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1 Example pipeline

We now illustrate the capabilities of Sort-Seq Tools by stepping through an example pipeline. The reader is
encourage to follow along by entering the commands shown. More information on each individual command
can be found on the Sort-Seq Tools website,

https://github.com/jbkinney/sortseq tools/

Methods executed at the command line are shown in yellow boxes, are prefixed by $, and are followed
by the resulting standard output (if any). The execution time of each command, as observed on a 2.8 GHz
Intel Core i7 MacBook Pro with 16 GB RAM running Python 2.7.9, is shown in brackets below commands
and their output. None of these commands took more than 30s to execute. Green boxes are used to
illustrate the contents of the input and output text files.

1.1 Overview of Sort-Seq Tools

Sort-Seq Tools provides a suite of command line methods. Barring a few exceptions, each method takes
one or more tabular text files as input and returns a tabular text file as output. All input and output files
are designed to be human readable. The first line of each tabular text file contains headers describing the
contents of each column. All input files are required to have the proper set of columns, which of course
depend on the command being executed. By default, input is taken from the standard input and output
is written to the standard output. This allows multiple commands to be piped together in series, reducing
the need for temporary files. To specify input and output files manually, use the -i and -o options.

1.2 Simulating data

We begin by simulating a library of variant CRP binding sites. This is accomplished with the following
command.

$ sortseq_tools simulate_library -w TAATGTGAGTTAGCTCACTCAT -n 100000 -m 0.24 -o library.txt

[9s execution time]

Every Sort-Seq Tools method is implemented as a subcommand of sortseq tools. In this example, the
operative method is simulate library. The options passed to simulate library are: -w TAA...CAT,
which specifies the wild type sequence; -n 100000, which specifies the number of nonunique mutant se-
quences to be generated; and -m 0.24, which specifies a mutation rate of 24% per position. The output
from this command is written to library.txt and has the form

ct seq

223 TAATGTGAGTTAGCTCACTCAT

42 TAATGGGAGTTAGCTCACTCAT

36 TAATGTGAGTTAGCTCACACAT

35 TAATGTGAGTTAGCTCACTAAT

33 GAATGTGAGTTAGCTCACTCAT
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33 TCATGTGAGTTAGCTCACTCAT

33 TAATGTGAGTTACCTCACTCAT

32 TAATGTGAGTTAGCTCATTCAT

32 TAATGTGAGTCAGCTCACTCAT

...

In library.txt, the ct column indicates the number of occurrences of each unique sequence. Sequences
are sorted by decreasing count. The seq header indicates that the sequences listed are DNA sequences.
Alternatively, RNA sequences would be indicated by a column header seq rna, and protein sequences
would be indicated by a column header seq pro.

To simulate a Sort-Seq experiment, we need a pre-existing model with which to compute the activity
of each sequence. Here we use the neighbor model of CRP that was used to simulate the data for Fig. 5 of
the main text. This model is represented in a text file, true model.txt, that has the following form:

pos val_AA val_AC val_AG val_AT val_CA val_CC ...

0 0.081588 -0.019021 0.007188 0.042818 -0.048443 -0.015712 ...

1 0.033288 -0.005410 0.014198 0.018246 -0.033583 -0.001761 ...

2 -0.026142 0.008002 -0.029641 0.036698 -0.001028 -0.008025 ...

3 -0.046159 -0.006071 -0.001542 0.028109 -0.020442 -0.024574 ...

4 -0.025599 -0.043215 -0.001139 -0.000524 -0.027854 -0.003763 ...

5 -0.043352 0.014568 0.036066 0.029810 0.038567 -0.029127 ...

6 -0.007502 -0.018848 -0.018609 -0.016526 -0.043531 -0.075801 ...

7 -0.010014 0.068860 0.008494 0.070531 -0.016392 -0.064684 ...

8 -0.012821 0.012587 0.020371 -0.034140 0.004572 -0.025659 ...

...

The pos column lists the position of each dinucleotide within the binding site, while the columns (val AA,
val AC, . . . ) list the energetic contributions from each of the 16 possible dinucleotides at that position.

To simulate an experiment in which this model of CRP is used to compute the activity of each sequence
in the library, we execute the following command.

$ sortseq_tools simulate_sort -m true_model.txt -n 4 -i library.txt -o dataset.txt

[30s execution time]

The resulting dataset, which is written to dataset.txt, has the form,

ct ct_0 ct_1 ct_2 ct_3 ct_4 seq

276 53 1 1 22 199 TAATGTGAGTTAGCTCACTCAT

55 13 1 1 18 22 TAATGGGAGTTAGCTCACTCAT

42 6 0 0 0 36 TAATGTGAGTTAGCTCACACAT

42 7 0 0 1 34 TAATGTGAGTTAGCTCACTAAT

41 8 0 2 5 26 GAATGTGAGTTAGCTCACTCAT

38 5 0 0 8 25 TCATGTGAGTTAGCTCACTCAT

42 9 0 1 7 25 TAATGTGAGTTACCTCACTCAT

40 8 0 1 13 18 TAATGTGAGTTAGCTCATTCAT

38 6 0 2 5 25 TAATGTGAGTCAGCTCACTCAT

...

Along with the total count for each sequence and the sequence itself, dataset.txt lists the counts within
the starting library (ct 0) and the counts within the 4 sorting bins, arranged from lowest activity to highest
activity.

The simulation algorithm used in simulate sort is simple, but it can nevertheless be useful for char-
acterizing Sort-Seq Tools analysis pipelines. It works as follows. First, the model in true model.txt is
used to assign an activity to each sequence. Noise is then added to the activity of each sequence, thereby
producing a “measurement.” Each library sequence is then sorted into one of 4 bins (as specified by the -n

4 option) based on its measurement. The boundaries of each bin are chosen so that they are equipopulated.
The -sl flag tells simulate sort to include the original library in the set of output sequences as bin 0.
Multiple aspects of this simulation can be modified at the command line by using additional options.
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CRP RNAP

AATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGG

Figure S1: Example mutation and information profiles. (A) The 75 bp region of the E. coli lac promoter
mutagenized in the full-wt experiment of [1]. Binding sites for CRP and RNAP are indicated. (B) Mutation
profile of the full-wt library, indicating an approximately 12% mutation rate across the full 75 bp region.
(C) The information profile of the full-wt dataset, which clearly reveals the bipartite binding sites of both
CRP and RNAP. Information values were computed using the TPM mutual information estimator; error
bars were computed using bootstrap resampling.
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1.3 Computing profiles

It is often useful to compute the mutation rate within a set of sequences, e.g., in order to validate the
composition of a library. This can be accomplished using the profile mut command as follows

$ sortseq_tools profile_mut -b 0 -i dataset.txt -o mutprofile.txt

[3s execution time]

Here, the -b 0 option directs Sort-Seq Tools to extract the library (bin 0) counts from dataset.txt. These
counts and the corresponding sequences are then used to compute the mutation rate at each position within
the sequences; the output file mutprofile.txt is

pos wt mut

0 T 0.238331

1 A 0.237855

2 A 0.239164

3 T 0.237935

4 G 0.236586

5 T 0.240274

6 G 0.237895

7 A 0.239521

8 G 0.241226

...

The mut column lists the mutation rate at each position in the sequence, while the wt column reports the
most frequent base at each position. As expected, the mutation rate at each position is close to the value
of 24% specified above; variation from this value reflects the finite number of sequences simulated. An
example of a mutation profile computed from real data is shown in Fig. S1B.

To view the frequency of occurrence for every base at each position, use the profile freq command
instead:

$ sortseq_tools profile_freq -b 0 -i dataset.txt -o freqprofile.txt

[3s execution time]

The output file, freqprofile.txt, has the form

pos freq_A freq_C freq_G freq_T

0 0.077329 0.081255 0.079748 0.761669

1 0.762145 0.079034 0.078479 0.080343

2 0.760836 0.081969 0.078201 0.078994

3 0.081056 0.080620 0.076258 0.762065

4 0.080144 0.081572 0.763414 0.074870

5 0.080382 0.078717 0.081175 0.759726

6 0.078479 0.083158 0.762105 0.076258

7 0.760479 0.079272 0.081017 0.079232

8 0.080224 0.082206 0.758774 0.078796

...

Note that the frequencies listed in each row sum to 1.0, as is required of a list of probabilities.
Information profiles (also called “information footprints” [1]) provide a particularly useful way to iden-

tify functional positions within a sequence. These profiles list, for each position in a sequence, the mutual
information between a base at that position and the bin in which a sequence having that base is found.
Unlike mutation and frequency profiles, which require sequence counts for a single bin only, information
profiles are computed from full datasets. The command to do this is

$ sortseq_tools profile_info --err -i dataset.txt -o infoprofile.txt

[8s execution time]

The output, infoprofile.txt, is

pos info info_err

0 0.005211 0.000295

1 0.007160 0.000273
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2 0.000688 0.000118

3 0.024395 0.000621

4 0.042185 0.000765

5 0.015530 0.000613

6 0.073403 0.001098

7 0.022098 0.000631

8 0.001993 0.000211

...

The info column reports the mutual information values in units of bits. The optional --err flag causes
an additional column to be written, reporting the uncertainty in this mutual information estimate. The
specific methods used to compute these information values are described below. An information profile
computed from real data is shown in Fig. S1C.

1.4 Quantitative modeling

The command learn model is used to fit models to data. For example, the command

$ sortseq_tools learn_model -lm LS -mt MAT -i dataset.txt -o matrix_model.txt

[27s execution time]

fits a matrix model (specified by the -mt MAT option) to the data in dataset.txt using least squares
optimization (specified by the -lm LS option). The output, written to matrix model.txt, is

pos val_A val_C val_G val_T

0 0.894160 -0.904110 -0.545880 0.555830

1 0.522970 -0.943330 -0.976916 1.397276

2 -0.006213 -0.546446 -0.311926 0.864585

3 -0.768769 0.208300 -1.160367 1.720836

4 -0.801640 -1.745592 2.074855 0.472377

5 -0.055218 -0.373101 -0.987396 1.415714

6 -1.329547 -1.678345 2.784233 0.223659

7 1.495863 -0.153076 -0.791095 -0.551691

8 -0.789842 0.285597 -0.270838 0.775083

...

Alternatively, one can learn a neighbor model by instead using the -mt NBR option:

$ sortseq_tools learn_model -lm LS -mt NBR -i dataset.txt -o neighbor_model.txt

[30s execution time]

The -lm IM option specifies parameter inference using information maximization, while the -lm ER option
specifies the use of enrichment ratio calculations (requires -mt MAT).

1.5 Evaluating models

At the end of the day, the purpose of having a quantitative model is to be able to predict the activity
of arbitrary sequences. This basic operation is accomplished using the evaluate model command. For
instance, to evaluate the inferred matrix model, matrix model.txt, on the sequences in dataset.txt, use
the following command:

$ sortseq_tools evaluate_model -m matrix_model.txt -i dataset.txt -o dataset_with_values.txt

[20s evaluation time]

The output file, dataset with vals.txt, contains the same information as dataset.txt, along with an
additional column vals listing the values predicted by the model:

ct ct_0 ct_1 ct_2 ct_3 ct_4 val seq

276 53 1 1 22 199 17.159008 TAATGTGAGTTAGCTCACTCAT

55 13 1 1 18 22 14.755898 TAATGGGAGTTAGCTCACTCAT

42 6 0 0 0 36 20.389269 TAATGTGAGTTAGCTCACACAT

42 7 0 0 1 34 18.348347 TAATGTGAGTTAGCTCACTAAT
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41 8 0 2 5 26 16.057298 GAATGTGAGTTAGCTCACTCAT

38 5 0 0 8 25 15.692708 TCATGTGAGTTAGCTCACTCAT

42 9 0 1 7 25 16.691966 TAATGTGAGTTACCTCACTCAT

40 8 0 1 13 18 15.352424 TAATGTGAGTTAGCTCATTCAT

38 6 0 2 5 25 16.681243 TAATGTGAGTCAGCTCACTCAT

...

Often, it is useful to scan a model over all sequences embedded within larger contigs. To do this,
Sort-Seq Tools provides the command scan model, which is implemented as follows

$ sortseq_tools scan_model -n 100 -m matrix_model.txt -i genome_ecoli.fa -o genome_sites.txt

[31s evaluation time]

Here genome ecoli.fa is a FASTA file containing the entire genome of Escherichia coli, and the option -n

100 specifies that only the 100 top-scoring sites are to be recorded. The output file, genome sites.txt,
has the form

val seq left right ori contig

25.994723 TTTTGTGAACTATATCACAATT 4273191 4273212 + MG1655.fa

25.502928 ATGTGTGATCGTCATCACAATT 141283 141304 + MG1655.fa

25.026216 ATTTGTGATCTGGATCGCGTTT 1614957 1614978 - MG1655.fa

24.934751 ATATGTGATCTGAATCTCATTA 2229787 2229808 - MG1655.fa

24.883642 TTTTGTGATCAATTTCAAAATA 4099532 4099553 + MG1655.fa

24.285880 AATCGTGATTTACATCACAATT 1528510 1528531 - MG1655.fa

24.274854 TTCTGTGATTGGTATCACATTT 42067 42088 + MG1655.fa

24.249231 ATATGTGATTCATATCACATAT 4589511 4589532 + MG1655.fa

24.184566 TTATGTGATAAAAGTCACATTT 2031480 2031501 + MG1655.fa

...

which lists the value assigned to each sequence (val column), the identified sequence (seq column), the
left-most and right-most positions within the sequence (left and right columns), the orientation of the
sequence (ori column; ‘+’ = top strand, ‘-’ = bottom strand), and the FASTA file contig containing the
site.

A good way to assess the quality of a model is to compute its predictive information on a massively
parallel data set. This can be done using the predictiveinfo command:

$ sortseq_tools predictiveinfo -m matrix_model.txt -ds dataset.txt

info

0.569086

[12s evaluation time]

The output from this command reports the predictive information in units of bits. The -mt MAT option
signals that the model is a matrix model. To run a neighbor model over this dataset, use the -mt NBR

option:

$ sortseq_tools predictiveinfo -m true_model.txt -ds dataset.txt

info

0.724236

[14s evaluation time]

2 Comparison to dms tools

As described in the main text, dms tools [2] provides routines for computing enrichment ratios, which are
often interpreted as matrix models describing sequence-function relationships [3]. These enrichment ratios
can be computed in two different ways: using the analytic formula described in Eqs. 4 and 5 of the main
text (which can be derived as a maximum likelihood estimator), and through Monte Carlo sampling of a
Bayesian posterior distribution.

Fig. S2 compares the performance of matrix models inferred using the enrichment ratio (ER) method
provided by Sort-Seq Tools to both the dms tools analytic (DTA) models and the dms tools Monte Carlo
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(DTM) models. This comparison was performed on all experimental data analyzed in the main text, and
on these data sets we find these three modeling methods to be virtually indistinguishable. These results
make sense. The ER and DTA inference methods are mathematically identical, and should produce output
that is identical modulo minor differences due to variation in numerical implementation. As shown in Figs.
S3A and S3C, this is indeed what is found. The DTM inference method, by contrast is very different in
kind than DTA. But because DTM is a Bayesian computation, it is expected to provide virtually the same
results as DTA in the large data limit. Again this is what we find (Figs. S3B and S3D), supporting the
conclusion that this limit is the relevant one for all of the data sets analyzed in this paper.

3 Mutual information calculations

3.1 Information profiles

To construct information profiles, Sort-Seq Tools must estimate (at each sequence position) the mutual
information between the character occurring at that position and corresponding sequence bin. In terms
of the joint probability distribution pl(M,C) relating bin M to the character C at position l, this mutual
information value is given by

Il[M ;C] =
∑
M,C

pl(M,C) log2

[
pl(M,C)

pl(M)pl(C)

]
. (1)

In this formula, the probability distribution pl(M,C) is to be interpreted as what one would obtain if the
dataset consisted of an infinite number of independent measurements. In practice, however, one has only a
finite number of measurements. The issue of how to best estimate Il[M,C] from a limited amount of data
is nontrivial [1]. Sort-Seq Tools allows the user to compute information profiles using three different mutual
information estimators: the “naive” estimator, the “TPM” estimator proposed by Treves and Panzeri [6]
following the work of Miller, [7], and the “NSB” estimator proposed by Nemenman, Shafee, and Bialek [8];
see also [9].

The simplest estimator is the naive estimator, which is calculated by replacing the probability distribu-
tion pl(M,C) Eq. (1) with the set of frequencies fMCl , described in Eq. 5 of the main text (with pseudocount
λ = 0), i.e.

Inaivel [M ;C] =
∑
M,c

fMcl log2

[
fMcl(∑

c f
M
cl

) (∑
M fMcl

)] (2)

The quantity Inaive is known to overestimate mutual information. When substantial counts exist for all
possible values of C and M one can analytically compute the order N−1 correction to mutual information.
This gives the TPM estimator:

ITPM
l [M ;C] = Inaivel [M ;C] − (nM − 1)(nC − 1) log2 e

2N
. (3)

where nM and nC respectively denote the number of bins and characters. Alternatively, when the prob-
ability distribution p(M,C) is not well-sampled, mutual information can be computed using the NSB
estimator. Computing INSB

l [M ;C] requires computing a one-dimensional integral and is more computa-
tionally expensive than the other two approaches.

Bootstrap resampling is used to estimate uncertainties in both Inaive and ITPM. Uncertainties in INSB,
by contrast, are computed analytically as described in [9].

3.2 Predictive information

Activity predictions of the linear models supported by Sort-Seq Tools are continuous real numbers. This
necessitates a different procedure for estimating predictive information I[M ;R] – the mutual information
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Figure S2: Performance comparison of models inferred using Sort-Seq Tools and dms tools. Results for
three different matrix model inference methods are shown: the analytic enrichment ratio calculations of
Sort-Seq Tools (ER), the analytic enrichment ratio calculations of dms tools (DTA), and the Monte Carlo
enrichment ratio calculations of dms tools (DTM). Comparisons are performed on (A) RNAP Sort-Seq
data from [1], (B) CRP Sort-Seq data from [1], (C) MPRA data from [4], and (D) DMS data from [5],
as respectively described in Figs. 4A, 4B, 6A, and 6B of the main text. Note that, unlike Sort-Seq Tools,
dms tools does not support the inference of neighbor models, nor does it support the use of least squares
optimization or information maximization as a means of parameter inference.
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Figure S3: Parameter comparison of models inferred using Sort-Seq Tools and dms tools. The parameters
of models fit to (A,B) the RNAP binding site in the full-wt data of [1] and (C,D) the DMS data from
rounds 0,3 of [5]. ER, DTA, and DTM are defined as in Fig. S2.
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between model prediction R and sequence bin M – than was described above for estimating I[M ;C].
Sort-Seq Tools implements a kernel density estimation procedure similar to the method described in [1],
but modified for increased speed.

First each model prediction R is discretized with resolution equal to 1% of the standard deviation
of all model predictions in the population. Next, model prediction values are sorted and replaced with
their corresponding rank order. Rank order values are then further discretized so as to occupy 1000
equipopulated bins. These binned values are then convolved with a Gaussian kernel having a standard
deviation of 20 bin widths. This procedure provides an estimated continuous distribution, p(R,M), which
is then used in Eq. 10 of the main text to estimate predictive information.

To estimate uncertainties in I[M ;R], this same information estimation procedure is carried out multiple
times using different 50% subsets of the data. The uncertainty in I[M ;R] is then computed as

δI[M ;R] =

√
var(I50%[M ;R])

2
(4)

where I50%[M ;R] denotes the information estimates computed using the 50% subsamples.
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