
1 
 

Supplementary materials for 

 

PEDLA: predicting enhancers with deep learning-based algorithmic framework 

 

Feng Liu1, Hao Li1, Chao Ren1, Xiaochen Bo1*, Wenjie Shu1* 

 

1Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing 

100850, China 

 

*Corresponding author. To whom correspondence should be addressed. Tel & Fax: +86 

10 68210077 66932211; Email: shuwj@bmi.ac.cn. Correspondence may also be 

addressed to: boxc@bmi.ac.cn.  

 

  

mailto:shuwj@bmi.ac.cn
mailto:shuwj@bmi.ac.cn


2 
 

Supplementary Methods 

Deep belief networks and hidden Markov model 

Deep belief networks (DBNs), initially introduced by Hinton, et al., 1, are probabilistic 

generative models that are in contrast to the discriminative nature of traditional neutral 

nets. DBNs consist of several layers of Restricted Boltzmann Machines (RBMs) 2, 

which are a type of undirected bipartite graph constructed from a bottom layer of binary 

stochastic hidden units 𝐡 and a top layer of stochastic visible units 𝐯. For an RBM, 

an energy function is assigned to the configurations of 𝐯 and 𝐡 in terms of 

E(𝐯, 𝐡) = −𝐛T𝐯 − 𝐜T𝐡 − 𝐯T𝐖𝐡 

where 𝐖 is the symmetrical matrix of visible/hidden connection weights and 𝐛 and 

𝐜 are the biases of the visible and hidden units, respectively. Thus, the probability 

distribution of any particular setting of 𝐯 and 𝐡 is  

P(𝐯, 𝐡) =
𝑒−𝐸(𝐯,𝐡)

𝑍
 

where the normalization factor Z = ∑ 𝑒−𝐸(𝐯,𝐡)𝐯,𝐡  is known as the partition function. 

The bipartite and binary natures of RBMs enable us to derive simple exact expression 

for P(𝐯|𝐡) and P(𝐡|𝐯) as  

P(𝐡 = 𝟏|𝐯) =σ(𝐜 + 𝐯T𝐖) 

and  

P(𝐯 = 𝟏|𝐡) =σ(𝐛 + 𝐡T𝐖T) 

, respectively, where σ  denotes the (elementwise) logistic sigmoid, σ(𝑥) =

(1 + 𝑒−𝑥)−1. 
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In our algorithm, RBMs were trained in a greedy layer-wise manner with one-step 

contrastive divergence (CD-1). We used the DBN weights resulting from RBMs to 

initialize DNNs generatively in a purely unsupervised way and used the outputs of DBN 

as the inputs to train the Softmax output layer in a supervised manner. After pre-training, 

we used a backpropagation algorithm to fine-tune all of the weights in a supervised 

manner to improve the discriminative performance of the entire network. Pre-training 

followed by stochastic gradient descent is used to train DNN because it often 

outperforms random initialization for the deeper architectures and provides robust 

results to the initial random seed. Studies have illustrated that using DBN pre-training 

to initialize the weights of a DNN helps prevent overfitting and can aid in subsequent 

optimization and can reduce generalization error 3, 4. This semi-supervised approach 

using deep models has proved effective in a number of applications, including coding 

and classification for speech, audio, text, and image data.  

 

An hidden Markov model (HMM) is a generative model in which the system is assumed 

to be generated from a Markov process that transitions between states 𝑺 = [𝑠1, … , 𝑠𝐾]. 

An HMM is a triple (𝛑, 𝐀, 𝐁), where 𝛑 is the initial state probability distribution, 𝐀 

is the state transition probability distribution and 𝐁 is the observation probability 

distribution. For an HMM, B is defined as 

𝑏𝑗(𝑂𝑡) = 𝑃(𝑂𝑡|𝑞𝑡 = 𝑆𝑗) =
𝑝(𝑞𝑡 = 𝑆𝑗|𝑂𝑡)𝑝(𝑂𝑡)

𝑝(𝑞𝑡=𝑆𝑗)
, 1 ≤ 𝑗 ≤ 𝑁, 

where 𝑂𝑡 is the observation at location t, 𝑞𝑡 is the state at location t, and 𝑆𝑗 is the j-

th state of the N states in total, 𝑝(𝑞𝑡 = 𝑆𝑗|𝑂𝑡) is the state posterior probability, and 
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𝑝(𝑞𝑡 = 𝑆𝑗) is the prior probability of each state.  

 

In our hybrid model, 𝑝(𝑞𝑡 = 𝑆𝑗|𝑂𝑡) is estimated from the DNN, 𝑝(𝑞𝑡 = 𝑆𝑗) can be 

easily estimated from the training set, and 𝑝(𝑂𝑡) is independent of state and thus can 

be ignored without any influence on the result when using the Viterbi algorithm to find 

the optimal state. Notably, we have found the prior probability 𝑝(𝑞𝑡 = 𝑆𝑗) to be very 

important in alleviating the label bias problem. 

 

References 

1. Hinton, G.E., Osindero, S. & Teh, Y.W. A fast learning algorithm for deep belief nets. Neural 

computation 18, 1527-1554 (2006). 

2. Hinton, G. Deep belief networks. Scholarpedia 4, 5947 (2009). 

3. Hinton, G.E. & Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. 

Science 313, 504-507 (2006). 

4. Erhan, D. et al. Why Does Unsupervised Pre-training Help Deep Learning? J. Mach. Learn. Res. 

11, 625-660 (2010). 

 

  



5 
 

Supplementary Figures 

Supplementary Figure S1. The workflow of PEDLA 

Schematic diagram showing the input data (A), training procedure (B) and prediction 

procedure (C) of PEDLA. 

 

Supplementary Figure S2. Performance of classic DNN to handle class-

imbalanced data 

(A-B) Inability to handle class-imbalanced data in an unbiased way for classic DNN. 

Three performance indicators, sensitivity, specificity and GM, were measured for the 

training set (A) and test set (B) using 5-fold cross-validation based on the optimal 

structure of classic DNN with all 1,114-dimensional features. The numbers of 

enhancers, promoters and random regions not annotated as promoters or enhancers 

were maintained at 1 : 1 : x (x = 1, 2, …, 9), such that the ratio between positive and 

negative samples was 1 : (1 + x). 
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Supplementary Tables 

Supplementary Table S1. Description of all 1,114-dimensional feature data 

used by PEDLA in the H1 cell line. 

 

Supplementary Table S2. The enhancer set (positive class set) containing 5,870 

enhancer regions based on H3K27ac peaks in the H1 cell line. 

 

Supplementary Table S3. Performance comparisons of various structures of 

PEDLA using 5-fold cross-validation in both the training set and test set. 

 

Supplementary Table S4. Twenty-two training cell types/tissues and twenty 

independent test cell types/tissues selected for training and evaluation of 

PEDLA. 

 

Supplementary Table S5. Variable importance of all 1,114-dimensional features. 

We used the random forest method to assess the relative importance of each feature by measuring 

the increase in classification error upon permutation of feature values across classes. 

 

Supplementary Table S6. Performance comparisons across methods with less 

stringent positive enhancer sets p-value < 10-4 
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Supplementary Table S7. Performance assessments of PEDLA with the best-

trained model in the 22 training cell types/tissues. 

 

Supplementary Table S8. Performance assessments of PEDLA with the best-

trained model in the 20 independent test cell types/tissues. 
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