize	mapped	reads	into	genomic	categories	

ROP	categorizes	 the	reads	 into	genomic	categories	based	on	the	compatibility	of	each	

read	 from	 the	pair	with	 the	 features	defined	by	Ensembl	 (GRCh37)	 gene	annotations.	

First,	we	determined	CDS,	UTR3,	UTR5	coordinates.	We	downloaded	annotations	for	CDS,	

UTR3,	UTR5	from	UCSC	Genome	Browser	(http://genome.ucsc.edu/cgi-bin/hgTables)	in	

BED	(browser	extensible	data)	format.		Next,	we	used	gene	annotations	(a	GTF	formatted	



file,	 Ensembl	 GRCh37)	 to	 determine	 intron	 coordinates	 and	 inter-genic	 regions.	 We	

defined	two	types	of	inter-genic	regions:	‘(proximate)	inter-genic’	region	(1Kb	from	the	

gene	 boundaries)	 and	 ‘deep	 inter-genic’	 (beyond	 a	 proximity	 of	 1Kb	 from	 the	 gene	

boundaries).		

	

Next,	 we	 checked	 the	 compatibility	 of	 the	 mapped	 reads	 with	 the	 defined	 genomic	

features,	as	follows:			

	

a. Read	 mapped	 to	 multiple	 locations	 on	 the	 reference	 genome	 is	

categorized	as	a	multi-mapped	read.	

b. Read	fully	contained	within	the	CDS,	intron,	UTR3,	or	UTR5	boundaries	of	

a	 least	 one	 transcript	 is	 classified	 as	 a	 CDS,	 intronic,	 UTR3,	 or	 UTR5,	

respectively.	

c. Read	simultaneously	overlapping	UTR3	and	UTR5	regions	is	classified	as	a	

UTR	read.	

d. Read	spanning	exon-exon	boundary	is	defined	as	a	junction	read.	

e. Read	mapped	outside	of	gene	boundaries	and	within	a	proximity	of	1Kb	is	

defined	as	a	(proximal)	inter-genic	read.	

f. Read	mapped	outside	of	gene	boundaries	and	beyond	the	proximity	of	1Kb	

is	defined	as	a	deep	inter-genic	read.	

g. Read	mapped	 to	mitochondrial	 DNA	 (MT	 tag	 in	 hg19)	 is	 classified	 as	 a	

mitochondrial	read.	



h. 	Reads	from	a	pair	mapped	to	different	chromosomes	are	classified	as	a	

fusion	reads	

Scripts	to	categorize	mapped	reads	into	genomic	categories	are	available	here:	

https://sergheimangul.wordpress.com/gprofile/		

	

Categorize	mapped	reads	overlapping	repeat	instances		

Mapped	reads	were	categorized	based	on	the	overlap	with	the	repeat	instances	defined	

by	 RepeatMasker	 annotation	 (Repeatmasker	 v3.3,	 Repeat	 Library	 20120124).	

RepeatMasker	 masks	 the	 repeats	 using	 the	 RepBase	 library:	

(http://www.girinst.org/repbase/update/index.html),	 which	 contains	 prototypic	

sequences	 representing	 repetitive	DNA	 from	different	eukaryotic	 species.	We	use	GTF	

files	generated	from	the	RepeatMasker	annotations	by	Jin,	Ying,	et	al.1	and	downloaded	

from:		

http://labshare.cshl.edu/shares/mhammelllab/www-

data/TEToolkit/TE_GTF/hg19_rmsk_TE.gtf.gz		

	

Following	 	Melé,	Marta,	et	al.2,	repeat	elements	overlapping	CDS	regions	are	excluded	

from	 the	 analysis.	 We	 filtered	 out	 6,873	 repeat	 elements	 overlapping	 CDS	 regions.	

Prepared	repeat	annotations	(bed	formatted	file)	are	available	here:	

https://sergheimangul.wordpress.com/rop/repeats/	

	



The	prepared	repeat	annotations	contain	8	Classes	and	43	Families.		Number	of	elements	

per	family	and	class	represented	below:		

	

classID	

DNA	

N	

458223	

LINE	 1478382	

LTR	 707384	

RC	 2226	

SVA	 3582	

RNA	 717	

Satellite	 8950	

SINE	 1765403	

	

Table	 1.	 Number	 of	 repeat	 elements	 per	 class.	 Repeat	 instances	 are	 defined	 by	

RepeatMasker	(RepeatMasker	v3.3,	Repeat	Library	20120124)	based	on	RepBase	library.	

RepBase	 library	 contains	 prototypic	 sequences	 representing	 repetitive	 DNA	 from	

different	eukaryotic	species.	

	

	

	

familyID	 n	



acro	 44	

Alu	 1173282	

centr	 2272	

CR1	 60577	

Deu	 1262	

DNA	 4609	

Dong-R4	 554	

ERV	 579	

ERV1	 172612	

ERVK	 10446	

ERVL	 159606	

ERVL-MaLR	 343266	

Gypsy	 18553	

hAT	 15418	

hAT-Blackjack	 19578	

hAT-Charlie	 251618	

hAT-Tip100	 30204	

Helitron	 2226	

L1	 937636	

L2	 461296	

LTR	 2322	

Merlin	 55	



MIR	 589496	

MuDR	 1978	

Penelope	 51	

PiggyBac	 2352	

RNA	 717	

RTE	 17617	

RTE-BovB	 651	

Satellite	 6247	

SINE	 1363	

SVA_A	 257	

SVA_B	 465	

SVA_C	 279	

SVA_D	 1358	

SVA_E	 232	

SVA_F	 991	

TcMar	 5354	

TcMar-Mariner	 16253	

TcMar-Tc2	 8098	

TcMar-Tigger	 102706	

telo	 387	

	



Table	 2.	 Number	 of	 repeat	 elements	 per	 family.	 Repeat	 instances	 are	 defined	 by	

RepeatMasker	(RepeatMasker	v3.3,	Repeat	Library	20120124)	based	on	RepBase	library.		

	

We	determined	 the	 coordinates	 of	 repeat	 elements	 (class_id	 and	 family_id	 attributes	

from	the	GTF	file)	from	the	repeat	annotations.	Next,	we	checked	the	compatibility	of	the	

mapped	reads	with	the	repeat	instances.	We	disregarded	the	pairing	information	for	the	

unmapped	reads	and	count	each	end	as	a	separate	read.	Reads	entirely	mapped	to	the	

corresponding	repeat	instance	are	counted.	Scripts	to	categorize	mapped	reads	based	on	

the	 overlap	 with	 the	 repeat	 instances	 are	 available	 here:	

https://sergheimangul.wordpress.com/rprofile/	.	

	

Categorize	mapped	reads	overlapping	B	cell	receptor	(BCR)	and	T	cell	receptor	(TCR)	

loci	

We	 used	 the	 gene	 annotations	 (Ensembl	 GRCh37)	 to	 extract	 antibody	 genes.	 We	

extracted	gene	annotations	of	the	‘constant’	(labeled	as	IG_C_gene,	Ensembl	GRCh37),	

‘variable’	 (labeled	 as	 IG_V_gene,	 Ensembl	GRCh37),	 ‘diversity’	 (labeled	 as	 IG_D_gene,	

Ensembl	GRCh37),	and	 ‘joining’	genes	 (labeled	as	 IG_J_gene,	Ensembl	GRCh37)	of	BCR	

and	TCR	loci.		We	excluded	the	BCR	and	TCR	pseudogenes	(labeled	as	IG_C_pseudogene,	

IG_V_pseudogene,	 IG_D_pseudogene,	 IG_J_pseudogene,	 TR_C_pseudogene,	

TR_V_pseudogene,	TR_D_pseudogene,	and	TR_J_pseudogene).	In	addition,	we	excluded	

the	patch	contigs	HG1592_PATCH	and	HG7_PATCH,	as	they	are	not	part	of	the	Ensembl	

hg19	 reference,	 and	 reads	 are	 not	mapped	 on	 the	 patch	 contigs	 by	 high	 throughput	



aligners.		After	following	the	filtering	steps	described	above,	we	extracted	a	total	of	386	

immune	genes:	207	BCR	genes	and	179	TCR	genes.		The	gene	annotations	for	antibody	

genes	(GTF	formatted	file)	are	available	here:	

https://sergheimangul.wordpress.com/antibodies/		

The	number	of	VDJ	genes	per	locus	is	reported	in	the	Table	3.	

	

	 C	domain	 V	domain	 D	domain	 J	domain	

IGH	locus	 8	 55	 38	 6	

IGK	locus	 1	 46	 -	 5	

IGL	locus	 4	 37	 -	 7	

TCRA	locus	 1	 46	 -	 57	

TCRB	locus	 1	 39	 0	 8	

TRG	locus	 2	 9	 -	 5	

TRD	locus	 1	 3	 11	 4	

	

Table	 3.	 The	 number	 of	 VDJ	 genes	 for	 each	 antibody	 chains.	 Antibody	 genes	 were	

extracted	from	the	gene	annotations	(Ensembl	GRCh37).		

	

The	list	of	the	genes	encoding	the	C	region	of	the	BCR	and	TCR	chains	is	presented	in	Table	

4.		

	



Name	of	the	chain		 Genes	encoding	for	the	C	region	of	the	chain	

IG@	locus	

α	heavy	IG	chain	 IGHA1,	IGHA2	

δ	heavy	IG	chain		 IGHD	

γ		heavy	IG	chain	 IGHG1,	IGHG2,	IGHG3,	IGHG4	

ε	heavy	IG	chain	 IGHE	

μ	heavy	IG	chain	 IGHM	

κ	light	IG	chain	 IGKC	

λ	light	IG	chain	 IGLC1,	IGLC2,	IGLC3,	IGLC7	

TCR@	locus	

α	TCR	chain	 TRAC	

Β	TCR	chain	 TRBC2	

γ	TCR	chain	 TRGC1,	TRGC2	

	δ	TCR	chain	 TRDC	

	

Table	4.	List	of	the	genes	encoding	the	C	region	of	the	BCR	and	TCR	chains.	Genes	were	

extracted	from	the	gene	annotations	(Ensembl	GRCh37).	

	

The	 number	 of	 reads	 mapping	 to	 each	 C-V-D-J	 genes	 was	 obtained	 by	 counting	 the	

number	of	sequencing	reads	that	align,	with	high	confidence,	to	each	of	the	genes	(HTSeq	

v0.6.1)3.	Script	“htseq-count”	is	supplied	with	the	gene	annotations	for	antibody	genes	

(genes_	 Ensembl_GRCh37_BCR_TCR.gtf)	 and	 a	 bam	 file.	 The	 bam	 file	 contains	 reads	



mapped	to	the	human	genome	and	transcriptome	using	tophat2	(See	Section	“Map	reads	

onto	 human	 genome	 and	 transcriptome”	 for	 details).	 The	 script	 generates	 individual	

gene	counts	by	examining	the	read	compatibility	with	BCR	and	TCR	genes.	We	chose	a	

conservative	setting	(--mode=intersection-strict)	to	handle	reads	overlapping	more	than	

one	feature.	Thus,	a	read	overlapping	several	genes	simultaneously	is	marked	as	a	read	

with	no	feature	and	is	excluded	from	the	consideration.		

	

Workflow	for	categorizing	the	unmapped	reads	

We	first	converted	the	unmapped	reads	saved	by	tophat2	from	a	BAM	file	into	a	FASTQ	

file	(using	bamtools).	The	FASTQ	file	of	unmapped	contain	full	read	pairs	(both	ends	of	a	

read	pair	were	unmapped)	and	discordant	read	pairs	(one	read	end	was	mapped	while	

the	other	end	was	unmapped).	We	disregarded	the	pairing	information	of	the	unmapped	

reads	and	categorize	unmapped	reads	using	the	following	steps:	

	

A.	Quality	Control	

Low	quality	reads,	defined	as	reads	that	have	quality	lower	than	30	in	at	least	75%	of	their	

base	 pairs,	 were	 identified	 by	 FASTQC.	 	 Low	 complexity	 reads,	 defined	 as	 reads	with	

sequences	of	consecutive	repetitive	nucleotides,	are	identified	by	SEQCLEAN.		As	a	part	

of	the	quality	control,	we	also	excluded	unmapped	reads	mapped	onto	the	rRNA	repeat	

sequence	(HSU13369	Human	ribosomal	DNA	complete	repeating	unit)	(BLAST+	2.2.30).	

We	prepared	the	index	from	rRNA	repeat	sequence	using	makeblastdb	and	makembindex	

from	BLAST+.		We	used	the	following	command	for	makeblastdb:		



Ø makeblastdb	-parse_seqids	-dbtype	nucl	-in	<fasta	file>.		

We	used	the	following	command	for	makembindex:		

Ø makembindex	-input	<fasta	file>	-output	<index>	-iformat	blastdb	

	

	

	

	

B.	Mapping	unmapped	reads	onto	the	human	references.		

We	remapped	the	unmapped	reads	to	the	human	reference	sequences	using	Megablast	

(BLAST+	2.2.30).	We	used	the	following	references	to	map	the	reads	onto:	

• Reference	transcriptome	(known	transcripts),	Ensembl	GRCh37	

• Reference	genome,	hg19	Ensembl	

We	 prepared	 the	 index	 from	 each	 reference	 sequence	 using	 makeblastdb	 and	

makembindex.	We	mapped	the	reads	separately	onto	each	reference	in	the	order	listed	

above.	Reads	mapped	to	the	reference	genome	and	transcriptome	were	merged	into	a	

‘lost	human	 reads’	 category.	The	 following	options	were	used	 to	map	 the	 reads	using	

Megablast:	 for	each	reference:	task	=	megablast,	use_index	=	true,	perc_identity	=	90,	

outfmt	=	6,	max_target_seqs	=1,	e-value	=	1e-05.	Reads	not	entirely	mapped	are	discarded	

(e.g.	‘alignment	length’	<	read	length).	

	

C.	Mapping	unmapped	reads	onto	the	repeat	sequences	



We	filtered	out	the	reads	that	failed	QC	and	lost	human	reads.	The	remaining	reads	were	

mapped	 to	 the	 reference	 repeat	 sequences.	 	 The	 reference	 repeat	 sequences	 were	

downloaded	 from	 Repbase	 v20.07	 (http://www.girinst.org/repbase/).	 Human	 repeat	

elements	 (humrep.ref	 and	 	 humsub.ref)	 were	 merged	 into	 a	 single	 reference.	 We	

prepared	 the	 index	 from	 the	 merged	 repeat	 reference	 using	 makeblastdb	 and	

makembindex	from	BLAST+.	In	total,	we	obtained	sequences	for	1,117	repeat	elements.	

The	following	options	were	used	to	map	the	reads	using	the	Megablast:	task	=	megablast,	

use_index	=	true,		perc_identity	=	90,	outfmt	=	6,	max_target_seqs	=	1,	e-value	=	1e-05.	

Blast	 hits	with	 alignment	 length	 shorter	 than	 80%	 of	 the	 read	 length	were	 discarded		

(corresponding	to	80bp	of	the	100bp	read).	

The	repeat	elements	from	humrep.ref	and	humsub.ref	were	classified	into	families	and	

classes	 using	 RepeatMasker	 annotations	 (hg19_rmsk_TE_prepared_noCDS.bed).	

Repetitive	reads	identified	from	the	unmapped	reads	were	confirmed	by	directly	applying	

Repeatmasker4.	

	

D.	Workflow	to	detect	‘non-co-linear’	reads	(trans-splicing,	gene	fusions,	and	circRNAs)	

We	have	developed	a	 custom	pipeline	 to	 identify	 reads	 spliced	distantly	on	 the	 same	

chromosome	 supporting	 trans-splicing	 events;	 reads	 spliced	 across	 different	

chromosomes	 supporting	 gene	 fusion	 events;	 and	 reads	 spliced	 in	 a	 head-to-tail	

configuration	 supporting	 circRNAs:	 ncSplice	 v	 1.0	 	 which	 is	 available	 at	

https://github.com/Frenzchen/ncSplice.	 	 An	 overview	 of	 this	 pipeline	 is	 described	 in	

Figure	1.	First,	we	filtered	out	the	reads	identified	in	steps	(A)-(C)	and	used	the	remaining	



reads	 to	 identify	 circRNA,	 intra-chromosomal	 (trans-splicing),	 and	 inter-chromosomal	

(gene	fusion)	reads.	We	extracted	the	terminal	20	bp	from	both	ends	of	each	unmapped	

read.	Next,	we	remapped	anchor	pairs	independently	from	each	other	to	the	canonical	

chromosomes	of	the	human	genome	(human	hg19,	GRCh37)	using	bowtie2	(v2.1.0).	The	

Bowtie2	command	for	1st	mapping	is:	

Ø 	bowtie2	–x	<bt2-idx>	-q	–U	anchors.fastq	–S	mapping.sam	

Anchor	pairs	 that	map	within	100	kb	 from	each	other,	on	 the	same	chromosome	and	

strand,	and	 in	a	head-to-tail	configuration,	were	considered	circRNA	candidates	reads.	

Anchor	pairs	that	map	on	the	same	chromosome,	but	are	more	than	1	Mb	apart	from	

each	other,	were	considered	intra-chromosomal	fusion	candidates.	Anchor	pairs	that	map	

on	different	chromosomes	were	defined	as	inter-chromosomal	fusion	candidates.	Anchor	

pairs	for	fusion	candidates	were	allowed	to	fall	on	different	strands.	Next,	we	extended	

the	 anchor	 alignments	 for	 all	 candidate	 anchor	 pairs.	 We	 allowed	 maximum	 of	 two	

mismatches	during	 the	extension	procedure.	We	discarded	anchor	pairs	 for	which	 the	

breakpoint	 was	 detected	 with	 an	 uncertainty	 of	 more	 than	 8	 bp.	 For	 all	 candidate	

breakpoints,	we	extracted	100	bp	of	flanking	sequence	upstream	and	downstream.	Next,	

we	used	these	to	build	separate	junction	indices	for	circRNAs,	 intra-chromosomal,	and	

inter-chromosomal	fusions.	All	unmapped	reads	were	remapped	with	bowtie2	on	theses	

indices	to	capture	reads	that	span	the	 junction	between	8	bp	and	20	bp.	The	Bowtie2	

commands	for	2nd	mapping	is:	

Ø bowtie2-build	-f		<reference_in>	<bt2_index_base>	

Ø bowtie2	–x	<bt2-idx>	-q	–U	unmapped.fastq	–no-unal	–S	remapping.sam	



	

The	results	from	two	mapping	rounds	were	then	joined.		

	

Post-detection	filtering	steps	

Z-score:	 The	 z-score	 is	 a	 statistical	 measure,	 which	 indicates	 how	 many	 standard	

deviations	an	element	deviates	from	the	sample	mean.	In	many	samples,	we	observed	

loci	 that	 were	 highly	 enriched	 in	 the	 reads.	 These	 loci	 seem	 to	 contain	 repetitive	

sequences	and,	therefore,	reads	mapping	to	these	regions	are	likely	to	be	artifacts.	We	

calculated	z-scores	for	all	read	counts/event	for	each	sample	and	detection	type	(circRNA,	

intra-	 or	 inter-chromosomal	 fusion).	 Events	 with	 the	 z-score	 higher	 than	 1.96	 were	

discarded.	



	

Figure	1.	Overview	of	the	ncSplice	pipeline.		ncSplice		detects	reads	spliced	distantly	on	

the	same	chromosome	supporting	trans-splicing	events;	reads	spliced	across	different	
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Ͳ�ƐĂŵĞ�ĐŚƌŽŵŽƐŽŵĞ
- within 100 kb
Ͳ�ƐĂŵĞ�ƐƚƌĂŶĚ

ĂŶĐŚŽƌ�ƉĂŝƌ�ĐŽŶĚŝƟŽŶƐ
Ͳ�ƚĂŝůͲƚŽͲŚĞĂĚ�ĐŽŶĮŐƵƌĂƟŽŶ
Ͳ�ƐĂŵĞ�ĐŚƌŽŵŽƐŽŵĞ
Ͳ�Ăƚ�ůĞĂƐƚ�ϭ�ŵď�ĂƉĂƌƚ

ĂŶĐŚŽƌ�ƉĂŝƌ�ĐŽŶĚŝƟŽŶƐ
Ͳ�ƚĂŝůͲƚŽͲŚĞĂĚ�ĐŽŶĮŐƵƌĂƟŽŶ
Ͳ�ĚŝīĞƌĞŶƚ�ĐŚƌŽŵŽƐŽŵĞ

ƌĞŵĂƉƉŝŶŐ�ŽŶ�ĐĂŶĚŝĚĂƚĞ�ũƵŶĐƟŽŶ�ŝŶĚĞǆ
ΎďŽǁƟĞϮ

ŶŽƌŵĂůŝǌĂƟŽŶ�ĂŶĚ�ƌĞŵŽǀĂů�ŽĨ�ŽƵƚůŝĞƌƐ
*custom ruby and R script

ĮŶĂů�ĐĂŶĚŝĚĂƚĞ�ůŝƐƚ

ĂŶĐŚŽƌ�ƉƌĞƉĂƌĂƟŽŶ
*custom ruby script

ƵŶŵĂƉƉĞĚ�ƌĞĂĚƐ

ĚŽǁŶƐƚƌĞĂŵ�ĨƵƐŝŽŶ

ƵƉƐƚƌĞĂŵ�ĨƵƐŝŽŶ

ĚŽǁŶƐƚƌĞĂŵ�ĨƵƐŝŽŶ

ƵƉƐƚƌĞĂŵ�ĨƵƐŝŽŶ



chromosomes	supporting	gene	fusion	events;	and	reads	spliced	in	a	head-to-tail	

configuration	supporting	circRNAs.	

	

E.	Mapping	unmapped	reads	onto	the	V(D)J	genes	of	antibody	loci	

Gene	segments	of	B	cell	receptors	(BCR)	and	T	cell	receptors	(TCR)	were	imported	from	

IMGT	(International	ImMunoGeneTics	information	system):		

(http://www.imgt.org/vquest/refseqh.html#V-D-J-C-sets).		

IMGT	database	contains:	

• Variable	(V)	gene	segments	

• Diversity	(D)	gene	segments	

• Joining	(J)	gene	segments		

Unmapped	reads	categorized	by	step	(A)-(D)	were	filtered	out.	We	used	IgBLAST	(v.	1.4.0)	

with	 stringent	 e-value	 threshold	 (e-value	 <	 10-20)	 to	 map	 the	 remaining	 high-quality	

unmapped	reads	onto	the	V(D)J	regions	of	the	of	the	BCR	and	TCR	loci.		Reference	files	

with	BCR	and	TCR	VDJ	gene	segments	are	distributed	with	ROP	protocol	and	available	

here:	

	https://sergheimangul.wordpress.com/vdj/		

	

	

	

	

	



The	complete	list	of	the	references	is	presented	in	Table	5.		

Name	of	the	reference	file	 Description	of	the	gene	

BCR	heavy	chain	

IGHV.fa	 V	genes	of	BCR	heavy	chain	

IGHD.fa	 D	genes	of	BCR	heavy	chain	

IGHJ.fa			 J	genes	of	BCR	heavy	chain	

BCR	light	chains	

IGLV.fa	 V	genes	of	BCR	lambda	chain	

IGLJ.fa	 J	genes	of	BCR	lambda	chain	

IGKV.fa	 V	genes	of	BCR	kappa	chain	

IGKJ.fa	 J	genes	of	BCR	kappa	chain	

TCR	chains	

TCRAV.fa	 V	genes	of	TCR	alpha	chain	

TCRAJ.fa	 J	genes	of	TCR	alpha	chain	

TCRBV.fa	 V	genes	of	TCR	beta	chain	

TCRBD.fa	 D	genes	of	TCR	beta	chain	

TCRBJ.fa	 J	genes	of	TCR	beta	chain	

TCRGV.fa	 V	genes	of	TCR	gamma	chain	

TCRGJ.fa	 J	genes	of	TCR	gamma	chain	

TCRDV.fa	 V	genes	of	TCR	delta	chain	

TCRDD.fa	 D	genes	of	TCR	delta	chain	

TCRDJ.fa	 J	genes	of	TCR	delta	chain	

	

Table	5.		List	of	the	references	files	prepare	for	V-D-J	from	BCR	and	TCR	loci.	



	

We	 prepared	 the	 index	 from	 each	 reference	 sequence	 using	 makeblastdb	 and	

makembindex	 from	BLAST+.	 The	 following	options	were	 used	 to	map	 the	 reads	 using	

IgBLAST:	-germline_db_V;	germline_db_D;	-germline_db_J;	-organism=human;	-outfmt	=	

7;	–evalue	=	1e-20.		

	

The	number	of	genes	and	gene	alleles	per	antibody	locus	is	presented	in	Table	6.		

	

	 V	domain	 D	domain	 J	domain	

IGH	locus	 136(370)	 27(34)	 9(16)	

IGK	locus	 100(124)	 -	 5(9)	

IGL	locus	 70(111)	 -	 7(10)	

TCRA	locus	 54(112)	 -	 61(68)	

TCRB	locus	 77(160)	 2(3)	 14(16)	

TRG	locus	 14(26)	 -	 5(6)	

TRD	locus	 8(22)	 0(0)	 1(4)	

	

Table	6.	The	number	of	V-D-J	genes	and	gene	alleles	per	antibody	 locus.	 	Number	of	

genes	is	presented	in	bold	and	number	of	gene	alleles	is	presented	in	parenthesis.	Gene	

and	gene	alleles	of	B	cell	 receptors	 (BCR/IG)	and	T	cell	 receptors	 (TCR)	were	 imported	

from	IMGT.		

	



We	 assessed	 combinatorial	 diversity	 of	 the	 antibody	 repertoire	 by	 looking	 at	 the	

recombinations	of	 the	VJ	gene	segments	of	BCR	and	TCR	 loci.	We	extracted	the	reads	

spanning	the	V-J	gene	boundaries.		

	

	

F.	Identification	of	microbial	reads	

Unmapped	reads	mapping	 in	step	 (A	 -(E)	were	 filtered	out.	The	 remaining	 reads	were	

high-quality	non-human	reads	used	to	profile	the	taxonomic	composition	of	the	microbial	

communities.	We	used	MetaPhlAn2	(Metagenomic	Phylogenetic	Analysis,	v	2.0)	to	assign	

reads	on	microbial	 genes	and	 to	get	 taxonomic	profile.	 The	database	of	 the	microbial	

marker	genes	is	provided	by	MetaPhlAn.	We	run	MetaPhlAn	in	two	stages	as	follow:	the	

first	stage	identifies	the	candidate	microbial	reads	(i.e.	reads	hitting	a	marker),	while	the	

second	 stage	profiles	metagenomes	 in	 terms	of	 relative	abundances	–	 the	 commands	

used	are	as	follow:	

Ø metaphlan.py	<fastq>	<map>	--input_type	multifastq	--bowtie2db	

bowtie2db/mpa	-t	reads_map	--nproc	8	--bowtie2out		

Ø metaphlan.py	--input_type	blastout	<bowtie2out.txt>	-t	rel_ab	<tsv>	

	

The	output	of	the	first	stage	is	a	file	with	the	list	of	candidate	microbial	reads	with	the	

microbial	taxa	assigned	(.map	file).	The	second	stage	outputs	the	taxonomic	profile	(taxa	

detected	and	 its	 relative	abundance,	 in	 tab	 separated	 format	 (.tsv	 file).	We	used	 taxa	

detected	from	stage	2	to	extract	the	reads	associated	with	it	in	stage	1.			



In	addition	to	the	tool	which	use	the	curated	database	of	taxa-specific	genes,	we	mapped	

the	reads	onto	the	entire	reference	genomes	of	microbial	organisms.	We	used	Megablast	

(BLAST+	 2.2.30)	 to	 align	 reads	 onto	 the	 collection	 of	 bacterial,	 viral,	 and	 eukaryotic	

pathogens	reference	genomes.	Bacterial	and	viral	genomes	were	downloaded	from	NCBI	

ftp://ftp.ncbi.nih.gov/	 on	 February	 1,	 2015.	 	 Genomes	 of	 eukaryotic	 pathogens	 were	

downloaded	 from	 EuPathDB	 database	 which	 is	 available	 at:	

http://eupathdb.org/eupathdb/.		

The	 following	 parameters	 were	 used	 for	 the	 megablast	 alignment:	 	 e-value	 =	 10-5,	

perc_identity	=	90.		The	Megablast	hits	shorter	than	80%	of	the	input	read	sequence	were	

removed	(corresponding	to	80bp	of	the	100bp	read).		

	

Comparing	diversity	across	groups	

First,	we	sub-sampled	unmapped	reads	to	number	of	reads	corresponding	to	a	sample	

with	smallest	number	of	unmapped	reads.		Diversity	within	a	sample	was	assessed	using	

the	 richness	 and	 alpha	 diversity	 indices.	 	 Richness	 was	 defined	 as	 a	 total	 number	 of	

distinct	 events	 in	 a	 sample.	 We	 used	 Shannon	 Index(SI)	 incorporating	 richness	 and	

evenness	components	to	compute	alpha	diversity,	which	is	calculated	as	follows:	

SI = 	− 𝑝× log+ 𝑝 	

We	 used	 beta	 diversity	 (Sørensen–Dice	 index)	 to	 measure	 compositional	 similarities	

between	 the	 samples	 in	 terms	 of	 gain	 or	 loss	 of	 the	 events.	 	We	 calculated	 the	 beta	

diversity	for	each	combination	of	the	samples,	and	we	produced	a	matrix	of	all	pair-wise	

sample	dissimilarities.	The	Sørensen–Dice	beta	diversity	index	is	measured	taxonomically	



as	1 − +-
./0

,	where	J	is	the	number	of	shared	events,	while	A	and	B	are	the	total	number	

of	events	for	each	sample,	respectively.		

	

	

	

Percentage	of	unmapped	reads	calculation	

We	calculated	the	percentage	of	unmapped	reads	using	the	following	formula:	

P23456678 =
N28 + (N2<×2 )
(N?@?5A×2	)

	

where,		

Nud	–	number	of	discordant	unmapped	reads	(one	end	is	mapped,	while	the	other	end	is	

unmapped);		

Nuc	–	number	of	unmapped	read	pairs	(both	ends	are	unmapped);	

Ntotal	–	total	number	of	read	pairs	(fragments).	

	

Complexity	analysis	using	Capture	Recapture	Model	

Given	a	sequencing	experiment,	the	Read	Origin	Protocol	(ROP)	attempts	to	classify	every	

sequenced	read	in	the	experiment	to	an	“origin”	class.	These	origins	can	be	considered	to	

be	features	of	 interest,	e.g.	exons,	retroviral,	 immune,	or	bacterial.	Since	every	read	is	

assigned	to	only	one	class	we	can	consider	the	reads	assigned	to	a	specific	class	to	be	a	

random	 sample	 from	 the	population	of	 possibilities	within	 that	 class.	 This	 leads	 us	 to	

consider	 statistical	 models	 for	 population	 sampling,	 so	 called	 “capture-recapture”	



models.5	

Using	 capture-recapture	 models	 allows	 us	 to	 make	 statistical	 inferences	 on	 several	

quantities	 of	 interest.	 Of	 primary	 interest	 is	 the	 total	 number	 of	 possibilities	 in	 the	

feature.	We	shall	refer	to	this	as	the	feature	size	but	is	commonly	known	in	the	statistics	

literature	as	the	species	richness.5,6	We	also	consider	the	number	of	identified	possibilities	

within	a	feature	as	a	function	of	the	number	of	reads,	that	we	shall	call	the	complexity	of	

the	 feature,	 in	 line	with	 the	 notation	 of	 Daley	 and	 Smith.7	 The	 rate	 of	 change	 in	 the	

complexity	 curve	 is	 proportional	 to	 the	 probability	 the	 next	 read	 is	 a	 previously	

unobserved	 class.8	 This	 quantity	 is	 commonly	 known	 in	 the	 statistics	 literature	 as	 the	

mathematical	coverage9,	but	to	avoid	confusion	with	sequencing	coverage	we	call	 this	

the	 discovery	 probability10	 and	 one	minus	 the	 discovery	 probability	will	 be	 called	 the	

saturation	of	the	feature.	

Statistical	Model	

Suppose	 we	 sequence	 N	 reads	 from	 an	 experiment.	 There	 are	 C	 feature	 classes,	

represented	in	the	sequencing	library	with	proportions	πC, … , 𝜋G .	Feature	may	overlap,	

so	 it’s	not	necessary	that	the	proportions	sum	to	one.	The	features	are	all	known	and	

defined	beforehand.	This	is	in	contrast	to	the	number	of	classes	within	each	feature.	

Within	each	feature	c,	there	are	a	fixed	but	unknown	number	of	classes,	Sc	represented	

in	the	experiment.	Within	the	feature,	these	are	represented	with	relative	proportions	

pC, … , pIJ, pK

IJ

KLC

= 1	

If	we	are	interested	in	the	relative	proportions	within	the	experiment,	we	multiply	the	



relative	proportion	within	the	feature	by	the	relative	abundance	of	the	feature	within	the	

experiment.	

The	problem	is	that	we	only	have	information	on	the	classes	that	were	sequenced	in	the	

experiment.	We	observed	𝐷G ≤ 𝑆G	classes	with	observed	frequencies	xK	=	#	reads	from	

class	i	with	 𝑥R
ST
RLC = 𝑁G 	and	 𝑁V = 𝑁G

VLC .		

The	problem	of	estimating	the	complexity	is	to	estimate	the	number	of	expected	distinct	

classes	observe	as	a	function	of	reads	sequenced.	We	use	the	non-parametric	empirical	

Bayes	approach	of	Daley	and	Smith7	to	estimate	the	feature	complexity	curve.	The	limit	

of	the	feature	complexity	curve	can	be	regarded	as	an	estimate	of	the	feature	size.11	

The	 discovery	 probability	 of	 the	 observed	 experiment	 is	 the	 sum	 of	 the	 relative	

proportions	of	the	unobserved	classes,	

𝒑𝒊𝟏(𝒙𝒊 = 𝟎)
𝑺𝒄

𝒊L𝟏

.	

The	 non-parametric	 empirical	 Bayes	 estimator	 for	 this	 quantity	 is	 given	 by	 the	 Good	

Turing	formula,	( C _`LC
aT

Sb
RLC ).	

Read	Complexity	Analysis	

We	first	examine	the	read	complexity	determined	by	the	mapped	start	position	of	the	

first	end	in	the	read	pair.	We	observe	little	difference	between	the	two	libraries	for	the	

single	end	 complexity	 (Figure	2).	We	observe	only	an	average	of	20%	and	29%	of	 the	

mappable	reads	at	the	sequenced	read	depth.	We	estimate	that	on	average	all	libraries	

are	58%	saturated,	that	is	we	observed	58%	of	the	abundance.	This	is	natural	since	one	

would	naturally	sequence	the	most	abundant	reads	first.	



	

Figure	2.	 Single	end	 read	 complexity	medians	and	 interquartile	 ranges	across	 the	 two	

library	preparations.	

	

Annotated	Feature	Complexity	Analysis	

The	mapped	reads	can	be	assigned	to	features	within	the	genome.	These	include	exons,	

introns,	coding	sequences	(CDS),	and	untranslated	regions	(UTR).	In	this	section	we	shall	

investigate	 the	 complexity	of	 these	 features	and	 can	be	 interpreted	as	estimating	 the	

transcriptional	diversity	within	these	libraries.		



As	expected,	more	exons,	CDSs,	and	UTRs	were	observed	per	sequenced	fragment	for	the	

polyA	libraries	than	for	the	totalRNA	libraries.	Yet	all	libraries	are	very	saturated.	Most	of	

the	 abundant	 classes	 within	 these	 features	 have	 already	 been	 observed	 and	 the	

unobserved	 features	 are	 extremely	 rare.	 This	 is	 in	 line	 with	 the	 common	 practice	 of	

sequencing	a	few	tens	of	millions	of	reads	for	inferring	differential	expression.		

		

To	compare	the	saturation	across	libraries,	we	extrapolated	the	saturation	to	a	common	

value.	The	saturation	is	asymptotically	normal13	and	the	sequencing	depth	is	sufficiently	

high	that	we	can	use	a	standard	t-test	to	investigate	differences.	When	all	the	features	

for	all	 libraries	are	extrapolated	out	to	100	million	observations	the	polyA	libraries	are	

more	 saturated	 (exons:	p	=	3.764E-16;	CDS:	p	=	1.036E-14;	UTR:	p	=	5.183E-14;	more	

significant	differences	were	observed	at	lower	depths,	indicating	that	the	differences	are	

not	artifacts	of	the	sampling	depth).		

	

Despite	the	large	saturation	for	all	features	across	libraries,	a	multitude	of	unobserved	

classes	remain	(Table	7).	This	means	that	most	of	the	unobserved	classes	are	exceedingly	

rare.	For	example,	we	estimate	that	on	average	there	are	41,990	unobserved	exons	in	the	

polyA	 libraries.	 There	 is	 an	 average	 remaining	 abundance	 of	1 − 0.9988 = 0.0012 ,	

implying	 that	 the	 average	 abundance	 of	 the	 unobserved	 exons	 is	f.ffC+
gChhf

= 2.86	𝐸 − 8.	

Since,	on	average,	a	read	has	2 ∙ 0.176 = 0.352	probability	of	overlapping	an	exon,	the	

average	abundance	of	the	unobserved	exons	is	1E-8	and	the	total	abundance,	0.00042,	

gives	 the	 marginal	 probability	 that	 the	 next	 sequenced	 read	 is	 a	 new	 exon.	 For	 the	



totalRNA	libraries,	the	average	abundance	of	the	unobserved	exons	is	3.2E-8.	Similarly,	

we	 calculated	 the	 average	 abundance	of	 the	unobserved	CDS	 for	 polyA	 and	 totalRNA	

libraries	as	1.84E-8	and	7.78E-8,	respectively,	and	for	UTRs	it	was	1.1E-8	and	6.48E-8.	

Finally,	we	examined	differences	of	diversity	between	case	and	controls	for	a	fixed	tissue	

type	and	library	type.	This	is	quite	anticlimactic,	as	we	found	little	differences	between	

cases	and	controls	for	extrapolated	saturation	and	feature	diversity.	This	indicates	that	

there	are	little	differences	in	transcriptome	diversity	between	the	two	groups	of	case	and	

controls	 or	 that	 the	 differences	 are	 so	 small	 that	 a	much	 larger	 cohort	 is	 required	 to	

accurately	infer	the	disparity.	

Feature	
Mean	hits	 Mean	observed	 Mean	saturation	

Mean	estimated	

total	

polyA	 totalRNA	 polyA	 totalRNA	 polyA	 totalRNA	 polyA	 totalRNA	

Exons	
10310521	 110553	 0.9969	 145950	

17713362	 5745436	 115507	 107498	 0.9988	 0.9956	 157497	 138829	

CDS	
4791394	 105820	 0.984	 131521	

8804113	 2316884	 116068	 99500	 0.9977	 0.9756	 144062	 123788	

UTR	
4359596	 33165	 0.9948	 43136	

8035082	 2093047	 37448	 30524	 0.99913	 0.99209	 49849	 38997	

	

Table	7.	Mean	number	of	observations,	distinct	observed	classes,	observed	saturation,	

and	estimated	total	number	of	classes	for	exons,	CDS,	and	UTR	Features.		

	



List	of	software	tools	used:	

Tophat	-	http://ccb.jhu.edu/software/tophat/index.shtml		

Bowtie2	-	http://bowtie-bio.sourceforge.net/bowtie2/index.shtml		

Samtools	-	http://www.htslib.org/		

Bamtools	-		https://github.com/pezmaster31/bamtools		

FASTX-Toolkit	-	http://hannonlab.cshl.edu/fastx_toolkit/		

SEQLEAN	-	http://sourceforge.net/projects/seqclean/files/		

BLAST+	-	ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/		

RepeatMasker		-	http://www.repeatmasker.org/		

IgBlast	-	http://www.ncbi.nlm.nih.gov/igblast/		

ncSplice	-	https://github.com/Frenzchen/ncSplice		

MetaPhlAn	-	http://huttenhower.sph.harvard.edu/metaphlan		

HTSeq	-	http://www-huber.embl.de/users/anders/HTSeq/		

Preseq	-	http://smithlabresearch.org/software/preseq/	

Quicksect		-	https://github.com/brentp/quicksect		

	

	



Databases	

Ensembl	hg19		-	http://www.ensembl.org/Homo_sapiens/Info/Index		

Human	ribosomal	DNA	complete	repeating	unit	-

http://www.ncbi.nlm.nih.gov/nuccore/U13369		

GTF	formatted	file	for	repeat	annotations-		

http://labshare.cshl.edu/shares/mhammelllab/www-

data/TEToolkit/TE_GTF/hg19_rmsk_TE.gtf.gz		

Repeat	elements	(RepBase20.07)	–		http://www.girinst.org/repbase/	

V(D)J	genes	of		B	and	T	cell	receptor	-	http://www.imgt.org/vquest/refseqh.html#V-D-J-

C-sets		

Database	of	viral	genomes:	http://ftp.ncbi.nlm.nih.gov/genomes/Viruses		

Database	of	bacterial	genomes:		http://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/	

Database	of	eukaryotic	pathogens	-	http://eupathdb.org/eupathdb/			
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