Supplementary data

Suppl. S1: List of primers used for the completion of genome and screening

Description	Primer name RVA-VP6_40F	Primer sequence ($5^{\prime} \rightarrow 3^{\prime}$)						
Screening primers for human and bat RVAs			AGR	GAC	$C \text { AAR }$	R ATT	T GTY	GG
	RVA-VP6_1083R	GWC	CAA	TTC	Atr	CCT	GGT	
```Primers for completing segments of RVA/Bat- wt/CMR/BatLy03/2014/G 25P[43]```	RVA59_VP1_301-322R	TTA	GCT	AAT	TTA	CCC	TCA	ACG G
	RVA59_VP1_328-349F	AAG	CTA	ACG	TCA	GAA	tTA	ttc GC
	RVA59_VP1_737-758R	GCT	ACT	AAG	Att	GAC	ATT	GGT G
	RVA59_VP1_2991-3013F	GTC	AAT	AAA	CTA	TGG	CTG	tta CC
	RVA59_VP1_3048-3072F	AtT	AAT	TCG	TAT	ACC	CTT	CAA AgG $T$
	RVA59_VP3_76-100F	CAA	TCT	TAT	GCT	GAT	ACT	CAA ACG
	RVA59_VP3_787-809R	TGT	CAA	Att	GTG	AAA	TAC	GTC GC
	RVA59_VP3_1795-1818F	CGT	TAT	CTG	GTT	ACA	tat	tta gag
	RVA59_VP4_2063-2084F	GAA	CAG	ATG	GTA	GAT	TTT	tcG C
	RVA59_VP4_171-195R	TAC	AGT	TGT	TGA	AtC	GTT	AAT TtC C
	RVA59_NSP1_1433-1453F	AAA	TCA	CTC	TTA	TTC	CGG	TGG
	RVA59_NSP5_389-411F	ATC	AAT	TAC	TAC	GGA	TCA	TGC TG
```Primers for completing segments of RVA/Bat- wt/CMR/BatLi10/2014/G 30P[42]```	RVA46_VP4_118-137_F	TTA	CGC	ACC	AGT	GAA	ttg	GG
	RVA46_VP4_839-860_R	ACC		tat	AtC	CTA	AAC	CAC
	RVA46_VP7_172-191_F	TCA	ATG	GAC	GTT	GTG	ttg	GC
	RVA46_VP7_803-823_R	GAT	ttg	TTG	TTG	GAT	CTG	ACG
Primers for the amplification of 5'and 3' ends of VP7 and VP4 segments	RVA63_VP7-5'-227_R	TTA CTAGAC TCA TGT CCA TCG						
	RVA63_VP7-3'-839_F	AGT ATt ACA AGT TGG AGG TGC						
	RVA894_VP7-5'-202_R	TGT	AAC	CGG	TAT	GTT	CAA	TCC
	RVA894_VP7-3'-788_F	GTA	AGA	AAA	TCG	GAC	CTA	GAG
	RVA59_VP7-5'-213_R	TCC	AtT	GAT	CCA	GTA	ATT	GGC
	RVA59_VP7-3'-843_F	TAT	AAC	AGC	AGA	тсС	AAC	GAC
	RVA63_VP4-5'-230_R	ATA	CCC	AAT	TAT	CGA	CTG	CTG
	RVA63_VP4-3'-2143_F	CTT	GTA	ACT	GAT	TCA	CCA	GTC
	RVA59_VP4-5'-214_R	AAA	TTC	TGT	TGG	CTG	ATA	GGG
	RVA59_VP4-3'-2100_F	AGA	TTT	TTC	GCA	TAT	AAA	GTG AGC
	RVA894_VP4-5'-158_R	TAC T	TGT	TGA	GTC	Att	TAC	ttc CC
	RVA894_VP4-3'-2072_F	GAA C	CAG	ATG	GTA	GAT	TTT	TCG C

Suppl. S2: Nucleotide percentage similarity between primers and corresponding sequences of Cameroonian bat RVA strains. -: 5' or 3'-end amplification failed.

Name of primer	BatLy03 G25P[43]	BatLi08 G31P[42]	BatLi09 G30P[42]	BatLy17 G30P[xx]	BatLi10 G30P[42]	Reference (PMCID)	
Outer capsid glycoprotein VP7 forward primers	Beg9	96.4	57.1	-	85.7	-	269590
sBeg9	100	57.1	-	90.5	-	269590	
9Con1-L	100	100	-	100	-	263808	
Outer capsid glycoprotein VP7 reverse primer							
EndA	78.2	91.3	95.7	-	-	10364621	
VP7-Rdeg	95.0	95.0	100	-	-	114861	
End9	85.1	66.7	59.3	-	-	269590	
RVG9	89.5	63.2	63.2	-	-	269590	

Suppl. S3: Detail explanations of the comparisons between screening primer pairs and the novel bat VP4 and VP7 genotypes

VP7 forward primers Beg9, sBeg9 and 9Con1-L showed a (near) perfect match with BatLy03G25, whereas strain BatLi08-G31 and BatLy17-G30 (first 6 nt are missing for this strain), showed up to 10 and 4 nucleotide mismatches at the 3'end of the primers, respectively. VP7 forward primer 9con1-L showed a perfect match with all the genotypes (G25, G30 and G31). Considering the VP7 reverse primers EndA, VP7-Rdeg, End9 and RVG9, BatLy03-G25 did not show a perfect match as there were $4,1,4$ and 2 mutations, respectively. The mismatches with EndA, VP7-Rdeg and RVG9 were near the middle or at the 5 'end of the primer, whereas 2 of those of End9 were close to the 3 'end. Comparing the same VP7 reverse primers with strain BatLi08-G31 and BatLi09-G30 also showed mismatches. For EndA and VP7-Rdeg maximum 2 mismatches are located in the middle or near the 5 '-end, whereas for End 9 and RVG, there
were multiple mismatches of which 2 and 7 mismatches, respectively were right at the 3 '-end. For VP4 forward primer VP4-1-17F, BatLy03-P[43], BatLi08-P[42], BatLy17-P[xx] and BatLi09-P[42] showed 2, 2, 1 and 2, mismatches, respectively, with at least a mutation at the first position from the 3 'end for all of them. For con 3 , there were $6,7,6$ and 8 mismatches with BatLy03-P[43], BatLi08-P[42), BatLi09-P[42] and BatLy17-P[xx], respectively. Considering the VP4 reverse primer con2, strains BatLy03-P[43], BatLi08-P[42], BatLi09-P[42], BatLy17$\mathrm{P}[\mathrm{xx}]$ and BatLi10-P[42] showed 3-5 mismatches including one at the second position from the 3'-end.

Suppl. S4: Phylogenetic trees of nucleotide sequences of the RVA VP6 sequence. HRVA: Human RVA VP6 sequence from patients exposed to bats; open triangle: Cameroonian bat RVA strains; Other bat RVA: KE4582, MSLH14 and MYAS33. Bootstrap values (1000 replicates) above 70% are shown. Scale represent number of nucleotide substations per site.

